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Evaluation of bi-directional
causal association between
obstructive sleep apnoea
syndrome and diabetic
microangiopathy: a Mendelian
randomization study
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Jialei Wang1,2 and Songbo Fu1,2*
1Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, China, 2Gansu
Provincial Endocrine Disease Clinical Medicine Research Center, Lanzhou, Gansu, China, 3Department
of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China, 4Center of
Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
Background: The relationship between obstructive sleep apnea syndrome
(OSAS) and diabetic microangiopathy remains controversial.
Objective: This study aimed to use bidirectional two-sample Mendelian
Randomization (MR) to assess the causal relationship between OSAS and
diabetic microangiopathy.
Methods: First, we used the Linkage Disequilibrium Score Regression(LDSC)
analysis to assess the genetic correlation. Then, the bidirectional two-sample
MR study was conducted in two stages: OSAS and lung function-related
indicators (forced vital capacity (FVC) and forced expiratory volume in 1 s
(FEV1)) were investigated as exposures, with diabetic microangiopathy as the
outcome in the first stage, and genetic tools were used as proxy variables for
OSAS and lung function-related measures in the second step. Genome-wide
association study data came from the open GWAS database. We used Inverse-
Variance Weighted (IVW), MR-Egger regression, Weighted median, Simple
mode, and Weighted mode for effect estimation and pleiotropy testing. We
also performed sensitivity analyses to test the robustness of the results.
Furthermore, we performed multivariate and mediation MR analyses.
Results: In the LDSC analysis, We found a genetic correlation between OSAS,
FVC, FEV 1, and diabetic microangiopathy. In the MR analysis, based on IVW
analysis, genetically predicted OSAS was positively correlated with the
incidence of diabetic retinopathy (DR), diabetic kidney disease (DKD), and
diabetic neuropathy (DN). In the subgroup analysis of DR, there was a
significant causal relationship between OSAS and background diabetic
retinopathy (BDR) and proliferative diabetic retinopathy (PDR). The reverse MR
did not show a correlation between the incidence of diabetic microangiopathy
and OSAS. Reduced FVC had a potential causal relationship with increased
incidence of DR and PDR. Reduced FEV1 had a potential causal relationship
with the increased incidence of BDR, PDR, and DKD. Multivariate MR analysis
showed that the association between OSAS and diabetic microangiopathy
remained significant after adjusting for confounding factors. However, we did
not find the significant mediating factors.
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Conclusion: Our results suggest that OSAS may be a cause of the development of
diabetic microangiopathy, and OSAS may also be associated with a high risk
of diabetic microangiopathy, providing a reference for a better understanding of
the prevention of diabetic microangiopathy.
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1 Introduction

Diabetic microangiopathy is one of the major complications of

diabetes, with over 4.59 billion adults worldwide having diabetes,

and over a third developing diabetic microangiopathy (1–4).

Diabetic microvascular complications include diabetic retinopathy

(DR), diabetic kidney disease (DKD), and diabetic neuropathy

(DN) (5). Among them, DR is the most common, with a

prevalence of 35.4% (6) and DR can be divided into background

diabetic retinopathy (BDR) and proliferative diabetic retinopathy

(PDR). The overall health of diabetic patients is severely affected

by microvascular complications, leading to various adverse health

consequences. Studies have shown that the combination of DKD

and hypoglycemic events results in a significantly increased risk

of falls and fractures and significant challenges in performing

daily tasks such as walking and housework (7, 8). Furthermore,

their incidence of chronic and acute health events is also higher

than the general population (9). Most critically, patients with

diabetic microangiopathy also have a significantly increased risk

of death from cardiovascular complications and renal failure

(10). The early prevention and management of diabetic

microangiopathy are therefore essential.

OSAS is widely recognized worldwide as a significant

respiratory disorder, with an estimated prevalence of 5%–15% in

the general population and positively correlated with age,

showing a gradual growth trend (11). The primary characteristic

of OSAS recurrent episodes of sleep-dependent apnea and

reduced airflow. Persistent OSAS can have detrimental effects on

respiratory function, which is typically quantified using forced

vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)

values. More critically, this respiratory disorder is closely related

to increased risks of hypertension, coronary heart disease, and

heart failure (12).

Previous observational studies have found a close connection

between OSAS and diabetic microangiopathy (13–18). However,

due to potential confounding biases and reverse causality in

observational studies, their causal relationship is still unclear and

requires further research to fully understand the potential

mechanisms and establish the relationship between these diseases.

MR uses single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) to infer the causal relationship

between two traits, treating genetic variations as a “natural”

randomized controlled trial. Individuals are randomly assigned to

different exposure levels throughout their lives, minimizing biases

caused by confounding factors and reverse causality (19–21).

Therefore, this study aims to use samples based on the GWAS
02
database for MR analysis to explore the causal relationship

between OSAS and diabetic microangiopathy, which may guide

the prevention and treatment of diabetic microangiopathy.
2 Materials and methods

2.1 Study design

We employed a bidirectional two-sample MR study design,

utilizing two-sample MR methods and varying GWAS summary-

level datasets to elucidate the causal relationship and pathogenic

direction between OSAS and lung function indicators (FVC,

FEV1) with diabetic microvascular complications in European

populations. This investigation was split into two phases.

Initially, we probed whether OSAS had a causal relationship with

diabetic microvascular complications. In the second stage, we

evaluated if diabetic microangiopathy was associated with OSAS.

The primary flow of our study is illustrated in Figure 1. We

then conducted supplementary analyses, including a multivariate

MR analysis to mitigate potential confounding factors and a

mediation MR analysis to explore potential mediating factors.

The MR design is based on three assumptions: (1) genetic

variants are strongly associated with the exposure; (2) genetic

variants are unrelated to other confounding factors; (3)

genetic variants are associated with the outcomes solely through

the investigated exposure. The association data of SNPs with

OSAS and diabetic microangiopathy derive from recently

published genome-wide association studies (GWAS).
2.2 Data source

For OSAS, we utilized the published GWAS summary statistics

from the FinnGen study, which includes 217,955 European patients

(22). FVC and FEV1 data were extracted from UKB. The sample

size for FVC (GWAS ID: ukb-b-7953) was 421,986 and for FEV1

(GWAS ID: ukb-b-19657) was also 421,986. The summary

statistics for GWAS of diabetic microvascular complications were

taken from FinnGen (https://r5.finngen.fi/). DR (GWAS ID: finn-

b-DM_RETINOPATHY_EXMORE) analysis involved 14,584

cases and 176,010 controls. BDR is an early stage of DR. The

analysis for BDR (GWAS ID: finn-b-DM_BCKGRND_RETINA)

included 2,026 cases and 204,208 controls; PDR

(GWAS ID: finn-b-DM_RETINA_PROLIF) consisted of

8,681 cases and 204,208 controls. DKD (GWAS ID:
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FIGURE 1

The process of Mendel randomization research. FVC, forced vital capacity; FEV1, forced expiratory volume in one second; IV, instrumental variable;
MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; MR, Mendelian randomization; OSAS, obstructive sleep apnea syndrome;
SNP, single nucleotide polymorphism.
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finn-b-DM_NEPHROPATHY_EXMORE) had 3,283 cases and

181,704 controls. DN (GWAS ID: finn-b-DM_NEUROPATHY)

included 1,415 cases and 162,201 controls. The diagnoses for

these conditions are based on their respective International

Classification of Diseases(ICD) codes, and we have meticulously

organized detailed inclusion and exclusion criteria for each study

mentioned above. See Supplementary Materials Tables S1–S3

for details.
2.3 Instrument variable selection

Single nucleotide polymorphisms (SNPs) were selected

based on the following criteria: (1) SNPs are strongly

associated with exposure and reach genome-wide significance

(P < 5 × 10−7); SNPs were not associated with any potential

confounders and were independent of each other to avoid

bias caused by linkage disequilibrium (r2 < 0.0001, clustering

distance = 10,000 kb); (2) SNPs are associated with

outcomes only through exposure. F statistics (F ¼ R2�(N�2)
1�R2 ,

R2 (SNP , 10) ¼ 2� EAF � (1� EAF)� beta2, R2 (SNP � 10) ¼
2�EAF�(1�EAF)�beta2

(2�EAF�(1�EAF)�beta2)þ(2�EAF�(1�EAF)�N�SE2)); SNP exposure-

associated beta (β); variance (SE)). Since an empirical

threshold above 10 indicates that the SNP has sufficient validity,

SNPs with F statistics less than 10 were removed. We provide

information on F statistics, SNPs using the supplementary
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datasheet. Details of the screened SNP are provided in

Supplementary Materials Tables S4–S11.
2.4 Data analysis

Linkage Disequilibrium Score Regression (LDSC) analysis is a

new method for estimating genetic correlations that require only

GWAS summary statistics. Even if there are overlapping

individuals between the two GWAS, the regression slope of

LDSC provides an unbiased estimate of the genetic correlation

(23). LDSC analysis in this study was used to evaluate the

genetic correlation of OSAS, FVC, FEV1, and diabetic

microvascular disease. First, it is used to reformat summary

statistics and remove non-SNP variants (such as indels), chain-

ambiguous SNPs, and duplicate SNPs. SNPs with imputation

quality scores >0.9 and Minor Allele Frequency (MAF) > 0.01

were selected in our study to prevent bias due to variable

imputation quality (24). Second, LD scores were estimated using

the 1,000 Genomes Project as the linkage disequilibrium

reference panel, following standard methods recommended by

the developers. Third, we studied the genetic correlation between

OSAS, FVC, FEV1, and diabetic microangiopathy using LDSC

(https://github.com/bulik/ldsc). And the strict Bonferroni

threshold was set at P < 0.0033 (0.05/15). However, after the

Bonferroni correction, there was no significant correlation.
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Therefore, we set the candidate threshold of LDSC regression analysis

at P < 0.0033 and used MR analysis to verify the causal relationship

between OSAS, FVC, FEV1, and diabetic microangiopathy.

Two-sample MR is used to analyze the causal relationship

between OSAS, FVC, FEV1, and diabetic microvascular

complications. In the absence of horizontal pleiotropy, the IVW

method can be used as the main method to analyze causal

relationships in MR analysis. Before this, we used Cochrane’s Q

test to assess heterogeneity among IVs. If heterogeneity is

detected (P < 0.05), the random-effects IVW model provides a

more conservative estimate; otherwise, the fixed-effects IVW

model will be used (25). Other MR analysis methods, including

Weighted mode, MR-Egger regression, Simple mode, and

Weighted mode methods (26), can supplement the IVW method

and provide wider confidence intervals (27). The IVW method is

applicable when horizontal pleiotropy does not exist (28); If the

results of the MR analysis are nominally significant (P < 0.05), we

consider a possible causal relationship between the exposure and

the outcome (29). As the basic model of MR analysis, the IVW

method shows good robustness and reliability when dealing with

pleiotropic effects. It assumes that all genetic variants contribute

uniformly to the causal effect, and obtains an overall causal

estimate by weighting the average of the causal estimates of

different single nucleotide polymorphisms (SNPs) (30). By

comprehensively considering the weights of different genetic

variants for analysis, the IVW method can more effectively

control possible pleiotropic effects and provide relatively reliable

causal estimates (31–34). The IVW method is widely used in MR

research and has been widely recognized and accepted in

academia and scientific research fields. Its universality as a basic

model makes it easier for researchers to understand and use. In

addition, the IVW method is one of the simplest and most

intuitive methods in MR analysis and does not require overly

complex statistical models and calculation processes, allowing

researchers to perform analysis and result interpretation more

quickly (35). When comparing other methods, the Weighted

median is similar to IVW, the Weighted mode method assumes

that less than 50% of IVs have horizontal pleiotropy (36), but it

uses median weighting instead of inverse variance weighting.

Weighted median may be more robust to some skewed or outlier

data sets, but may control pleiotropy slightly less than IVW in

some cases (34). MR-Egger regression assumes that more than

50% of IVs are affected by horizontal pleiotropy, considers the

relationship between the impact of genetic variation on exposure

and its impact on outcomes, and can detect and correct biases

caused by reverse causation (31, 32). However, the MR-Egger

method may not be robust enough to strong horizontal skew

(37). Simple mode and Weighted mode methods have poor

control over pleiotropic effects and are not as robust as IVW and

MR-Egger (38, 39).

We conducted a reverse MR analysis between diabetic

microvascular complications and OSAS to examine the possibility

of a reverse causal relationship. The procedure for the reverse

MR analysis was the same as the aforementioned analysis.

We employed several methods to monitor the possible presence

of horizontal pleiotropy. Specifically, P values from the MR-Egger
Frontiers in Cardiovascular Medicine 04
intercept test and MR pleiotropy residual sum and outlier

(MR-PRESSO) global test could be used to assess the presence of

horizontal pleiotropy, and P < 0.05 was considered statistically

significant (32, 40). The MR-PRESSO outlier test can adjust

horizontal pleiotropy by detecting and removing outliers (34).

Additionally, we performed a leave-one-out analysis on the

identified significant results to determine whether the causal role

of the MR analysis was due to a single SNP (41).

Multivariable MR extends the capabilities of MR, akin to

evaluating the effects of multiple treatments independently

within a single randomized control trial (42). In this approach,

the genetic instrument need not be exclusively associated with a

single risk factor but can instead relate to a set of measured risk

factors, while still adhering to equivalent instrumental-variable

assumptions (43). This method accommodates multiple genetic

variants, which may not necessarily be linked to every exposure

in the model, as well as several causally dependent or

independent exposures in an instrumental-variable analysis,

thereby disentangling the direct causal effect of each risk factor

included in the model (42, 44). Consequently, multivariate MR

analysis allows the simultaneous consideration of multiple

potential confounding factors, aiding researchers in mitigating

the interference of these factors with observed associations and

enhancing the accuracy of causal inference (45). In this study,

possible confounding factors include obesity, elevated BMI,

hyperlipidemia, hypercholesterolemia, etc (46–50). As the main

method, we employed a robust IVW method with multiplicative

random effects (51).

Given that OSAS is a complicated disease and previous studies

have revealed that inflammatory factors and hypertension might

mediate the development of diabetic microangiopathy (52–55),

we performed a mediation MR analysis using the two-step MR

method (56). Based on the literature review, we selected 15

variables that may serve as mediators that may lie on the

pathway from sleep apnea syndrome to diabetic microangiopathy

with available genetic tools from GWAS, including BMI,

triglycerides, cholesterol, High-Density Lipoprotein (HDL), Low-

Density Lipoprotein(LDL), apolipoprotein A, apolipoprotein B,

blood glucose, C-reactive protein, heart rate, sleep duration,

heme oxygenase 1 (53, 54, 57). Then, we screened the mediating

factors of the relationship between OSAS and diabetic

microangiopathy according to the following criteria: (1) There

should be a causal relationship between OSAS and the mediator,

and the effect of OSAS on the mediator should be unidirectional,

because if the mediation analysis between Bidirectionality exists

and the validity of the mediation analysis may be affected (24).

(2) Regardless of whether OSAS is adjusted for, the causal

relationship between mediators and diabetic microvasculopathy

always exists; (3) Based on current scientific evidence, in practice,

the relationship between OSAS and mediators, and the

association between mediators and diabetic microvasculopathy,

should be the other way around. Finally, only one mediating

factor, blood glucose level, met all criteria and was included in

the mediation analysis to evaluate its mediating effect on the

causal relationship between OSAS and diabetic microangiopathy.

We then conducted a mediation analysis using a two-step
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approach. In the first step, we calculated the causal effect of OSAS

on mediators (β1), and in the second step, we estimated the causal

effect of mediators on diabetic microangiopathy (β2). The

significance of the mediating effects (β1*β2) and the proportion

of the mediation effect in the total effect were estimated using

the delta method (58).

All statistical analyses were conducted using R version 4.2.1

(R Foundation for Statistical Computing, Vienna, Austria) along

with the “TwoSampleMR”, “MendelianRandomization”, and

“MRPRESSO” packages.
2.5 Ethics

The ethical data used in our study are publicly available pooled

data and their analysis does not require ethical approval.
3 Results

3.1 Linkage disequilibrium score regression

Regression of LD score between OSAS and diabetic

microvasculopathy using summary statistics from the FinnGin

database. The results showed a moderate genetic correlation

between OSAS and diabetic microangiopathy (rg= 0.142, SE =

0.044, P = 0.0011; rg= 0.414, SE = 0.077, P < 0.001; rg= 0.398, SE

= 0.062, P < 0.001). For FVC and FEV1 and diabetic

microvasculopathy, we used summary statistics from the UKB

and Finnish databases, respectively, to calculate genetic

correlations. The results showed a significant genetic correlation

between FVC and diabetic microangiopathy (rg=−0.117, SE =

0.016, P < 0.001; rg=−0.205, SE = 0.028, P < 0.001; rg=−0.153,
SE = 0.023, P < 0.001). The results also showed a genetic

correlation between FEV1 and diabetic microangiopathy

(rg =−0.086, SE = 0.023, P = 0.0002; rg =−0.121, SE = 0.040,

P = 0.0028; rg =−0.148, SE = 0.032, P < 0.001), as shown in

Supplementary Materials Table S12.
3.2 Causal effects of OSAS, FVC, and FEV1
on DR

Regarding OSAS, as depicted in Figure 2, we observed a

potential causal association between OSAS and an increased

incidence of DR (OR = 1.248, 95% CI: 1.079–1.442, P = 0.003)

and also with an increased incidence of BDR and PDR

(OR = 1.390, 95% CI: 1.023–1.889, P = 0.035; OR = 1.176, 95% CI:

1.009–1.371, P = 0.038). In the sensitivity analysis of the IVs, no

significant heterogeneity was observed through both the IVW

test (Q = 9.703, P = 0.206; Q = 2.398, P = 0.935; Q = 4.288,

P = 0.746) and the MR-Egger regression test (Q = 9.643,

P = 0.141; Q = 2.332, P = 0.887; Q = 4.267, P = 0.641). The results

of the MR–Egger regression analysis indicated that there was

no horizontal pleiotropy among the IVs (all P > 0.05). The

MR-PRESSO test ensured the accuracy of the results (all P < 0.05).
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We also found that the respiratory-related indicators FVC and

FEV1 were positive exposures for diabetic retinopathy, and FVC

reduction has a potential causal relationship with the increased

incidence of DR and PDR (OR = 0.862, 95% CI: 0.765–0.972,

P = 0.015; OR = 0.838, 95% CI: 0.725–0.969, P = 0.017). There

is either no heterogeneity (Q = 423.304, P = 0.062; Q = 422.036,

P = 0.063) or horizontal pleiotropy (P > 0.05) in the PDR.

Minor heterogeneity could be observed in the DR by IVW

testing (Q = 448.273, P = 0.009) and MR-Egger testing

(Q = 447.105, P = 0.009). According to the intercept of MR–Egger

regression, it can be found that IVs do not have horizontal

pleiotropy (P > 0.05), and the MR-PRESSO test ensures the

accuracy of the results (all P < 0.05). Reduced FEV1 will also

increase the risk of BDR and PDR (OR = 0.627, 95% CI: 0.466–

0.844, P = 0.002; OR = 0.830, 95% CI: 0.708–0.974, P = 0.022).

There is either no heterogeneity (Q = 321.439, P = 0.592;

Q = 321.420, P = 0.577) or horizontal pleiotropy (P > 0.05) in the

BDR. However, minor heterogeneity could be observed in the

PDR by IVW testing (Q = 377.673, P = 0.030) and MR-Egger

testing (Q = 373.099, P = 0.040). Based on the leave-one-out

analysis, no SNP significantly altered the overall results, and the

MR-PRESSO test ensures the accuracy of the results (all

P < 0.05). The MVMR analysis was conducted to assess the direct

effect of OSAS on DR with the adjustment of multiple other risk

factors for diabetic complications. The results obtained from the

two-sample univariable MR analysis were consistent with the

findings from the MVMR, but the associations of OSAS with

BDR and PDR were no longer significant, as shown in

Supplementary Materials Table S14. Detailed results of the MR

analysis are presented in Supplementary Materials Tables S13,

S15 and the sensitivity analysis results are shown in

Supplementary Materials Table S15. Based on the recent MR

analysis, we infer that patients with OSAS exhibit an elevated

risk for DR development. Individuals with pulmonary function

abnormalities are advised to undergo periodic lung function

evaluations and implement preventive measures against DR.
3.3 Causal effects of OSAS, FVC, and FEV1
on DKD

Next, as shown in Figure 3, we evaluated the causal relationship

between OSAS and DKD. IVW, Weighted median, and Weighted

mode analyses indicated that genetically predicted OSAS is

associated with a higher risk of DKD (OR = 1.570, 95%

CI: 1.233–1.999, P < 0.001; OR=1.678, 95% CI: 1.215–2.319,

P = 0.002; OR = 1.774, 95% CI: 1.142–2.757, P = 0.038). Both

the IVW test (Q = 5.853, P = 0.557) and the MR-Egger regression

test (Q = 5.673, P = 0.461) showed no evident heterogeneity. The

MR-Egger regression results suggested that there’s no horizontal

pleiotropy in the IVs (P > 0.05), and the MR-PRESSO test

confirmed the accuracy of the results (P < 0.05). There was no

significant correlation between the decrease in FVC and DKD.

However, a decrease in FEV1 showed a significant correlation

with DKD (OR = 0.710, 95% CI: 0.553–0.911, P = 0.007).

Although there was slight heterogeneity, our MR–Egger
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FIGURE 2

Forest plot of OSAS, FVC, and FEV1 associated with the risk of DR, BDR, and PDR. BDR, background diabetic retinopathy; DR, diabetic retinopathy;
FVC, forced vital capacity; FEV1, forced expiratory volume in one second; MR, Mendelian randomization; MR-Eggcr, MR-Egger regression analysis;
OSAS, obstructive sleep apnea syndrome; PDR, proliferative diabetic retinopathy; SNP, single nucleotide polymorphism.

Liu et al. 10.3389/fcvm.2024.1340602
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FIGURE 3

Forest plot of OSAS, FVC, FEV1 associated with the risk of DKD. DKD, diabetic kidney disease; FVC, forced vital capacity; FEV1, forced expiratory volume
in one second; MR, Mendelian randomization; MR-Eggcr, MR-Egger regression analysis; OSAS, obstructive sleep apnea syndrome; SNP, single
nucleotide polymorphism.

Liu et al. 10.3389/fcvm.2024.1340602
regression results indicated that there was no horizontal pleiotropy

in the IVs (P > 0.05). The MR-PRESSO test also proved the

accuracy of the results (P < 0.05), and no SNP significantly

altered the overall results, so our results are relatively robust.

After adjusting for possible confounding factors including

obesity, elevated BMI, hyperlipidemia and hypercholesterolemia,

OSAS was still associated with DKD, as shown in Supplementary

Materials Table S14. The detailed results of the MR analysis are

presented in Supplementary Materials Table S13 and the results

of the sensitivity analysis are shown in Supplementary Materials

Table S15. This suggests that the FEV1 level plays a pivotal role

in the pathogenesis of DKD. Concurrently, patients with OSAS

should be vigilant in taking preventive measures against the

onset of DKD.
3.4 Causal effects of OSAS, FVC, and FEV1
on DN

We also analyzed the causal relationship between OSAS and

DN. The IVW and Weighted median analyses indicated that

genetically predicted OSAS is associated with a high risk of DN

(OR = 1.912, 95% CI: 1.325–2.760, P = 0.001). Both the IVW test

(Q = 1.141, P = 0.992) and the MR-Egger regression test

(Q = 1.047, P = 0.984) showed that there is no heterogeneity
Frontiers in Cardiovascular Medicine 07
among the IVs. The MR-Egger regression revealed no horizontal

pleiotropy for the IVs (P > 0.05). However, there was no

significant association between the risk of DN and either FVC or

FEV1. As shown in Figure 4. OSAS was still associated with DN

after adjusting for possible confounding factors such as obesity,

elevated BMI, hyperlipidemia, and hypercholesterolemia, as

shown in Supplementary Materials Table S14. The results of the

sensitivity analysis can be found in Supplementary Materials

Table S15. This reminds us that attention should be paid to the

possibility of developing DN when patients with OSAS.
3.5 Causal effects of diabetic microvascular
complications on OSAS

When considering OSAS as the outcome, we found no

significant association between DR, DKD, and the risk of

developing OSAS. Although the Weighted median analysis

suggested that DN might increase the risk of OSAS (OR = 1.045;

95% CI: 1.005–1.086; P = 0.027), our primary analysis method,

the IVW analysis, indicated no significant association between

DN and OSAS (OR = 1.022; 95% CI: 0.986–1.061; P = 0.234). The

IVW test (Q = 4.459, P = 0.216) and the MR-Egger test

(Q = 3.479, P = 0.176) did not observe significant heterogeneity.

The MR-Egger regression analysis indicated no horizontal
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FIGURE 4

Forest plot of OSAS, FVC, FEV1 associated with the risk of DN. DN, diabetic neuropathy; MR, Mendelian randomization; MR-Eggcr, MR-Egger
regression analysis; FVC, forced vital capacity; FEV1, forced expiratory volume in one second; OSAS, obstructive sleep apnea syndrome; SNP,
single nucleotide polymorphism.
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pleiotropy between the exposure and the outcome (P > 0.05). Thus,

the reverse MR suggests there’s no significant association between

diabetic microvascular complications and OSAS, as shown in

Figure 5. Furthermore, we found that there’s no reverse causal

relationship between FVC and diabetic microvascular

complications. In the IVW analysis, when using FEV1 as the

outcome, there was a reverse causal relationship between FEV1

and DR, BDR, and PDR (OR = 0.981; 95% CI: 0.966–0.997;

P = 0.021; OR = 0.990; 95% CI: 0.980–0.999; P = 0.029;

OR = 0.984; 95% CI: 0.972–0.998; P = 0.020), as shown in

Supplementary Materials Table S16. The results of the sensitivity

analysis can be found in Supplementary Materials Table S17.

Subsequently, we performed a mediation MR analysis, and

unfortunately, in the current sample and data conditions, we were

unable to determine that blood glucose levels played a significant

mediator between OSAS and diabetic microangiopathy. This

finding suggests that a larger sample size or finer statistical

methods may be needed to further explore this mediation effect,

as shown in Supplementary Materials Table S18.
4 Discussion

Our study found that a genetic correlation between OSAS,

FVC, FEV1 and diabetic microangiopathy exists and genetically
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predicted OSAS leads to an increased incidence of diabetic

microangiopathy. Among them, the impact of OSAS on DN is

the most significant. Patients with OSAS have a risk of

developing DN that is 1.91 times that of normal individuals,

while the risks of developing DR and DKD for such patients are

1.25 and 1.57 times respectively compared to normal individuals.

In terms of DR, the effect of OSAS on BDR is more pronounced

than on PDR. Furthermore, the lung function indicators FVC

and FEV1 are protective factors against diabetic

microangiopathy, and a bidirectional causality exists between

FEV1 and DR, BDR and PDR. After adjusting for possible

confounding factors such as obesity, elevated BMI,

hyperlipidemia, and hypercholesterolemia using MVMR, OSAS is

still associated with DR, DKD, and DN, but the association with

BDR and PDR is no longer significant. The results of the LDSC

analysis also showed a genetic correlation between OSAS and

DR, but this correlation was no longer significant in the BDR

and PDR. It may be because BDR and PDR are specific subtypes

of DR. It may have different risk factors or causal pathways than

DR overall. The genetic variants used in analyses may capture

the causal effects of BDR and PDR less effectively than DR

overall. In addition, as subgroups of DR, BDR, and PDR have

smaller samplesizes than DR, the smaller sample sizes may result

in reduced statistical power to detect true associations, which

may explain the loss of significance (59, 60).
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FIGURE 5

Forest plot of DR, BDR, PDR, DKD, DN associated with the risk of OSAS. BDR, background diabetic retinopathy; DKD, diabetic kidney disease; DN,
diabetic neuropathy; DR, diabetic retinopathy; MR, Mendelian randomization; MR-Eggcr, MR-Egger regression analysis; PDR, proliferative diabetic
retinopathy; OSAS, obstructive sleep apnea syndrome; SNP, single nucleotide polymorphism.
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The application of pulmonary function testing in OSAS patients is

for a comprehensive evaluation of the respiratory system (61).

Although the diagnosis of OSAS mainly relies on polysomnography

(PSG), pulmonary function testing is of great significance for

evaluating the patient’s respiratory function status (30). There is

literature showing that FEV1 and FVC in pulmonary function tests

are related to the severity of OSAS, which reflects the ventilatory

dysfunction that occurs in OSAS patients during sleep and its

impact on the respiratory system (62). In addition, through

pulmonary function testing, we can evaluate the patient’s vital

capacity, ventilatory function, airflow limitation, and other
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indicators (63). These indicators can provide a comprehensive

understanding of the respiratory function status of OSAS patients

(30, 64). In clinical practice, pulmonary function test results can not

only guide the selection of treatment strategies. For example, OSAS

patients with abnormal pulmonary function may require different

treatment options, such as continuous positive airway pressure

(CPAP) therapy or physical exercise, but also Treatment effects and

changes in condition can be monitored (30). Therefore, pulmonary

function testing plays an important role in the management of

OSAS. It can not only help doctors comprehensively evaluate the

patient’s respiratory function, but also guide the selection and
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adjustment of treatment options to ensure that the patient’s

respiratory function is optimally controlled and managed.

Diabetic microangiopathy represents hallmark manifestations of

the chronic progression of diabetes. During the non-proliferative

phase, DR manifests as microaneurysms and retinal hemorrhages.

As it progresses to the proliferative phase, ischemia or edema in

the macular region, vitreous hemorrhage, and tractional or

rhegmatogenous retinal detachment can lead to significant visual

impairment, even blindness (65). DKD is characterized by

proteinuria and a decline in glomerular filtration rate (66), often

advancing to uremia (67). DN is a complex neurologic disorder

affecting both peripheral and autonomic nervous systems.

Symptoms may include pain, numbness, balance issues, and foot

ulcers (2, 68, 69), increasing the risk of diabetic foot and

amputation. In summary, diabetic microangiopathy can impair

bodily functions, potentially leading to disability, and reducing

employment opportunities and the work capacity of patients (70, 71).

In previous observational studies, Chang and colleagues found

an association between the presence and severity of OSAS and DR

(72). After adjusting for all possible confounding factors, Tahrani

et al. found that OSAS remained an independent risk factor for

Diabetic Peripheral Neuropathy (DPN) (73). Leong et al.

conducted a comprehensive analysis of 2 longitudinal and 10

cross-sectional studies. Multivariate analysis indicated a significant

correlation between OSAS and DKD, which was confirmed

through a meta-analysis of another 7 studies (74). Furthermore,

Ouardighi et al. compared the prevalence of OSAS in patients

with diabetic microangiopathy and assessed the potential effects of

diabetic microangiopathy on OSAS. The results showed no

correlation between diabetic microangiopathy and OSAS (75).

Hsin-Chieh et al. found that a decrease in FVC and FEV1 could

increase the risk of diabetes, and chronic hyperglycemia and

tissue hypoxia could promote the onset of microangiopathy

(76). Our bidirectional MR study further supplements previous

research and provides evidence for the potential causal

relationship between OSAS and diabetic microangiopathy.

The development of diabetic microvascular complications may

be attributed to OSAS and its associated cyclical drops in oxygen

saturation and disruptions in sleep structure. This leads to

several biological changes, including the activation of ADP-ribose

polymerase, protein kinase C, and the polyol pathway.

Additionally, there’s an increase in the production of advanced

glycation end-products, oxidative and nitrosative stress, as well as

the activation of the sympathetic nervous system and the renin-

angiotensin-aldosterone system (RAAS) (11, 77). All these

biological changes can lead to endothelial dysfunction, triggering

inflammatory responses and cell apoptosis, resulting in damage

to the vascular wall, increased permeability, white blood cell

infiltration, and cell death. These conditions stimulate the

production of hypoxia-inducible factors, leading to an increased

expression of vascular endothelial growth factor (VEGF) and a

higher rate of neovascularization. These factors collectively

contribute to the progression of diabetic microvascular

complications (73, 78, 79). Additionally, ventilation abnormalities

can lead to decreased FVC and dynamic lung compliance (80),

the decline in lung function, leading to a cumulative loss of
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pulmonary reserves, ultimately exacerbates tissue hypoxia

associated with vascular lesions in distant organs. This is the

fundamental cause of diabetic microvascular complications (81).

At the same time, reductions in FVC and FEV1 are correlated

with increased levels of Hypoxia-Inducible Factor-1 (HIF-1) and

VEGF (51), thereby heightening the likelihood of endothelial

vascular lesions related to diabetes.

From a clinical perspective, as the first MR study on the role of

OSAS in the etiology of diabetic microangiopathy, this study suggests

that the genetic susceptibility to OSAS may account for variations in

diabetic microangiopathy in people of European descent. Although

OSAS has a genetic component, it is also influenced by

environmental and lifestyle factors and is possibly preventable (82).

Although there is still uncertainty about the exact functions of the

8 SNPs, their polygenic effects on diabetic microvascular

complications, and the mechanisms by which these gene variants

operate, current evidence still suggests that reduced blood oxygen

saturation plays a significant role in diabetic microvascular

complications. It seems prudent to recommend that people at high

risk of diabetic microangiopathy strengthen the management of

OSAS and take measures including lifestyle changes by

strengthening social publicity and education and improving

residents’ health awareness. In addition, detecting self-oxygen

saturation, monitoring pulmonary function parameters, and timely

adjustment for abnormal pulmonary function seem to have

unexpected effects on the prevention of clinical DR and its

subtypes. Future work should try to clarify potential mechanisms,

aiming to intervene, provide information for public health research,

or further enhance our understanding of the etiology of diabetic

microvascular complications. Instrumental variable SNPs can be

incorporated as genetic predictors in predictive models aimed at

identifying populations most likely to benefit from specific

interventions. In our study, there were 8 SNPs for diabetic

microangiopathy as instrumental variables for OSAS. Future

research could consider building predictive models based on these

SNPs and validating them in longitudinal cohorts for early

detection and intervention in individuals at risk of diabetic

microvascular complications. As our understanding of human

genetics and the interactions between genes, metabolomics,

proteomics, and transcriptomics grows, future MR studies should

integrate these aspects to identify new biomarkers predicting the

onset of diabetic microvascular complications and screen potential

therapeutic targets. By screening SNP-related protein factors as

instrumental variables to estimate the causal impact of this protein

factor on specific results, MR studies can be used to assess whether

the drug is likely to be effective in the study of compounds

targeting specific proteins, guiding clinical decision-making and

treatment planning. Lastly, in this study, we adopted a

comprehensive dataset derived from public databases encompassing

cases of microvascular complications induced by both Type 1

diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM).

Given that sustained hyperglycemic conditions in both types of

diabetes can trigger a series of intricate metabolic and molecular

cascades, leading to endothelial dysfunction within the

microvasculature, this constitutes the primary pathological

mechanism (83). We posit that merging and analyzing datasets
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from T1DM and T2DM collectively, as opposed to separate analyses,

significantly enhances the statistical power of the study. This

analytical strategy aids in uncovering universal characteristics of

DR across the entire diabetic population, rather than focusing

solely on specific diabetic subtypes (84). Furthermore, through the

amalgamation analysis, we can circumvent potential issues of

reduced statistical significance due to insufficient sample sizes,

thereby enhancing the generalizability and credibility of study

findings (85). The central objective of this study is to capture the

overall trends of DR, rather than distinguishing between specific

subtypes of diabetes. Through this comprehensive analytical

approach, we aim to provide a more thorough and profound

scientific basis for the prevention and therapeutic intervention of

microvascular complications in diabetes.

Our current research has several advantages. Firstly, few

studies have comprehensively investigated the relationship between

OSAS and the incidence of diabetic microvascular complications.

We are the first to examine their potential causal relationship

using the MR method and a large amount of GWAS data.

Secondly, because we used a two-sample MR analysis, our results

are less likely to be confounded and reverse causality compared to

traditional observational studies. In addition, we utilized large-scale

samples to improve the statistical power of the study and make

the findings more convincing. MR designs estimate the causal

effects of independent variables on dependent ones rather than

merely observing their correlation. Thus, the advantages of

MR analysis may enhance the reliability of our findings, provide

stronger evidence for clinical decision-making, and assist doctors

and patients in making more informed medical choices.

However, some limitations were identified in our study. First, MR

requires three strict core assumptions to be met: relevance,

independence, and exclusion restriction. While we employed a

rigorous study design to avoid violating these assumptions and

identified closely related genetic tools for exposure (P-value < 5 ×

10−7) with F-statistics > 10, and replicated results with multiple

sensitivity analyses. Additionally, we used MR-Egger to identify

potential horizontal pleiotropy, but it’s impossible to completely

rule out residual pleiotropy. In our study, no horizontal pleiotropy

was found between OSAS with diabetic microvascular

complications. However, horizontal pleiotropy exists between FEV1

and PDR, indicating that their relationship might be influenced by

pleiotropic factors and warrants further validation. Second, there

may be some sample overlap in our study, the direction and extent

of any bias remain uncertain. Recent simulation studies also

suggest that two-sample MR methods can be safely applied to

single-sample MR performed in large biobanks. Hence, any bias

due to sample overlap, if present, might be minimal (82). Third,

clinical trials typically assess short-term intervention effects over

shorter durations. This implies that our findings might not provide

information about short-term intervention effects, which could be

crucial for questions directly related to clinical interventions.

Although our research can reveal the relationship between OSAS

and DR, the application of the findings in real-world clinical

settings might require additional research to determine whether

treatment or interventions for OSAS are needed and how they

should be conducted. Lastly, since the UK Biobank represents a
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biased sample of healthy older individuals from the UK, the

Finnish database population also has specific demographic

characteristics, including genetic background, genetic diversity,

lifestyle, dietary habits, and genomic features, among others. These

characteristics might differ from those of other countries or

populations, making the research findings potentially inapplicable

to other groups (86). Due to the lack of individual-level data, it’s

not possible to evaluate the relationship between the severity of

OSAS and other parameters. Therefore, our findings should be

interpreted with caution and validated in further studies.
5 Conclusion

Our study offers suggestive causal evidence indicating a

potential causal relationship between OSAS and diabetic

microvascular complications. Lung function might also be

associated with the risk of diabetic microvascular disease onset.

Our findings suggest that lifestyle interventions related to OSAS

could serve as preventive strategies for potential populations at

risk of diabetic microvascular complications. Our research is

comprehensive and lays the groundwork for further large-scale

longitudinal studies or randomized controlled trials
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