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Generalising electrocardiogram
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neural networks with synthetic
data augmentation
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Introduction: Extracting beat-by-beat information from electrocardiograms
(ECGs) is crucial for various downstream diagnostic tasks that rely on ECG-
based measurements. However, these measurements can be expensive and
time-consuming to produce, especially for long-term recordings. Traditional
ECG detection and delineation methods, relying on classical signal processing
algorithms such as those based on wavelet transforms, produce high-quality
delineations but struggle to generalise to diverse ECG patterns. Machine
learning (ML) techniques based on deep learning algorithms have emerged as
promising alternatives, capable of achieving similar performance without
handcrafted features or thresholds. However, supervised ML techniques
require large annotated datasets for training, and existing datasets for ECG
detection/delineation are limited in size and the range of pathological conditions
they represent.
Methods: This article addresses this challenge by introducing two key
innovations. First, we develop a synthetic data generation scheme that
probabilistically constructs unseen ECG traces from “pools” of fundamental
segments extracted from existing databases. A set of rules guides the
arrangement of these segments into coherent synthetic traces, while expert
domain knowledge ensures the realism of the generated traces, increasing the
input variability for training the model. Second, we propose two novel
segmentation-based loss functions that encourage the accurate prediction of
the number of independent ECG structures and promote tighter segmentation
boundaries by focusing on a reduced number of samples.
Results: The proposed approach achieves remarkable performance, with a
F1-score of 99.38% and delineation errors of 2.19+ 17.73ms and
4.45+ 18.32ms for ECG segment onsets and offsets across the P, QRS, and T
waves. These results, aggregated from three diverse freely available databases
(QT, LU, and Zhejiang), surpass current state-of-the-art detection and
delineation approaches.
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Discussion: Notably, the model demonstrated exceptional performance despite
variations in lead configurations, sampling frequencies, and represented
pathophysiology mechanisms, underscoring its robust generalisation capabilities.
Real-world examples, featuring clinical data with various pathologies, illustrate
the potential of our approach to streamline ECG analysis across different
medical settings, fostered by releasing the codes as open source.

KEYWORDS
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1 Introduction

The electrocardiogram (ECG) stands as a fundamental tool

in clinical practice, offering valuable insights into cardiac

electrophysiology. The ECG captures the heart’s electrical activity,

presenting it as distinct waves corresponding to different phases in

the cardiac cycle. Specifically, the P wave signifies atrial

depolarisation, the QRS complex reflects ventricular depolarisation,

and the T wave mirrors ventricular repolarization (1). By

extracting these waves and related pauses (ST, PQ, and TP

segments), we can objectively quantify key aspects of the heart’s

electrophysiological function (1). These measurements prove

instrumental in characterising deviations from normal sinus

rhythm, such as the absence of a P wave in ventricular rhythms or

ST segment elevation/depression indicative of myocardial

infarction (1). Furthermore, these measurements serve as critical

inputs for diagnostic algorithms (2), acting either as clinical

thresholds signalling abnormalities or as features for training and

testing machine learning models (3). In the realm of ECG analysis,

precise and automated measurement of these waves could

revolutionise the development of more accurate decision support

systems. This involves aggregating information from multiple-lead

registries over several heart cycles, a labour-intensive task that

currently hinders the efficiency of cardiologists’ workflows (3).

Many computational approaches exist for the automatic

quantification of the ECG. Most of these produce detection and

delineation of the electrocardiogram. Detection and delineation

methods can be divided in two main groups: digital signal

processing (DSP) and machine learning (ML) based methods.

The latter can be further subdivided into deep learning (DL) and

non-DL (hereinafter “hand-crafted”) methods.

Digital signal processing methods (4–8) have the advantage of

explicitly imposing priors. Recently, Pilia et al. (9) released

ECGdeli, an open source ECG delineation toolbox with state-of-

the-art DSP techniques. These methods, however, often

generalise poorly to unseen morphologies given their dependence

on engineered transformation and rule-based aggregation steps

(3), thus becoming more difficult to maintain.

Machine learning methods, on the other hand, have different

associated problems that hinder their widespread adoption.

Hand-crafted ML algorithms (10, 11) are difficult to train when

using large amounts of annotated samples, and usually provide

reduced performance as compared to well-tuned DSP-based or

DL-based solutions. The reason for this is that feature

engineering, a key step in hand-crafted ML-based solutions, is
02
costly and difficult to produce in a robust, fast and

comprehensive manner (12).

Various Deep Learning (DL) methods have emerged for ECG

data processing, encompassing applications in cardiovascular

disease diagnosis, blood pressure estimation, sleep analysis, and

broader clinical analysis (13). Pioneering efforts by (14, 15)

proposed a convolutional neural network (CNN) with varied

kernel sizes to annotate ECG waves on the QT database (16).

Subsequently, (17, 18) opted for networks with bilateral long

short-term memory (BiLSTM) modules, emphasising the capture

of temporal features. Demonstrating superior performance,

Peimankar and Puthusserypady (19) advocated for an end-to-end

model combining CNN with LSTM, a strategy subsequently

embraced by others, yielding excellent results (20, 21).

Noteworthy variations include the replacement of CNN

modules with dilated convolution (22) or the integration of

residual neural networks (ResNet) (23). More recently, the

incorporation of transformers has been explored (24, 25). In our

earlier works (26, 27), we proposed an alternative using the

U-Net architecture (28) to guide the ECG detection and

delineation algorithm. This approach, also tested by others (29),

yielded comparable results with robust generalisation capabilities.

However, DL-based methods provide black-box solutions

that are difficult to verify, require large amounts of annotated

data, have difficulties leveraging a priori information, and need

quality loss functions for obtaining sensible data representations

(3, 30–32). Moreover, both hand-crafted- and DL-based

algorithms face difficulties when learning ECG data, given its

high beat-to-beat morphological similarity and the small size of

current ECG databases for their usage in data-driven approaches.

The main goal of this work was to develop an ECG detection and

delineation algorithm addressing the aforementioned issues associated

to DL-based data analysis. Firstly, we developed a novel synthetic data

generation method for augmenting the database size with a priori

information on normal and pathological ECG behaviour. Secondly,

two loss functions were developed: the BoundaryLoss, which

provide enhanced pixel accuracy close to the segmentation borders

and is similar to other approaches in the literature (33, 34), and the

F1InstanceLoss, which promotes cohesiveness in the predicted

pixels regions. Lastly, we explored different modifications on the

base U-Net architecture, namely different connectivity patterns such

as the W-Net (35, 36), attention-based mechanisms (37) and

different number of pooling operations. To the best of our

knowledge, these improvements have not been explored in the

literature for ECG analysis. A more rudimentary version of this
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work exists in the literature (27); however, the current approach

displays key components that allow the algorithm to generalise

better against a wider array of morphologies.

The rest of the paper is organised as follows. Section 2. describes the

databases andmethodology employed. Section 3. summarises themain

results. Finally, Section 4. discusses the obtained results in their context.

More details on the rules followed for the synthetic data augmentation

procedure are included in the Supplementary Material, together with

several examples on the performance of the developed algorithm on

real-world clinical data from different pathologies.
2 Materials and methods

This section firstly describes the used databases in Section 2.1

for then defining the methodology employed for their analysis.

The proposed methodology, on its behalf, can be divided into

several steps. The first step consists in the pseudo-synthetic ECG

generation from fundamental segments from a probabilistic rule-

based algorithm (Section 2.2). The second step involve the

definition and training of a deep learning architecture, which is

subdivided into the description of the architecture itself (Section

2.3) and the employed loss functions (Section 2.4). Finally, the

evaluation metrics are described in Section 2.5. A final section was

added for detailing the specific experiments performed (Section

2.6). Our code has beeen made publicly available in https://github.

com/guillermo-jimenez/DelineatorSwitchAndCompose.
2.1 Databases

The QT (16), the LU (38) and the database from the Ningbo

First Hospital of Zhejiang University (39) (hereinafter the
FIGURE 1

Limitations of existing delineation databases for training deep learning mode
recordings; (B) Incorrectly-annotated ground truth (top lead) and correction
(magenta). Stripped segments highlight the errors.
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“Zhejiang” database) were employed for model training and

evaluation. Specifically: the QT database was used for synthetic

data generation and model training; the LU database, for

synthetic data generation and evaluation; and the Zhejiang

database, for model testing. The QT database contains 105 two-

lead ambulatory recordings of 15 min sampled at 250 Hz,

representing different pathologies (arrhythmia, ischaemic/non-

ischaemic ST episodes, slow ST level drift, transient ST

depression and sudden cardiac death) as well as normal sinus

rhythm. The LU database is composed of 200 12-lead recordings

of 10 s of length, sampled at 500 Hz, comprising sinus and

abnormal rhythms as well as a variety of pathologies. The

Zhejiang database, on its behalf, includes 334 12-lead outflow

tract ventricular arrhythmias (OTVA) recordings of variable size

(2.8–22.6 s), sampled at 2,000 Hz, and was originally devised for

identifying the OTVA site of origin, containing no delineation

annotations. These databases are an appropriate sample for

testing generalisability, since they present heterogeneity in their

represented pathologies, sampling rates, lead configurations

(Holter and standard 12-leads) and centres of acquisition.

The existing delineation databases have certain characteristics

that hinder the development of reliable delineation algorithms. On

the first hand, although they contain a relatively large amount of

delineated cardiac cycles (3,528 and 1,830 annotated beats in the

QT and LU databases, respectively), these present a high intra-

and inter-patient redundancy (i.e., very similar morphologies in

different patients for certain pathologies or during sinus rhythm

and very stable ECG beat-to-beat morphology in the same trace),

which complicates model training due to reduced population

variability (Figure 1A). Moreover, given the difficulty and time-

consuming process of delineating an ECG, some registries present

delineation errors such as skipped beats or inconsistent onset/
ls. Examples in the LU database: (A) High beat-to-beat redundancy within
(bottom lead). Colour code: P wave (red), QRS wave (green) and T wave
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offset predictions for similar morphologies, among others. Those

problems were addressed in two ways. Firstly, those outlier beats

were re-annotated when necessary with the help of an expert

cardiologist. Secondly, new ground truth was generated for the

Zhejiang database, which was not annotated for delineation

purposes, and reserved for algorithm testing as an independent set.

All these new annotations have been added as Supplementary

Material in the digital version. Some examples of annotation

corrections can be seen in Figure 1B.

The data and ground truth, either real or synthesised, were

then represented as binary masks for their usage in DL-based

segmentation architectures, where a mask of shape {0, 1}3�N was

True-valued whenever a specific sample n [ N was contained

within a P, QRS or T wave (indices 0, 1 and 2, respectively) and

False-valued otherwise (27). Finally, the joint training database

was split into 5-fold cross-validation with strict subject-wise

splitting, not sharing beats or leads of the same patient in the

training and validation sets (27, 40). Given that the proposed

method employs pseudo-synthetic data generation, the pseudo-

ECGs were also generated using data uniquely from the training

set for each fold, ensuring no cross-fold contamination.
2.2 Synthetic data generation

The structure of an ECG can be regarded as a combination of

the P, QRS and T segments, alongside the PQ, ST and TP pause

segments, which represent different phases of the electrical

activation of the heart. The ECG is able to represent in its trace

many pathological and non-pathological changes, reflecting slight

deviations in its different constituting segments. The resulting

“modular” structure can be leveraged in data-driven approaches

for generating pseudo-synthetic data.

The developed generation pipeline, depicted in Figure 2,

consisted in two main stages: a pre-processing step that prepared

the data for its posterior usage and a data generation step that

created synthetic ECG traces through composing independently

generated cardiac cycles. The data pre-processing step, on its

behalf, involved cropping the delineated ground truth (in this

case, the QT and LU databases) in its constituent segments and

into separate “pools” of segments from which to draw in

subsequent stages. Additionally, the segment’s amplitude (relative

to their associated QRS) was fitted into independent log-normal

distributions, which would be sampled from in the generation

step to relate the amplitude of each segment to the amplitude of

the QRS in each cardiac cycle. The QRS segment amplitude was

normalised with respect to the maximum QRS amplitude in the

whole registry (comprising all leads).

The synthetic data generation step has several sub-steps. First, a

set of global generation rules that affect all generated cardiac cycles

were probabilistically generated for each sample. These have been

limited to ventricular tachycardia (VT), atrial fibrillation (AF),

atrioventricular (AV) blocks, sinus arrest (and its duration) and ST

elevation/depression as a proof of concept. Second, a set of per-

cardiac-cycle rules were generated, such as the presence or absence

of each specific segment (P, QRS+T, PQ, ST, TP and U), whether
Frontiers in Cardiovascular Medicine 04
the cycle corresponded to a ventricular ectopic (larger QRS

amplitude and duration, absence of P wave) or whether there

was wave merging (P with QRS, QRS with T, T with the next

cycle’s P). In the first and second steps, the rules were defined by

drawing samples from a uniform distribution and applying the

associated operation (global in the first case and per-cycle in the

latter) in case they surpassed a pre-defined threshold.

Third, a set of segments were randomly selected from the

segment “pools.” A set of operations were then applied when

extracting the segments from the pools as well as on the

resulting cardiac cycles to comply with the global and per-cycle

conditions. In particular, these operations comprised setting the

segment’s amplitude, interpolating the segment to a randomised

number of samples to enforce as much variability as possible,

cropping the segment, merging of the segment with the next

(e.g., merging the T and the P waves, thus enforcing TP segment

suppression), sign-correcting the segment to match other cardiac

cycles or applying per-segment elevation/depression.

Finally, the final synthetic signal and the ground truth were

composed from the individual cardiac cycles. A set of post-

composition operations were added to further increase the

generated signal’s variability, consisting in adding baseline

wander noise, interpolating to slower or faster rhythms, adding

flat line noise at the signal’s edge, setting the global amplitude

(multiplying the amplitude by a factor) and defining the trace’s

starting segment.

An important aspect to pseudo-synthetic ECG generation is

efficiency, as the samples were generated online rather than offline

to avoid restricting the approach to a fixed set of previously drawn

samples. This is, however, only relevant during the training phases

of the model, but can limit the options of operations that can be

performed on the algorithm; in fact, many of the chosen additions

were limited in their scope by this constraint, being restricted

sometimes to oversimplified operations that offer close-enough

approximations of the underlying represented cardiac conditions.

Some randomly drawn samples from the synthetic data generator

are shown in Figure 3. The complete list of rules is described in

the Supplementary Material.
2.3 Architecture

The U-Net (28) is a convolutional neural network is an

encoder-decoder structure, as depicted in Figure 4. The encoder

extracts high-level representations of the input data by means of

convolutional operations, which transform an input tensor by

convolving it with a trainable kernel, and pooling operations,

which allow for reducing computational complexity. The

decoder, on the other hand, upsamples the high-level encoder

tensor to recover the original input’s resolution while aggregating

partial results obtained in different levels of the encoder. This

direct feature aggregation between the encoder and the decoder,

in the shape of tensor concatenation, allows for finer border

definitions while avoiding gradient vanishing problems (28). As

in the original article, the number of trainable convolutional
frontiersin.org
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FIGURE 2

Synthetic electrocardiogam generation pipeline. The data pre-processing step consists in: (1) delineating the ground truth; (2) cropping the different
beats contained in the ground truth into their constituent segments (P, PQ, QRS, ST, T and TP), normalising the QRS segment to have an absolute
amplitude of 1, and normalising the rest of the segments’ as the amplitude fraction with respect to their (normalised) relative QRS; and (3) fitting
the amplitudes to a normal distribution for the QRS wave (fraction with respect to its original amplitude) and log-normal distributions for the rest
of the segments (fraction with respect to the QRS’ amplitude). The synthetic data generation step, on its behalf, involves: (1) producing a set of
global rules that will be common for all synthesised cardiac cycles (in the example, the registry has bradycardia); (2) producing a set of rules that
will affect each cardiac cycle individually (in the example, the first cardiac cycle, CC1, skips its P wave to simulate a ventricularly-mediated beat or
a very low amplitude P wave); (3) retrieving the specific segments and their amplitude relationships from the “bags” of cropped segments for their
composition into independent cardiac cycles; and (4) concatenating the segments into the final synthetic trace.
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filters is doubled after every pooling operation and halved after

every upsampling operation.

Many authors have experimented with the hyperparameters

governing the U-Net, in the shape of number of convolutional

operations (width), the number of upsampling-downsampling

pairs (depth), starting number of convolutional filters, type of

convolutional operation, type of non-linearity and presence/

absence of other post-convolutional operations [batch

normalisation (41), spatial dropout (42)], among others, which

was partially covered in (27) for the QT database.

Other authors have explored refining further architectural

changes. Given the myriad of options, we restricted the

exploration to the application of the W-Net architecture due to

its good performance in other segmentation domains (43) as well
Frontiers in Cardiovascular Medicine 05
as the usage of self-attention mechanisms in the shape of

efficient channel attention (ECA). The W-Net (35, 36) involves

the application of a second U-Net whose input is the output of

the first U-Net, thus approximately doubling the amount of

parameters for the same number of initial channels. The

W-Net also concatenates the tensors at the decoder of the first

U-Net with the encoder of the second, similarly to the

connections established between the encoder and the decoder of

a “vanilla” U-Net. This secondary structure makes the network

deeper, which usually presents increased performance (44). Self-

attention applies the attention mechanism to a tensor, thus

allowing different elements of the tensor to evaluate their relative

importance for obtaining a certain result. This usually improves

overall model performance and explainability (45). ECA,
frontiersin.org
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FIGURE 3

Randomly drawn samples from the developed synthetic data generator. The generator is able to produce samples of a variety of conditions such as
ventricular tachycardia or atrial fibrillation, among others. The samples presented display ventricular ectopics (C,G,H), sinus rhythm (D,E,F), atrial
fibrillation (C) and ventricular tachycardia (A,B), and are generated alongside their ground truth. Colour code: P wave (red), QRS wave (green) and
T wave (magenta).

FIGURE 4

Representation of the U-Net (encircled in yellow) and W-Net architectures (encircled in red, containing the U-Net). Both networks are instantiated
with 3 levels and 2 convolutional blocks per level. Arrows represent operations, while blocks are indicative of output tensors. Convolutional filters
are doubled at each level, so that level Li has 2iN channels per level (with N being the starting number of channels), whereas pooling and
upsampling have a kernel size of 2. Colour code: convolutions (yellow), pooling operations (red), upsampling operations (blue), concatenation
operations (black).

Jimenez-Perez et al. 10.3389/fcvm.2024.1341786
specifically, is an approach to apply this mechanism to CNNs in an

efficient manner (37).
2.4 Loss functions

Two novel loss functions, the BoundaryLoss and the

F1InstanceLoss, were developed with the objective of enhancing

the resulting prediction accuracy in two ways: the F1InstanceLoss

enforces the retrieval of connected structures so that a penalty

term is induced if the number of predicted and present

structures differ; the BoundaryLoss attempts at adapting more
Frontiers in Cardiovascular Medicine 06
tightly to the target boundary by means of computing the

intersection-over-union of a subset of the original samples

present in a mask, as opposed to the usual Dice score

computation. These losses were based on the application of edge

detectors, allowing automatic differentiation for posterior

gradient propagation.

The first step consisted in applying the edge detector along all

non-batch and non-channel axes of the input tensors, isolating the

segmentation boundary. In the case of the BoundaryLoss, a large

kernel size is employed (K [ Rn, n being an hyper-parameter),

whereas in the F1InstanceLoss the kernel size remains small

(K [ R3). In this case the Prewitt operator was employed as the
frontiersin.org
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FIGURE 5

Example of loss functions applied to a sample from the LU database. The Dice Loss measures the overlap between the ground truth reference (GT, top
row) and the predicted (bottom row) masks of the different electrocardiogram segments (differently coloured). The BoundaryLoss computes a
secondary mask (with two parts for each ECG segment) for isolating samples surrounding the boundaries (i.e., onset and offset) of the GT and
predictions, thus more specifically penalising onsets/offset errors. The F1-InstanceLoss locates the onset/offset pairs of the masks to estimate and
penalise differences in the number of ECG segments between the reference and the prediction. In the example, the ground truth contains three T
waves (magenta), whereas only two T waves have been predicted; the F1-score loss for each individual wave is 0, 0 and 0.167, for the P, QRS
and T waves, respectively (thus having a penalty loss for the un-matching in the T waves). Colour code: P wave (red), QRS wave (green) and
T wave (magenta).
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edge detector, which is defined as:

~KF1 ¼ �1 0 þ1ð ÞT ,
~KBound ¼ �1 0 � � � 0 þ1ð ÞT :

(1)

The second step took the absolute of the edge-detected tensors for

both the predicted and the ground truth masks. In the case of the

BoundaryLoss, the third step involved the calculation of the Dice

coefficient between the resulting tensors. This has the advantage

of comparing the mask overlap on a reduced pool of pixels,

increasing the precision at the segmentation boundary, as it is

the case in image processing pipelines. In the case of the

F1InstanceLoss, the third step was based on summing the border

activations along each non-batch and non-channel axis separately

for both the predicted and ground truth tensors, obtaining the

number of discontinuities present in the binary mask. These

discontinuities act as surrogates of the onset/offset pairs of the

binary masks, thus allowing the computation of the number of

predicted and ground truth elements (Pelem and GTelem,

respectively) for computing precision and recall metrics in a fully

differentiable manner. The true positive (TPloss), false positive

(FPloss) and false negative (FNloss) loss metrics to compute the

F1InstanceLoss are then computed by clamping these values, so that:

TPloss ¼ GTelem �max (GTelem � Pelem, 0)j j
FPloss ¼ max (Pelem � GTelem, 0)
FNloss ¼ max (GTelem � Pelem, 0)

(2)

Finally, the TPloss, FPloss and FNloss values were then used to

compute the smoothed F1-InstanceLoss between the input and

target masks. The computation process of these loss functions is

depicted in Figure 5.
Frontiers in Cardiovascular Medicine 07
2.5 Evaluation

The model evaluation is based on the computation of detection

metrics, i.e., the model’s precision, recall and F1-Score, and

delineation metrics, i.e., onset and offset errors on the true

positives (mean, M + standard deviation, SD). The computation

of the metrics consisted in three steps. Firstly, the onset and

offset fiducials were retrieved from the predicted binary mask

(described in Section 2.1) to express the sample of occurrence by

retrieving the locations of value change (False to True or vice-

versa). Secondly, the ground truth and predicted fiducials were

matched through a correspondence matrix. Thirdly, the

correspondence matrix was used to compute the detection and

delineation metrics.

The correspondence matrices between the true (P, QRS and T)

and predicted (P̂, ^QRS and T̂) fiducials were computed as:

Pij ¼
1 if P̂fid[j] [ [Pon[i], Poff [i]]

or Pfid[j] [ [P̂on[i], P̂off [i]]

0 otherwise

8><
>:

QRSij ¼
1 if ^QRSfid[j] [ [QRSon[i], QRSoff [i]]

or QRSfid[j] [ [ ^QRSon[i], ^QRSoff [i]]

0 otherwise

8><
>:

Tij ¼
1 if T̂fid[j] [ [Ton[i], Toff [i]]

or Tfid[j] [ [T̂on[i], T̂off [i]]

0 otherwise

8><
>:

(3)

where fid [ {on, peak, off } is the specific fiducial to be explored,

and i [ [0, M], j [ [0, N] are the total true and predicted fiducials

for each of the waves, respectively.
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These correspondence matrices were used to obtain the

detection and delineation metrics. The detection metrics (true

positives, TP, false positives, FP, and false negatives, FN) were

computed as follows: given a correspondence matrix H, true

positives were computed as elements that have been matched

(TP ¼ P
Hij); false positives were elements of a predicted

fiducial that did not match any element in the ground truth,

corresponding to the difference between the number of

predicted fiducials and the cardinality of the matches

(FP ¼ N � card({(i, j) j Hij ¼ 1})); and false negatives were

computed as elements of the ground truth that did not match

any true fiducial, corresponding to the difference between the

number of true fiducials and the cardinality of the matches

(FP ¼ M � card({(i, j) j Hij ¼ 1})). The TP, FP and FN were in

turn used to compute the model’s precision (Pr), recall (Re) and

F1-score. The delineation error, on its behalf, was computed

through the mean and standard deviation (SD) of the difference

of the actual and predicted onsets and offsets of the TP in the

correspondence matrix:

min
i,j

wfid[i]� ~wfid[j] s:t: Hij ¼ 1: (4)

These metrics were employed in turn for assessing the performance

on the QT, LU and Zhejiang databases. In the case of the QT

database, to homogenise the evaluation criteria with the existing

literature, the detection and delineation metrics were computed for

single-lead and multi-lead approaches, where the single-lead is

based on evaluating the performance of both leads in the Holter

registry independently, and the multi-lead consists in taking, for

each beat, the lead that produces the best adjustment. Contrarily,

the LU and Zhejiang databases were evaluated by fusing the

individual lead predictions to obtain a single output prediction for,

subsequently, comparing this delineation with the annotated

ground truth. The final prediction was computed through

combining the individual lead results using majority voting of the

12 leads and the different models resulting from training on

separate folds of the QT database, forming an ensemble.

Finally, these metrics were also used to define the “best”

performing model, which was selected as the one producing good

detection performance while attaining the lowest possible

delineation error for the QT (in the validation fold), LU and

Zhejiang databases. This was addressed through the calculation of

two figures of merit: the largest F1-score as detection performance

and the smallest SD of the error as delineation performance for all

three databases across all waves, and reported in Section 3.1.

Moreover, this model ranking was employed for producing

ablations of the different modifications (Section 2.) by isolating a

single modified factor while leaving the rest of the hyperparameters

unmodified. These have been reported in Section 3.2.
2.6 Experiments

The model’s performance was tested under an array of

complementary tests to address the contributions of the different
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elements to the results. Firstly, the importance of the synthetic

data augmentation was addressed by training the same model

architecture using augmented data (real and synthetic), synthetic-

only data and real-only data. Identical computational budget was

ensured by producing the same number of batches (with

identical batch size) for the same number of epochs by

oversampling the training database. Secondly, the importance of

the BoundaryLoss and F1InstanceLoss was addressed also by

doubling the number of executions, with and without the

proposed losses. The Dice score always remained as a baseline

for training in every configuration. Finally, the importance of the

architectural modifications was addressed. Several architectures

were tested: U-Net for depths 5, 6 and 7; W-Net for depths 5

and 6; and W-Net with ECA for depth 5. In all cases, the

number of input channels was kept the same in the W-Net as in

its U-Net counterpart, resulting in models with increased

number of parameters (capacity). These were selected to have as

many candidate architectures as possible but without

compromising the computational budget of our equipment. In

total, 66 different configurations were tested to address the

model’s performance.

Some design choices were kept constant to avoid unfeasibly

large hyper-parameter exploration. All model configurations

used the same random seed (123456), leaky ReLU non-

linearities, zero padding for preserving tensor shape, kernels of

size 3, batch normalisation, spatial dropout (42) (p ¼ 0:25),

Adam optimiser (46) (lr ¼ 0:001) and the Dice loss alongside

the developed losses. The BoundaryLoss employed a kernel

size of 11 samples. The ordering of operations after the

convolutional operations was defined to agree with the image

segmentation literature (non-linearity ! batch normalisation

! dropout) (47, 48). All networks were trained using ECG-

centred data augmentation, as described elsewhere (27),

comprising additive white Gaussian noise, random periodic

spikes, amplifier saturation, power-line noise, baseline wander

and pacemaker spikes to enhance the model’s generalisability.

All executions were performed at the Universitat Pompeu

Fabra’s high performance computing environment, assigning

the jobs to either an NVIDIA 1080Ti or NVIDIA Titan Xp

GPU, and used the PyTorch library (49).
3 Results

3.1 Best performing model

The best performing model according to the criteria

presented in Section 2.5 was a self-attention W-Net model

with 5 levels, trained with both real and synthetic data, while

excluding the F1InstanceLoss and the BoundaryLoss (around

548 k parameters; see a figure with training and validation

losses as Supplementary Material). The model obtained an

average F1-score of 99.38% and a average delineation error of

2:19+ 17:73 ms and 4:45+ 18:32 ms for the onsets and

offsets, respectively, across all waves and databases. The per-

database and per-wave metrics of the model (precision, recall,
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TABLE 1 Precision (Pr, %), recall (Re, %), F1 score, onset error (OnE, mean [M] + standard deviation [SD], in milliseconds) and offset errors (OffE, M + SD,
in milliseconds) of our best performing single-lead (SL) and multi-lead (ML) models in the QT database. N/R stands for “not reported.” Bold values
represent best performance for each fiducial. Ref1: (27). Ref2: (8). Ref3: (22).

This work (SL) This work (ML) Ref1 (SL) Ref1 (ML) Ref2 Ref3
Pr 99.27 98.90 90.12 94.17 91.03 94.39

Re 98.38 99.72 98.73 94.70 98.87 92.66

P wave F1 98.82 99.31 – – – –

OnE �1.2 + 17.9 �0.8 + 13.5 1.5 + 22.9 �1.7 + 17.8 2.0 + 14.8 7.01 + 6.23

OffE 1.1 + 16.6 �0.6 + 12.7 0.3 + 16.0 4.0 + 16.1 1.9 + 12.8 6.59 + 5.54

Pr 99.31 99.24 99.14 99.40 99.86 97.04

Re 99.94 99.97 99.94 99.28 99.80 95.29

QRS wave F1 99.62 99.60 – – – –

OnE �0.5 + 11.2 0.1 + 7.5 �0.1 + 8.4 �3.8 + 14.6 4.6 + 7.7 4.61 + 4.99

OffE 3.7 + 13.1 1.7 + 7.8 3.6 + 12.6 5.4 + 16.8 0.8 + 8.7 4.77 + 4.65

Pr 98.73 98.24 98.25 96.36 97.79 94.06

Re 99.78 99.97 99.88 99.09 99.77 92.30

T wave F1 99.25 99.10 – – – –

OnE 5.8 + 39.6 5.2 + 31.1 21.6 + 66.3 19.1 + 66.5 N/R 18.23 + 16.60

OffE 2.4 + 51.3 3.8 + 37.2 4.6 + 31.1 9.9 + 46.3 �1.6 + 18.1 10.15 + 14.23

TABLE 2 Precision (Pr, %), recall (Re, %), F1 score, onset error (OnE, mean [M] + standard deviation [SD], in milliseconds) and offset errors (OffE, M + SD,
in milliseconds) of our best performing model in the LU and Zhejiang databases, obtained through pixel-wise majority voting of the model developed for
each fold trained on the QT database. Bold values represent best performance for each fiducial. Ref1: (6). Ref2: (7). Ref3: (29). Ref4: (50).

Zhejiang (This work) LU (This work) LU (Ref1) LU (Ref2) LU (Ref3) LU (Ref4)
Pr 97.57 99.62 98.43 98.43 97.69 90.48

Re 98.65 99.81 96.44 96.44 98.01 97.36

P wave F1 98.11 99.72 – – 97.85 –

OnE 2.46 + 12.58 8.23 + 9.01 2.2 + 7.4 2.8 + 7.5 �0.6 + 17.5 3.4 + 18.4

OffE 2.87 + 12.43 3.01 + 10.40 �6.5 + 10.7 �7.3 + 10.1 �2.4 + 18.4 �4.1 + 19.4

Pr 99.53 100.00 100.0 99.56 99.93 98.27

Re 99.87 100.00 99.86 99.86 100.0 99.86

QRS wave F1 99.70 100.00 – – 99.97 –

OnE 4.72 + 13.35 4.27 + 9.75 15.4 + 14.6 18.4 + 14.7 1.5 + 11.1 1.7 + 10.0

OffE 3.26 + 11.91 4.00+ 9.14 �3.8 + 13.6 �5.4 + 14.3 2.0 + 10.6 �3.4 + 12.3

Pr 98.86 100.00 99.21 99.09 99.37 96.23

Re 99.86 100.00 98.85 98.85 99.68 93.51

T wave F1 99.36 100.00 – – 99.52 –

OnE 8.73 + 28.85 18.26 + 18.21 �1.3 + 8.8 �2.6 + 11.4 2.9 + 23.7 9.2 + 28.2

OffE �3.77 + 24.32 �8.84 + 18.05 �1.2 + 6.8 �3.3 + 7.3 �2.4 + 30.4 �6.0 + 25.0
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onset error and offset error) were reported in Tables 1, 2 for

completeness. Examples of ECG delineation with the best

performing model in private datasets of patients with different

pathologies (e.g., intrauterine growth restriction, hypertrophic

cardiomyopathy, Tetralogy of Fallot, Brugada syndrome) are

shown in Supplementary Material, demonstrating the

generalisation of the developed methodology.
3.2 Performance comparison of
model additions

The best performing addition was including synthetic data, where

the usage of both real and synthetic data reported an average

increased F1 score of 0.62% (p , 0:05) and a reduced on/off error

(p , 0:01) with respect to using real data only. Interestingly, using

synthetic data only for model training still produced increased
Frontiers in Cardiovascular Medicine 09
performance over using only real data, surpassing its F1 Score by

0.35% (although non-significantly, p ¼ 0:27) and reducing onset/

offset error (p , 0:01). Boxplots of the models grouped by data

source can be visualised in Figure 6 (top).

The second-to-best model performance addition was the usage

of the W-Net architecture, which produced 0.53% less F1 error

(p , 0:05) and a non-statistically-significant reduction in its SD

of 1.83 ms and 2.20 ms for the onset and offset metrics

(p ¼ 0:19) respectively, as compared to its U-Net counterpart

(see Figure 6). The addition of the F1InstanceLoss and the

BoundaryLoss functions increased predictive performance of

0.26% F1 score, and reduced the offset error in 0:07 ms, while

increasing the onset error in 0.17 ms (Figure 6). However, these

differences were not statistically significant (p ¼ 0:176 and

p ¼ 0:772, respectively). The rest of the improvements (usage of

self-attention, increase of model capacity) did not show a

consistent effect on model performance.
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FIGURE 6

Detection (left; higher is better) and delineation (right; lower is better) performance of all models grouped by training data source (top row), model
topology (middle row), and employed loss function (bottom row). Synthetic-only data (green) showed higher detection and delineation performance
than real-only data (magenta), whereas using both sources produced the best results for both detection and delineation performance. The W-Net
(green) showed slightly higher detection and delineation performance than the U-Net (magenta). Finally, using the F1-InstanceLoss and
BoundaryLoss (green) resulted in models with higher detection performance but slightly lower delineation performance as compared to using
Dice loss only (magenta).
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4 Discussion

Analysing electrocardiograms (ECG) remains a pivotal task in

hospitals, owing to its widespread availability and the valuable

insights derived from the resulting non-invasive measurements.

Traditionally, classical signal processing algorithms were employed

for ECG analysis, offering accurate results in wave detection and

delineation but exhibiting limited generalisation capabilities.

The advent of deep learning algorithms is revolutionising ECG

analysis, paralleling advancements in other domains of data

processing. Deep learning consistently outperforms many hand-

crafted data analysis approaches across a range of tasks (51). Its

strengths lie in the ability to harness extensive datasets,

adaptability to diverse tasks, built-in feature engineering, and the

availability of open-source code and large datasets (31). Despite

these advantages, implementing deep learning in data-sensitive

contexts, such as ECG detection and delineation, poses challenges.

Firstly, these algorithms heavily rely on the size of the training

data (3), which can be challenging or costly to obtain and

annotate in clinical environments. Secondly, deep learning models

encounter difficulties incorporating data priors—information that

designers know should be integrated into the system. In the case

of ECG, this includes nuances like the sometimes imperceptible

amplitude of the P wave or its potential masking within a QRS

complex, as well as the inherent relationship between the absence

of a QRS complex and the absence of a T wave.

Several solutions exist to tackle these challenges. The issue of

data scarcity has been addressed in the literature through the use

of pseudo-labels (52) or synthetic data generation, achieved

either via simulations (53, 54) or generative adversarial networks

(GANs). However, these approaches face efficiency concerns in

the case of simulations and encounter difficulties when extending

beyond the training data manifold in data-driven methods. In

terms of data priors, approaches have been employed to enforce

representations that explicitly exclude known information (30).

Alternatively, specific priors can be incorporated as input data,

such as including labels as input in conditional GANs (55).

Despite these strategies, the explicit control of data-side priors

remains somewhat limited.

This work presents a DL-based algorithm for ECG detection and

delineation that include innovative approaches to address these

issues. Given the small size of the available ECG databases, the

models were enriched with a novel synthetic data augmentation

strategy, which allowed for imposing expert domain knowledge

through constraining the topology of the generated data. These

priors were further enforced in the shape of two novel loss

functions by minimising the boundary error with respect to the

reference (BoundaryLoss) and by maximising precision and recall

metrics (F1InstanceLoss). To the best of our knowledge, no

approaches for ECG detection and delineation exist in the

literature that combine a quantification task through explicit (rule-

based synthetic data generation) and implicit (application of the

BoundaryLoss and F1InstanceLoss functions) prior imposition.

Performance-wise, the developed models compare favourably

with existing DSP-based and DL-based approaches found in the
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literature. We obtained an average F1 score of 99.38% and onset

and offset errors of 2:19+ 17:73ms and 4:45+ 18:32 ms with

respect to the reference for all waves in the QT database, as

detailed in Table 1. As illustrated in the table, it signifies a

substantial improvement over our previous work without synthetic

data generation and advanced losses, notably showcasing an 8%

enhancement in P-wave precision and a reduction of onset error

in the T-wave from 21:6+ 66:3 ms to 5:2+ 31:1, both for a

single lead, among other notable examples. The remarkable boost

in model performance can be directly attributed to the deliberate

design decisions implemented. The incorporation of synthetic data

emerged as the most impactful addition, consistently elevating

model performance in comparisons between models trained with

and without synthetic generation. Intriguingly, models exclusively

trained with synthetic data outperformed those trained solely on

real data, suggesting a superior capture of data variability in the

synthetic database compared to the limited number of real cases.

The adoption of the W-Net architecture emerged as the second

most effective modification, contributing to an increased model

capacity. Following closely, the introduction of novel loss functions

stood out as the third most valuable addition. While this

enhancement consistently improved model performance across all

runs, it was not consistently present in the top-performing models.

Further research is warranted to understand the mechanisms by

which these loss functions enhance model performance.

The trained model exhibits strong generalisation capabilities

when applied to samples from the QT database (see Table 1), as

well as in the LU (38) and Zhejiang (39) databases (see Table 2).

Notably, its performance on the LU database achieves impressive

F1-scores of 100% for the QRS and T waves. This underscores

the robustness of our model and the relatively straightforward

nature of the rhythms represented in the LU database. Even

when faced with the more challenging Zhejiang database, our

model maintains a high level of performance, yielding metrics

that closely resemble those obtained from the QT database.

Figure 7 illustrates a prediction from the Zhejiang database. The

examples available in the Supplementary Material also

demonstrate that the developed methodology generalises well and

can reliably be applied for the ECG detection and delineation for

a wide range of different pathologies.

Our top-performing model compares favourably with the state-

of-the-art in ECG detection and delineation, showcasing its

accuracy when compared with reported results in the literature,

particularly on the QT and LU databases. Notably,

Darmawahyuni et al. (20) (Table 7 in their manuscript) recently

demonstrated the superiority of our modelling strategy over

various DL-based approaches, including different combinations

of U-Net, ResNet, and LSTM networks (20, 23, 29), particularly

on the LU database. Similarly, Liang et al. (22) showcased the

superior performance of U-Net-based architectures, akin to ours,

over CNN-BiLSTM approaches. Notably, even without the

addition of synthetic data augmentation and advanced losses, our

approach outshines others. However, recent work by Nurmaini

et al. (21) achieved outstanding results with a Convolution

BiLSTM, leveraging hyper-parameter tuning optimisation. They
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FIGURE 7

Delineation prediction of the sample “922551” of the Zhejiang database, containing a non-sustained ventricular tachycardia. Colour code: P wave (red),
QRS wave (green) and T wave (magenta).
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achieved a precision of 99.93% and recall of 99.92% for ECG

waveform classification in a selected single lead (lead II). Our

results, 99.87% precision and 99.93% recall in multi-lead, align

closely with their achievements, outperforming alternative

methodologies (refer to Table 8 in their manuscript). Notably,

recent methods incorporating Transformers (24, 25) did not

surpass the previous approaches: they yielded average F1 scores

of 98.69 and 94.62 for the QT and LU databases, respectively (25).

In our view, the performance reported by the majority of the

compared methods, as assessed through metrics such as precision,

recall, and F1, is commendable and seems suitable for clinical

decision-making. However, the inclusion of additional metrics, like

onset/offset errors, often omitted in published literature (with

Liang et al. (22), reported in Table 1, being a notable exception

among recent DL-based papers on ECG detection and

delineation), becomes imperative for comprehending the clinical

significance of differences between methods.

For example, despite achieving 100% precision and accuracy for

QRS detection in the LU database, our proposed method incurs an

error of 4:27+ 9:75 ms and 4:00+ 9:14 ms for QRS onset and

offset, respectively. Considering the current data sample rate of

250Hz, a 4ms difference corresponds to a single sample. These

errors may be deemed acceptable for QRS width estimation, a

parameter crucial in various clinical guidelines (e.g., a QRS width

threshold of 120ms for patient selection in cardiac resynchronization

therapy). Conversely, errors in the range of 20–30ms for T wave

onsets/offsets may prove too substantial for specific clinical decisions.

In light of these considerations, it is imperative for the scientific

community to collectively establish a consensus on the most

pertinent and clinically relevant metrics for ECG detection and

delineation. Such consensus is crucial for translating these

metrics into daily clinical practice. Additionally, the availability

of open-access databases (e.g., QT and LU databases) has played

a pivotal role in benchmarking various approaches, significantly

advancing progress in the field. Regrettably, only 11% of DL-

based techniques for ECG processing, as highlighted in a recent

review by Avula et al. (56), have embraced open access

principles. To foster further research and encourage external

adoption of our model, we have made the developed codes

publicly accessible in the following repository: https://github.com/

guillermo-jimenez/DelineatorSwitchAndCompose.

Despite the impressive results obtained, certain limitations

accompany the presented approach. Firstly, the set of rules devised

in the data generation process is somewhat restrictive. There exists

potential to represent a broader spectrum of conditions and

introduce more intricate modifications to fundamental ECG

segments (e.g., incorporating delta, J, or epsilon waves, or

simulating atrial/ventricular hypertrophy). Secondly, the

computational overhead associated with on-the-fly data generation,

coupled with prevalent computational and temporal constraints in

the DL literature when training large models, has hindered

exhaustive testing of each element’s contribution to the final

outcome. This challenge is exacerbated by the multitude of tunable

hyperparameters. Although the synthetic generator employs

hyperparameters producing visually plausible samples, a

comprehensive validation is yet to be conducted.
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Additionally, despite dedicated efforts towards generating VT

records and achieving success in a significant percentage of

predictions, the network encounters challenges in accurately

locating the onsets and offsets of very fast VTs/ventricular flutter.

This limitation aligns with the inherent difficulty even trained

physicians face in precisely delineating such occurrences.

Moreover, the network exhibits sensitivity to input normalisation.

Given that amplitude normalisation for sinus rhythm QRS is set

to values in the range [0:5, 1], larger values for other rhythms,

such as extra-systoles, have been adopted. To address this, we

have normalised the model’s input using the median of a moving

average over the signal, employing a window of 256 samples.

However, this criterion remains open for improvement. Future

research will also explore the potential added value of

incorporating temporal features through modules like LSTM or

Transformers within the current model architecture.
5 Conclusions

The detection and delineation of electrocardiograms represent

crucial clinical steps, and the application of deep learning

techniques holds the promise of automating the often manual and

subjective task of characterising ECG waves. Nevertheless, the

adoption of DL-based analysis introduces challenges, including the

interpretability issues associated with classification-based models,

limitations imposed by reduced database sizes, and the need to

establish effective data priors. In response, we have developed a DL-

based pipeline tailored for the automatic quantification of

electrocardiograms, incorporating innovative strategies such as

synthetic data generation and shape regularisation losses to address

these challenges.

The resulting network has showcased commendable metrics for

detection and delineation, coupled with robust generalisation across

diverse samples from various open-source databases and real-world

datasets. This versatility positions the pipeline for application in a

myriad of downstream tasks, facilitating the automated generation

of objective metrics for clinical data and serving as a pivotal

technology for advancing the automation of ECG analysis.

However, it is essential to acknowledge certain limitations. Firstly,

the synthetic data generation introduces a reliance on input data

normalisation when predicting samples, albeit the commonly

employed techniques such as windowing and normalisation to the

median usually yield satisfactory results. Secondly, to enhance the

versatility of the synthetic data generation algorithm, there is a

need for a broader range of cardiac conditions and a more

thorough exploration of generative parameters. Lastly, to

comprehensively assess the performance gains of each model

addition, a more exhaustive testing protocol could be explored.
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