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Cardiomyopathy, a heterogeneous pathological condition characterized by
changes in cardiac structure or function, represents a significant risk
factor for the prevalence and mortality of cardiovascular disease (CVD). Research
conducted over the years has led to the modification of definition and
classification of cardiomyopathy. Herein, we reviewed seven of the most
common types of cardiomyopathies, including Arrhythmogenic Right Ventricular
Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy
(DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy
(HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing
on their definitions, epidemiology, and influencing factors. Cardiomyopathies
manifest in various ways ranging from microscopic alterations in cardiomyocytes,
to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical
conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-
Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the
setting and development of cardiomyopathies, and play critical roles in
associated biological processes, including Oxidative Stress (OS), inflammatory
reactions, myocardial hypertrophy and fibrosis, and cellular autophagy
and apoptosis, particularly in diabetic cardiomyopathy. However, research into
KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic
mechanisms of some KLF members in various types of cardiomyopathies
remain unclear. This article reviews the roles and recent research advances in
KLFs, specifically those targeting and regulating several cardiomyopathy-
associated processes.
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1 Introduction

Cardiomyopathies are a group of heterogeneous pathological disorders characterized

by alterations in cardiac structure and function (1). Their conception can be traced to

Fiedler’s discovery of a series of fatal cases of cardiac hypertrophy and Heart

Failure (HF) in young people in 1899 (2). With advancements in medicine and an

enhanced understanding of diseases, cardiomyopathies have been updated and

categorized into several groups (1, 3–5), including Dilated Cardiomyopathies (DCM),

Restrictive Cardiomyopathies (RCM), Hypertrophic Cardiomyopathies (HCM) and
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Arrhythmogenic Right Ventricular Cardiomyopathies (ARVC),

among others (3, 6). Furthermore, research is expanding into the

disease(cardiomyopathy)-causing genes (7, 8). Cardiomyopathy

etiology is multifactorial and has not been fully elucidated

hitherto. The molecular mechanisms underlying cardiomyopathy-

associated myocardial remodeling and cardiac dysfunction are

highly complex and warrant further research. In recent years,

the Krüppel-Like Transcription Factors (KLFs) family has

gained renewed attention as research advances have revealed

the involvement of KLFs in various processes, including

cardiomyopathy progression. Krüppel-Like Factors (KLFs) are a

group of DNA-binding proteins first discovered in the

early 1990s as erythroid cell-specific Transcription Factors (TFs)

(9). As important gene transcription regulators, KLFs are

involved in multiple processes regulating the occurrence and

development of myocardial diseases, including Oxidative Stress

(OS), inflammatory responses, and myocardial hypertrophic

fibrosis, as well as cell proliferation, differentiation, apoptosis,

and regeneration (10–14), via amino acid terminal region

regulation of protein-DNA and Protein-Protein Interactions

(PPIs). Although research has revealed key insights on KLFs

and their involvement in cardiomyopathies, much is

unknown about the KLF-induced pathophysiologic alterations in

cardiomyopathies and the potential therapeutic targets for

treating these diseases. Therefore, this article aims to summarize
FIGURE 1

A summary nof the type distribution of KLFs in humans and their roles in dise
body systems (cardiovascular system, respiratory system, nervous system, ur
the initiation and development of the corresponding pathologic diseases or
failure; CCD, congenital cardiovascular diseases; CHD, coronary heart diseas
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the current roles and molecular mechanisms of KLF family

members in different types of cardiomyopathies and to outline

the key roles KLFs play in Cardiovascular Diseases (CVDs).
2 Krüppel-Like Factors

Although KLFs are found in multiple organ systems, including

the cardiovascular, respiratory, gastrointestinal, urinary,

neurological, and hematopoietic systems (15), their tissue

expression varies (Figure 1). In other words, some family

members are universally expressed, while others are specifically

expressed (16–18). Studies have shown that KLFs possess three

highly conserved C2H2 zinc-finger domains in their carboxy-

terminal region. These domains facilitate interactions with

common GC-rich sites during transcriptional regulation, enabling

them to activate or inhibit cellular development (17, 19). It has

been reported that KLF proteins show homology in their gene

sequences, with the structural similarity allowing for overlapping

transcriptional targets. For example, KLF2 is expressed in the

cardiovascular, respiratory, urinary, and nervous systems, while

KLF5 is found in the cardiovascular, gastrointestinal, urinary,

nervous, and hematopoietic systems. On the other hand, KLF6

can be found in all of the above-mentioned systems. However,

KLF proteins possess unique amino-terminal sequences that
ases. The figure describes the physiological distribution of KLFs in various
inary system, digestive system and hematopoietic system), and its role in
disorders. See text for details. PAD, peripheral arterial disease; HF, heart
e; COPD, chronic obstructive pulmonary disease; AKI, acute kidney injury.
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provide specific regions for interaction with distinct binding

partners. For instance, KLF1 features a minimal transactivation

domain (TAD) within its first 100 amino acids. Research has

classified KLF1 TAD into two functional subdomains, TAD1 and

TAD2, with the latter conserved in four additional KLF proteins

(KLF2, 4, 5, and 15) (20). KLF1 is predominantly expressed in

mast and erythroid cells and is associated with β-thalassemia

(21), whereas KLF2 is highly expressed in the lungs and is an

essential regulator involved in lung development (22, 23). On the

other hand, KLF15 is abundantly expressed in the cardiovascular

system and is a negative regulator of cardiac hypertrophy,

ensuring appropriate cardiac responses to physiological stress

signals (24). Additionally, KLF3, 8, and 12 are characterized by

an N-terminal repression domain containing a CtBP recognition

motif (25–27), while the N-terminal regions of KLF9, 10, 11, 13,

14, and 16 contain a Cabut domain with a Sin3 interaction

domain (SID), serving as a transcriptional regulatory repression

domain (28–32).

Krüppel-Like Factors (KLFs) represent a conserved family of

TFs, with the initial discovery of KLF1 (EKLF) in erythrocytes in

1993 (9). Since then, researchers have identified 18 members

(KLF1-KLF18) in mammals. However, some debate surrounds

whether there are only 17 KLF members, excluding KLF18,

which is considered a duplicate of KLF17 (33). These KLF

proteins can be classified into three groups based on their

functional characteristics (Table 1). Group 1 includes KLFs 3, 8,

and 12, acting as transcriptional repressors that interact with

CtBP (C-terminal binding protein) (17, 26, 34, 35). Group 2

consists of KLFs 1, 2, 4, 5, 6, and 7, primarily functioning as
TABLE 1 Phylogenetic classification of Krüppel-Like Factors.

Group members Alternative
names

Chromosome
localization

Chara

Group 1 KLF3 BKLF 4p14 Presence of C

KLF8 BKLF3/ZNF741 Xp11.21

KLF12 AP-2rep/AP2REP/
HSPC122

13q22.1

Group 2 KLF1 EKLF 19p13.13 Ability to bin

KLF2 LKLF 19p13.11

KLF4 GKLF/EZF 9q31.2

KLF5 IKLF/BTEB2/CKLF 13q22.1

KLF6 BCD1/CBA1/ CPBP/
COPEB/GBF/PAC1/
ST12/ZF9

10p15.2

KLF7 UKLF 2q33.3

Group 3 KLF9 BTEB/BTEB1 9q21.12 Presence of a
sitesKLF10 TIEG/TIEG1/EGRα/

EGRA
8q22.3

KLF11 TIEG2/Tieg3/FKLF/
FKLF1/MODY7

2p25.1

KLF13 FKLF2/BTEB3/RFLAT-
1/RFLAT1/NSLP1

15q13.3

KLF14 BTEB5 7q32.2

KLF16 DRRF/BTEB4/NSLP2 19p13.3

No
consensus
group

KLF15 KKLF 3q21.3 Distantly rela
no defined p
motifs

KLF17 ZLF393/ZNF393/
ZFP393

1p34.1

KLF18 KLF18 1p34.1
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transcriptional activators (9, 36–40). In contrast, KLFs 15, 17,

and 18 form the non-consensus group, exhibiting more distant

relationships and lacking clear protein interaction motifs

(17, 24, 33, 46). The remaining KLFs, categorized as group 3

members, exert repressive effects similar to those in group 1 but

their effects are dependent on its interaction with the

transcriptional co-repressor Sin3A (15, 41–45).
3 Cardiomyopathy

Cardiomyopathy manifests in various ways, ranging from

microscopic changes in myocardial cells, to fulminant HF with

inadequate tissue perfusion and arrhythmias caused by electrical

conduction abnormalities (47). Cardiomyopathies, which means

myocardium diseases, were traditionally categorized as

hypertrophic, dilated, and restrictive. However, advances in

genomics have demonstrated the diversity in their phenotypic

expression (1).

In 1980, the World Health Organization (WHO) published its

first report on cardiomyopathies (3), defining them as muscle

diseases of unknown cause and categorizing them as DCM,

RCM, and HCM. This diagnostic criterion was updated by

subsequent classification iterations, leading to the WHO

amending the definition of cardiomyopathy in 1995 (4),

redefining it as myocardial illnesses associated with cardiac

dysfunction, including ARVC in the previous classification, and

further elucidating and highlighting the term “specific

cardiomyopathy”. Based on previously published clinical practice
cteristics Function References

tBP-binding sites The C-terminal domain binds the CtBP protein
to mediate transcriptional repression.

(17, 26, 34, 35)

d deacetylases Convenes acetyltransferase activity factors (CBP,
p300, and P/CAF) to function as transcriptional
activators while promoting chromatin
remodeling.

(9, 10, 36–40)

Sin3A-binding Interacts with the transcriptional co-repressor
Sin3A to achieve inhibitory activity.

(15, 41–45)

ted and contain
rotein interaction

Interaction domains remain undetermined. (17, 24, 33, 46)
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guidelines and recent advances in the characterization of

myocardial diseases (48–50), the American Heart Association

(AHA) Committee proposed a new, more rigorous classification

in 2006 that reflects the evolving molecular genetics of cardiology

and standardizes nomenclature inconsistencies (1). The panel

proposed a new definition of cardiomyopathies, describing them

as a heterogeneous group of myocardial diseases with etiologies

related to mechanical and electrical dysfunction, often exhibiting

inappropriate ventricular hypertrophy and/or dilatation and

arising from multiple causes, often genetic. Regarding

classification, the expert consensus panel recommended the

categorization of cardiomyopathies as primary or secondary.

Primary cardiomyopathies referred to diseases occurring

exclusively or predominantly in the myocardium, while

secondary cardiomyopathies described pathologic myocardial

illnesses associated with a multisystem disease. Primary

cardiomyopathies were further grouped into the genetic, mixed,

and acquired classes, with genetic cardiomyopathies including

HCM and ARVC; mixed cardiomyopathies including genetic and

non-genetic DCM; and acquired cardiomyopathies (also known

as inflammatory cardiomyopathies) including myocarditis.

Notably, ion channelopathies were also listed as primary

cardiomyopathies in the scientific statement. Adding to the

ongoing updates, the European Society of Cardiology (ESC)

introduced a new cardiomyopathy classification criteria in 2008

(5). This classification criteria were oriented towards clinical

utility, was based on ventricular structure and function, and

defined cardiomyopathies as structural and/or functional

abnormalities of the myocardium not caused by Coronary Artery

Diseases (CADs), Hypertension (HTN), valvular diseases, and

congenital heart defects. Based on morphologic and functional

characteristics, cardiomyopathies were categorized into five

groups (DCM, RCM, HCM, ARVC, and unclassified), each of

which was further divided into several subtypes, including

familial (genetic), non-familial (non-genetic), and unidentified

gene defect classes, as well as disease sub-types, and idiopathic

subgroups. Notably, this version does not distinguish between

primary and secondary cardiomyopathies. In 2013, Arbustini and

other cardiovascular experts proposed a novel set of phenotypic-

genotypic MOGE(S) classification criteria for cardiomyopathies

(51), which was supported by the World Heart Federation

(WHF). This classification criteria described cardiomyopathies as

diseases characterized by morphologically and/or functionally

abnormal myocardium, devoid of disruptions caused by the

clinical manifestations of other diseases. The criteria classify

cardiomyopathic disorders based on five characteristics: M

(Morphofunctional features), O (Organ involvement), G (Genetic

or familial inheritance patterns), E (Clear etiologic annotations),

and optionally, S (Functional status information). The most

current version is the 2023 ESC Guidelines for the Management

of Cardiomyopathies (52). Here, the ESC defines cardiomyopathy

as a disease of the myocardium with structural and functional

abnormalities. It should be noted that the presence of such a

disease does not preclude the occurrence of other diseases, such

as CADs, HTN, and valvular and congenital heart diseases. The

guideline task force updated the description of the phenotype of
Frontiers in Cardiovascular Medicine 04
non-dilated left ventricular cardiomyopathy (NDLVC) and did

not recommend both left ventricular non-compaction (LVNC) as

well as Takotsubo syndrome (stress cardiomyopathy) as separate

subtypes and no longer uses arrhythmogenic cardiomyopathy

(ACM, from the original terminology of ARVC) as a distinct

cardiomyopathic subtype. The guidelines further highlight the

diagnostic value of multimodality imaging and the prognostic

importance of genetic testing, recommend a multidisciplinary

team approach to the management of cardiomyopathy that

focuses on the patient and his or her family, and recommend

clinical evaluation and genetic cascade screening for relatives of

patients with cardiomyopathy (Figure 2). Although there are

various types of cardiomyopathies, our understanding of these

diseases and their current typing methods remains limited.

However, with progress in cardiomyopathy research, future

cardiomyopathy definitions and typing methods will be more

refined and clinically applicable.
4 KLFs and cardiomyopathy

Many KLFs are involved in cardiovascular system regulation

and in diversely controlling cell, tissue, and system metabolism.

For example, KLFs 2 and 4 act as nodal regulators of endothelial

function, promoting anti-inflammatory and anti-thrombotic gene

expression, which collectively keep blood vessels healthy (53, 54).

However, in pathological states, the heart undergoes cardiac

remodeling due to disease and stress-induced long-term

metabolic changes, triggering structural and functional

abnormalities of the myocardium that eventually lead to

cardiomyopathy. Cardiomyopathies are a heterogeneous group of

pathological conditions. As some of the TFs affecting various

pathophysiological processes in myocardial diseases, KLFs play

vital roles in different cardiomyopathies (Table 2, Figure 3).
4.1 Arrhythmogenic right ventricular
cardiomyopathy

It has been reported that Arrhythmogenic right ventricular

cardiomyopathy (ARVC) is an autosomal dominant cardiomyopathy

(100) characterized by cardiomyocyte replacement with fibro-

adipose tissues, resulting in abnormal Excitation-Contraction (EC)

coupling and a series of malignant events such as Ventricular

Arrhythmias (VA), HF, and Sudden Cardiac Death (SCD)

(101, 102). The disease is considered a major cause of sudden death

in young adults, especially athletes (6, 103), and its prevalence is

estimated to be between 1/2,500 and 1/5,000, with a male

predominance (female to male ratio of 1:2.7), which may be related

to the disease genes and androgens (104, 105).

Intercalated disks (connective structures between

cardiomyocytes) are the functional unit that provides the

mechanical and/or electrical coupling that enables the

coordinated and synchronized contraction of cardiomyocytes.

According to research, variants affecting the gene encoding the

desmosomal protein are responsible for approximately 50%–60%
frontiersin.org
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FIGURE 2

Timeline of definitions and classifications of cardiomyopathy. The figure summarizes the five main stages involved in the initiation and progression of
cardiomyopathy, from the formal naming of cardiomyopathies and primary classification by the WHO in 1980 to the current more comprehensive
definition and classification of cardiomyopathy by the ESC in 2023. WHO, world health organization; DCM, dilated cardiomyopathy; HCM,
hypertrophic cardiomyopathy; RCM, restrictive cardiomyopathy; AVRC, arrhythmogenic right ventricular cardiomyopathy; AHA, American heart
association; WHF, world heart federation; ESC, European society of cardiology; CAD, coronary artery disease; CHD, congenital heart disease.

Gui et al. 10.3389/fcvm.2024.1342173
of ARVC cases (106). Five of the eight genes that account for

pathogenic or potentially pathogenic variants are desmosomal

genes (107). The primary function of “glue” desmosomes is

transmitting mechanical strength between myocardial cells.

When the desmosomes are mutated, the myocardium undergoes

cell detachment and death, later replaced by fibro-adipose tissues,

thereby resulting in scarring, wall thinning, and aneurysms. This

adhesion defect is exacerbated by exercise, with a greater impact

on the thinner right ventricle (55, 108). Li et al. (58) identified a

novel heterozygous mutation in the KLF15 gene in a family with

atrial fibrillation (AF), ventricular arrhythmia, and hypertrophic

cardiomyopathy. Subsequent investigations revealed that the loss-

of-function mutation in KLF15 could potentially trigger AF by

disrupting myocardial energy metabolism (59). Moreover, this

mutation could exacerbate AF by prolonging repolarization and

extending the effective refractory period (60, 109).

Plakophilin-2 (PKP2) mutations are the most widespread

genetic association in ARVC. Khudiakov et al. (56) obtained an

iPSC line carrying 2 mutations in the PKP2 gene from a

14-year-old female with severe ARVC, and detected high OCT4,
Frontiers in Cardiovascular Medicine 05
NANOG, and SOX2 mRNA levels after reprogramming and

transducing them with Sendai virus vectors, confirming the

pluripotency of the iPSC line. Yang et al. (75) used a similar

approach to transduce PBMCs carrying three reprogramming

factors (KOS, KLF4, and cMYC) obtained from a 41-year-old

female ARVC patient. The iPSCs obtained exhibited

pluripotency marker expression, intact karyotype, and the

potential to differentiate into multiple germ layers. Similarly,

KLF4 produces iPSCs via reprogramming in DCM (110, 111).

Drawing on KLF4’s pivotal role in regulating cardiac potassium

(K+) channels, Chowdhury et al. (57) established a connection

between mitogen-activated kinase kinase-7 (MKK7) deficiency

and heightened susceptibility to arrhythmia. MKK7 deficiency

prevents the phosphorylation of histone deacetylase-2, leading

to the accumulation of filamentin A in the nucleus. This

filamentin A then forms a complex with KLF4, causing KLF4

to dissociate from the promoter regions of several potassium

channel genes. Consequently, this disrupts transcription

levels, delays repolarization, and ultimately precipitates

ventricular arrhythmia.
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TABLE 2 Role of KLFs family members in various cardiomyopathies.

Cardiomyopathy KLF Involved Effect Mechanism References
Arrhythmogenic right ventricular
cardiomyopathy

KLF4 Inhibit Mitogen-activated kinase kinase-7 deficiency leads to separation of KLF4 from
promoter regions of potassium channel genes, resulting in reduced transcription
levels and delayed repolarization.

(55–57)

KLF15 Protector KLF15 transcriptionally controls myocardial energy metabolism and rhythmic
expression of Kv channel interacting protein 2.

(58–60)

Diabetic cardiomyopathy KLF2a Protector Reducing phosphorylated AMPK increases p53 expression, leading to the decrease
in KLF2a, which promotes CMs apoptosis and induces cardiac remodeling and/or
cardiac dysfunction.

(61)

KLF4 Promoter AEG-1 aggravated autophagy through upregulating KLF4. (62)

KLF5 Promoter FOXO1 increases the expression of KLF5, which causes oxidative stress and
contributes to diabetic cardiomyopathy by inducing NADPH oxidase (NOX)4
promoter expression and ceramide accumulation.

(11)

Protector Inhibition of KLF5, the positive transcriptional regulator of cardiac Ppara, leads to
cardiac dysfunction, and cardiomyocyte-specific ablation of KLF5 decreases cardiac
ATP and FAO levels, leading to cardiac insufficiency.

(63–67)

KLF9 Promoter Upregulation of KLF9 worsens cardiac function, exacerbating oxidative stress,
inflammatory responses, and hypertrophic myocardial fibrosis.

(68, 69)

Promoter The miR-30d/KLF9/VEGFA pathway and the KLF9/VEGFA pathway can regulate
the autophagy level in diabetic rats.

(70)

KLF15 Reduction KLF15 negatively regulates cardiac fibrosis through SDF-1β in type 2 diabetes. (24, 71–73)

Dilated cardiomyopathy KLF2 Reduction Targeting CCR2 protein inhibits bone marrow mobilization of Ly6Chigh monocytes
and extraction of EVs from KLF2 gene-overexpressing ECs reduces cardiac
inflammatory response and ameliorates left ventricular dysfunction.

(74)

KLF4 Inhibit Transfection with Sendai virus carrying KLF4, OCT3/4, Sox2, and c-Myc genes
reprogrammed to generate iPSCs.

(56, 75)

KLF5 Mutations Mutations disrupt the synergistic transactivation between KLF5 and NF-κB1,
predisposing mutation carriers to DCM.

(76)

KLF13 Mutations Three mutations in the KLF13 gene cosegregate with the DCM phenotype and are
complete penetrance.

(77)

Desmin-related cardiomyopathy KLF2 Protector Extracellular signal-regulated kinase 5 signaling pathway can induce the
upregulation of KLF2 gene via the Sp1 transcription factor.

(78)

KLF4 Inhibit Reprogramming factors KLF4, OCT4, SOX2, CMYC were delivered using Sendai
viruses.

(79)

KLF10 Promoter KLF10 inhibits myoblast proliferation by suppressing the function of pro-
proliferative signaling molecules and the expression of cyclin.

(80, 81)

KLF15 Protector KLF15 can stimulate the expression of the slow-twitch fiber gene Myh7 by targeting
the nuclear factor of activated T-cells and cytoplasmic 1 gene.

(82)

Hypertrophic cardiomyopathy KLF4 Inhibit KLF4 negatively regulates cardiac hypertrophy as a transcriptional control center
for cardiac metabolic function and mitochondrial life cycle.

(83–85)

KLF7 Protector KLF7 regulates enzymes in glycolysis and fatty acid oxidation to attenuate
metabolic imbalances caused by cardiac hypertrophy.

(86)

TIEG1 (3 zinc finger
family of KLF10)

Promoter TIEG1 mediates TGFb by regulating the Smad signaling pathway to achieve cell
proliferation inhibition and induce apoptosis.

(87, 88)

KLF15 Protector Single nucleotide polymorphisms in KLF15 are strongly related to cardiac
hypertrophy, and their deletion or inhibition leads to left ventricular hypertrophy in
diabetic patients.

(58, 89, 90)

Ischemic cardiomyopathy KLF5 Promoter KLF5 induces SPTLC1 and SPTLC2 expression and increases myocardial ceramide
levels, ventricular dysfunction and eccentric remodeling, and exacerbates ischemic
heart failure.

(91)

KLF15 Reduction Upstream regulator KLF15 regulated by EZH2 in a SET domain-dependent
manner.

(92)

Protector KLF15 inhibits p53 function by lowing abundance of acetylated p53 during KLF15-
p53-p300 pathway.

(93–95)

Reduction KLF15 regulates increased transcription of genes involved in cardiac remodeling,
and KLF15 expression is significantly reduced in ischemic hearts.

(72, 92, 96)

Obesity-associated
cardiomyopathy

KLF4 Protector KLF4 contributed to berberineinduced cardiac mitochondrial benefits and lipid
metabolism.

(97–99)

Gui et al. 10.3389/fcvm.2024.1342173
4.2 Diabetic cardiomyopathy

Diabetic Cardiovascular Diseases (DCVDs) account for over 50%

of diabetes-related mortalities (112), including diabetic

cardiomyopathy (a specific type of heart disease) cases (113, 114).
Frontiers in Cardiovascular Medicine 06
The existence of a specific diabetic heart muscle disease that does

not involve CAD or HTN was first proposed by Lundbaek in 1954

(115, 116). In 2008, the European Society of Cardiology (ESC)

defined the disease as an abnormality of the heart muscle in terms

of its structure and function, along with the absence of CADs,
frontiersin.org
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FIGURE 3

Distribution of KLFs across various cardiomyopathies. The figure presents seven typical cardiomyopathies including AVRC, diabetic cardiomyopathy,
DCM, DRCM, HCM, ICM, and obesity cardiomyopathy, as well as the distribution of the KLFs family members in each subtype. AVRC, arrhythmogenic
right ventricular cardiomyopathy; DCM, dilated cardiomyopathy; DRCM, desmin-related cardiomyopathy; HCM, hypertrophic cardiomyopathy; ICM,
ischemic cardiomyopathy.
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HTN, and valvular and congenital heart diseases sufficient to cause

the observed myocardial abnormality (5). Nevertheless, the ESC

stated again in 2018 that there was no definition of diabetic

cardiomyopathy (117). Given the lack of consensus on its

definition, it remains difficult to accurately assess epidemiologic

data on diabetic cardiomyopathy-related morbidity and mortality.

However, clinical trials in Type 2 Diabetes Mellitus (T2DM)

patients revealed an HF prevalence of 10%–30% (117).

Diabetic cardiomyopathy is a major risk factor for diabetes-

related morbidity and mortality. It is characterized by

hypoinsulinemia and hyperglycemia in Type 1 Diabetes Mellitus

(T1DM) patients and hyperinsulinemia or insulin resistance in

T2DM patients (118). Although the underlying mechanism of

some KLFs in diabetes remains unclear (44), studies have

acknowledged the essential role KLFs play in many types of

diabetes (71, 89, 119–124) (Table 3). For example, it was reported

that KLF7 can regulate insulin sensitivity and susceptibility to type

2 diabetes by lowering adiponectin and leptin levels (126, 127), and

can negatively regulate miR-132-3p to aggravate the transition of

Human Umbilical Vein Endothelial Cells (HUVECs) to a
Frontiers in Cardiovascular Medicine 07
mesenchymal state after high glucose exposure (128). Similarly,

KLF14 has been implicated in increasing susceptibility to type 2

diabetes by regulating key genes associated with insulin resistance

(122, 123). For instance, the risk alleles G of rs972283 and

rs4731702 have been linked to this effect. Additionally, KLF11

plays a negative regulatory role in NDM, Maturity Onset Diabetes

in Young (MODY) (129, 132), as well as T2DM (130) and Type

1B Diabetes (131). Mutations in KLF11 may hinder insulin

secretion in pancreatic β-cells by inhibiting insulin promoter

regulatory activity, consequently impairing insulin gene

transcription in NDM and MODY. Moreover, KLF11 is involved

in regulating hepatic glucose metabolism. Zhang et al. (130) found

that overexpression of KLF11 in mouse hepatocytes inhibited

the expression of gluconeogenic genes, such as peroxisome

proliferator-activated receptor γ coactivator-1α (PGC-1α) and

phosphoenolpyruvate carboxykinase (PEPCK-C), thereby reducing

cellular glucose output. As a negative regulator of adipogenesis,

KLF2 is highly expressed in preadipocytes and regulates glucolipid

metabolism and insulin sensitivity by directly inhibiting the

PPARγ2 promoter activity (119). Furthermore, although KLFs 2, 4,
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and 9 have been strongly associated with Gestational Diabetes

Mellitus (GDM) development, the specific regulatory roles of KLFs

2 and 4 remain unclear, necessitating additional research in a

larger patient population (121, 125). Research indicates that KLF9

plays a crucial role in regulating hepatic glucose metabolism.

Hepatic KLF9 overexpression induced by dexamethasone (Dex)

and fasting directly binds to its promoter, stimulating the

expression of the PGC-1α gene and activating the gluconeogenesis

program. A mutation in KLF9 eliminates the stimulatory effect of

Dex on cellular glucose output and effectively attenuates Dex-

induced hyperglycemia (120), a critical finding for patients

requiring long-term glucocorticoid therapy.

While genetic susceptibility plays a significant role in the

pathogenesis of T2DM, the identified genes influencing

susceptibility to T2DM are still limited (133, 134). Kanazawa

et al. (127) found that KLFs not only play vital roles in cellular

differentiation and tissue development but are also implicated in

the pathogenesis of T2DM. In their study, they genotyped 33

single nucleotide polymorphisms (SNPs) in 12 KLF genes in

T2DM patients and found a direct association between an allele

of the SNP site in the second intron of KLF7 and T2DM,

suggesting KLF7 as a novel candidate gene for genetic

susceptibility to T2DM and its role in promoting the

development of diabetic cardiomyopathy. Diabetes mellitus is an

independent predictor of left ventricular hypertrophy (LVH), but

not all diabetic patients develop LVH, indicating genetic

components are involved. A clinical study investigated the

association between the KLF15 gene and LVH in T2DM patients.

Patel et al. (89) prospectively recruited 318 T2DM patients

without known cardiac disease for transthoracic

echocardiographic evaluation and genotyping for two KLF15

SNPs (rs9838915 and rs6796325). They found that the A allele of

the rs9838915 SNP in the KLF15 gene was associated with

increased left ventricular mass in patients, providing more

accurate risk stratification for developing HF. Diabetic

cardiomyopathy pathophysiology is multifaceted and involves

complex metabolic pathways, with the main pathological features

being myocardial hypertrophy and fibrosis, inflammation, cellular

autophagy and apoptosis, and elevated OS markers (135–137).

Myocardial hypertrophy makes the myocardium less compliant,

causing diastolic dysfunction, which ultimately results in

arrhythmia, HF, and even SCD (138, 139). In these processes,

KLFs regulates the upstream and downstream pathways (Figure 4).

4.2.1 Oxidative stress
Multiple studies have discovered that OS mediated by excessive

Reactive Oxygen Species (ROS) levels is the pathogenic mechanism

underlying type 1 and type 2 diabetes-related cardiomyopathy

(140–142). The PPARγ-NRF2-OS signaling pathway stimulates

cell survival signals, regulates autophagy, and exerts cardio-

protective effects in cardiomyocytes (143). On the other hand,

KLF9 aggravates ischemic injury in cardiomyocytes by exerting

pro-inflammatory and anti-oxidative stress effects and

deteriorates cardiac function by inhibiting PPARγ expression and

transcriptionally lowering NRF2 expression and nuclear

translocation (68, 69).
frontiersin.org
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FIGURE 4

The mechanism of KLFs in regulation of diabetic cardiomyopathy. The pathophysiological process of diabetic cardiomyopathy mainly comprises four
major pathways: oxidative stress, inflammation, myocardial hypertrophy and fibrosis as well as cell autophagy and apoptosis. These processes lead to
irreversible heart failure. KLFs, as upstream and downstream regulators, can exacerbate or alleviate diabetic cardiomyopathy by targeting various
metabolic pathways or signaling pathways, and the specific mechanisms of their action are presented in the figure. NOX4, NADPH-oxidase 4;
ROS, reactive oxygen species; FAO, fatty acid oxidation; PPARα, peroxisome proliferator-activated receptor; mTOR, mammalian target of
rapamycin; PKC, protein kinase C; eNOS, endothelial nitric oxide synthase; ECs, endothelial cells; iNOS, inducible nitric oxide synthase; VSMCs,
vascular smooth muscle cells; p38 MAPK, p38 mitogen-activated protein kinase; SDF-1β, stromal cell-derived factor-1β; TGF-β1, transforming
growth factor-β1; AEG-1, astrocyte elevated gene-1.

Gui et al. 10.3389/fcvm.2024.1342173
Diabetic cardiomyopathy is also associated with altered Fatty

Acid Oxidation (FAO). The cardiomyocyte KLF5 can regulate

cardiac FAO and induce de novo synthesis of ceramides through

various pathways such as NADPH-Oxidase 4 (NOX4)-mediated

ROS formation or SPT-mediated ceramide accumulation, leading

to lipotoxicity and cardiac dysfunction (11). Correction of

hyperglycemia with the SGLT2 inhibitor dapagliflozin reverses

KLF5 expression in early diabetes (63). While KLF5 appears

detrimental to cardiac function, another study proposed that

transient KLF5 over-expression could be beneficial (63).

Specifically, they discovered that cardiomyocyte-specific KLF5-

deficient aMHC-KLF5-/- mice progressively developed cardiac

dysfunction with signs of DCM. This outcome may be linked to

the inhibition of cardiac Peroxisome Proliferator-Activated

Receptor-α (PPARα) expression and reduced KLF5

transcriptional activity (64, 65). In the heart, KLF5 positively

regulates FAO through PPAR transcription (66). Furthermore,

KLF5 transcriptionally activates PPARα and decreases with

PPARα gene expression (67). Additionally, cardiomyocyte-
Frontiers in Cardiovascular Medicine 10
specific KLF5 ablation decreases cardiac FAO and ATP content,

as well as transcriptional activity, ultimately triggering cardiac

dysfunction. The above-mentioned findings imply that KLF5 has

a dual function that could be exploited to treat or even reverse

cardiomyopathy. However, this hypothesis requires further

verification in future clinical trials.

4.2.2 Inflammation response
Hyperinsulinemia and hyperglycemia could negatively affect

angiogenesis by impairing the Endothelial Cell (EC) and

Vascular Smooth Muscle Cell (VSMC) proliferation and

transport. It has been reported that KLF5 induces vascular

inflammation in diabetic VSMCs (144). Specifically, this process

is divided into two parts: Negative regulation of endothelial

Nitric Oxide Synthase (eNOS) expression and activation of

inducible Nitric Oxide Synthase (iNOS) production. Inhibiting

insulin signaling activates the mammalian Target of Rapamycin

(mTOR), Protein Kinase C (PKC) pathways, and OS, up-

regulates KLF5 along with MTA1, and negatively regulates NOS3
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transcription, thereby leading to reduced eNOS levels in ECs,

which impairs in vitro and in vivo angiogenesis (144). On the

other hand, hyperglycemia activates iNOS in VSMCs, which, in

turn, stimulates KLF5 expression and nitration. Stimulated KLF5

binds to NF-κB, inducing NF-κB activation, which increases

TNFα, IL1β, and IL-6 expression and mediates vascular

inflammation (145).

4.2.3 Myocardial hypertrophy and fibrosis
Myocardial hypertrophy and cardiac fibrosis are prominent

pathological remodeling features in hemodynamic or neurohormonal

stress induced diabetic cardiomyopathy. Myocardial hypertrophy

causes cardiac systolic and diastolic dysfunction, and KLF15 is a

crucial negative regulator of diabetic cardiomyopathy-induced

cardiac dysfunction and myocardial fibrosis (24, 72). Leenders et al.

(73) discovered that TGF-β1 downregulates KLF15 in a p38

Mitogen-Activated Protein Kinase (p38 MAPK)-dependent manner

and promotes ventricular hypertrophy. It was reported that KLF15

negatively regulated cardiac fibrosis in mice with type 2 diabetes, and

the cardio-protective effects of Stromal Cell-Derived Factor-1β (SDF-

1β) are mediated by binding to the CXCR7 receptor and the p38β

MAPK-mediated upregulation of KLF15 (71). Furthermore,

Takashima et al. (124) demonstrated that KLF15 plays an emerging

role in regulating energy production and amino acid degradation. Gu

et al. (146) recently found that the amide alkaloid Piperlongumine

(PLG) extracted from piper longum exerted anti-hypertrophic and

anti-fibrotic effects after angiotensin II (Ang II) treatment. This

mechanism entails reduced levels of phosphorylated Akt and

transcriptional regulation of fibrotic gene expression. Overall, this

study enhances our understanding of the use of natural compounds

for the targeted treatment of clinical diseases, implying that the co-

mediation of the negative regulator KLF15 with natural compounds

may be an entirely new therapeutic strategy for cardiomyopathy

treatment in the future.

4.2.4 Autophagy and apoptosis
Autophagy, a dynamic intracellular degradation mechanism, is

a highly conserved eukaryotic cellular process that plays an

important role in maintaining intracellular homeostasis as well as

the synthesis, degradation, and recycling of cellular products.

Growing evidence suggests that autophagy exerts a beneficial

effect on diabetic hearts (147–150). Zhang and Wang recently

found that decreased autophagic activity in cardiomyocytes is

closely associated with diabetes-related cardiomyopathy and that

restoring autophagy levels hinders diabetic cardiomyopathy

development (70). According to research, KLF9 is a target gene

of miR-30d that correlates negatively with miR-30d expression.

Therefore, reduced KLF9 expression regulates autophagy in

cardiomyocytes and exacerbates diabetic cardiomyopathy.

Furthermore, the SGLT-2 inhibitor promoted cardiomyocyte

autophagy by blocking miRNA-30d expression, and miRNA-30d

negatively regulated KLF9, thereby improving cardiac function in

diabetic cardiomyopathy mice (70). Additionally, KLF4

upregulation exacerbates cardiomyocyte autophagy; hence,

aggravating diabetic cardiomyopathy. For the first time, Zhao

et al. (62) found that the Astrocyte Elevated Gene-1 (AEG-1) can
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modulate autophagy in diabetic cardiomyopathy by regulating

KLF4 expression, which is expected to be a new therapeutic

target for diabetic cardiomyopathy treatment.

Increased cardiomyocyte apoptosis was found to be a major

cause of systolic and diastolic dysfunction in diabetic models

(151). Therefore, inhibiting cardiomyocyte apoptosis may

effectively prevent myocardial remodeling in diabetic

cardiomyopathy (152–154). It has been reported that KLF2a exerts

cardio-protective effects through the AMPK-p53-KLF2a pathway.

In a Streptozocin (STZ)-induced hyperglycemic zebrafish model,

Wang et al. (61) found that decreasing phosphorylated AMPK

elevated p53, leading to KLF2a downregulation, which in turn,

promoted cardiomyocyte apoptosis and induced cardiac

remodeling and dysfunction. KLF10 participates in the regulation

of various aspects of tissue homeostasis and cellular functions,

including proliferation, differentiation, and apoptosis (155, 156).

In a study by Kong et al. (157), loss-of-function analyses of the

zebrafish homologs of human KLF10 were conducted using

antisense morpholino (MO). The results revealed that embryos

injected with KLF11b-MO exhibited developmental retardation

and cell death, whereas those injected with KLF11a-MO did not

display significant abnormalities in development. Moreover,

embryos co-injected with KLF11b-MO and p53-MO showed

reduced apoptosis. These findings suggest that KLF10 serves as a

critical negative regulator of p53-dependent transcription, and the

KLF10/p53 complex contributes to apoptosis and hence the

maintenance of tissue homeostasis.
4.3 Dilated cardiomyopathy

Dilated Cardiomyopathy (DCM), a multifactorial disorder

associated with genetics, immunity, infection, and the

environment, is primarily characterized by heart enlargement

and systolic dysfunction (51, 158, 159). The prevalence of DCM

is at 1:2,500 in 2013 (160) and the diseases is always progressive,

eventually leading to irreversible HF and sudden death. The

annual SCD incidence in DCM is 2%–4% (161, 162). Given that

the disease is multifactorial, effectively targeting treatment to its

etiology has become a major research focus (158, 163, 164). In

this regard, multiple studies recently demonstrated the critical

functions of KLFs in DCM, including regulating molecular

mechanisms contributing to DCM progression.

Multiple mechanisms such as inflammation, Endoplasmic

Reticulum Stress (ERS), and mitochondrial dysfunction play vital

roles in the DCM-associated ventricular dysfunction progression and

HF development. Specifically, it has been reported that myocardial

injury triggers an inflammatory response. Zhang et al. (74) found

that the KLF2 overexpression-derived Extracellular Vesicles (EVs)

reduced cardiac inflammation and improved left ventricular

dysfunction in DCM mice by inhibiting Ly6Chigh monocyte

mobilization via targeting the CCR2 protein. High KLF2 expression

in ECs exerts an anti-inflammatory effect, implying that KLF2 may

be a potential therapeutic target for DCM treatment.

Furthermore, growing evidence highlights the crucial role of

genetic defects in the pathogenic mechanism of DCM (165). As
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one of the mutation carriers of disease-causing genes, KLF5

mutations co-segregating with DCM have shown complete

penetrance in this family, and genetically compromised KLF5 is

highly susceptible to DCM (76). Notably, KLF13 is also co-

segregated from DCM. Also known as FKLF2/BTEB3/RFLAT-1/

RFLAT1/NSLP1, KLF13 is a new DCM susceptibility gene localized

on chromosome 15q13.3. Guo et al. (77) conducted sequencing

analysis focusing on specific genes within the localization region of

human chromosome 15q13.1-q13.3 and identified three mutations

that co-segregated with the dilated cardiomyopathy (DCM)

phenotype with complete penetrance. These mutations, namely

c.430G>T (p.E144X), c.580G>T (p.E194X), and c.595T>C

(p.C199R), exhibited impaired transactivation of the target genes

ACTC1 and MYH7, both individually and in combination with

GATA4, a gene known to induce DCM. Furthermore, these

mutations displayed reduced binding capacity to the promoters of

ACTC1 and MYH7. Furthermore, the intracellular distribution of

E144X mutant KLF13 was disrupted. In summary, detecting the

aforementioned new susceptibility genes and loci offers new

insights into the DCM molecular pathogenesis and may provide

guidance for precision medicine for DCM.
4.4 Desmin-related cardiomyopathy

Desmin, a major intermediate filament protein in

cardiomyocytes, is a fundamental component of the cellular

structure and the Purkinje fibers of the conduction system

(166, 167). Desmin is encoded by the DES gene (OMIM

*125660), and mutations in this gene are hypothesized to disrupt

mechanical stress in the muscle, leading to rhabdomyolysis

(168–170) Additionally, desmin is crucial in balancing ROS

generation with antioxidant defense. According to research,

MnSOD overexpression and/or catalase are the major antioxidant

defense systems that can reduce ROS production and improve

cardiac function in desmin-deficient mice hearts (171).

Desmin-Related Cardiomyopathy (DRCM) presents early with

lower extremity muscle weakness and gait disturbances before

progressing to the proximal, respiratory, fascial, and cardiac

muscles, eventually leading to arrhythmias and congestive heart

failure. Notably, heart defects occasionally precede skeletal

muscle defects (167, 172, 173). A meta-analysis of 159 patients

with 40 different DES gene mutations revealed that more than

70% of carriers exhibited myopathy or muscular weakness and

that about 50% of carriers had cardiomyopathies. In another

study, up to 60% of patients had a cardiac conduction disorder

or arrhythmias, such as an atrioventricular block (174). Except

for symptomatic treatments for alleviating the symptoms,

especially in the cardiac area focusing on cardiovascular

complications (175, 176), there are currently no targeted

therapies for DRCM. Khudiakov et al. (79) delivered four

reprogramming factors (OCT4, KLF4, SOX2, and CMYC) with

Sendai virus from patient-specific fatty tissue-derived pluripotent

Mesenchymal Stromal Cells (MSCs) carrying heterozygous splice

site mutations in the DES gene using a non-integrative

reprogramming approach, ultimately yielded a human iPSC line.
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Establishing an iPSC line holds promise for addressing DRCM

and for the future development of innovative drugs. Several KLFs

may share similar regulatory mechanisms across various muscle

tissues. Moreover, within the same muscle tissue, there could be

synergistic or antagonistic interactions among KLFs, crucial for

muscle tissue development and functional regulation. For

instance, KLF2, KLF4, KLF10, and KLF15 have been implicated

in these processes. In mouse skeletal muscle cells, the

extracellular signal-regulated kinase 5 (ERK5) signaling pathway

can induce the upregulation of KLF2 and KLF4 genes via the

Sp1 transcription factor. This activation subsequently promotes

the expression of nephronectin (Npnt) genes, facilitating skeletal

muscle cell fusion through enhanced cell-matrix adhesion (78).

KLF15, on the other hand, can stimulate the expression of the

slow-twitch fiber gene Myh7 (MHC-β/slow) by targeting the

nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) gene,

thereby positively regulating skeletal muscle differentiation (82).

Conversely, KLF10 inhibits myoblast proliferation by suppressing

the function of pro-proliferative signaling molecules (80) and the

expression of cyclin (81). Most mutations associated with

DRCM, such as those affecting CRYAB and BAG3, are missense

or small deletion mutations. The formation of aggregates appears

to be a significant trigger for DRCM. However, the downstream

effects of these mutations are diverse and heterogeneous (177).

While a direct link between DRCM and KLFs has yet to be

established, ongoing advancements in molecular and cellular

biology hold promise for the development of molecular therapies

for DRCM. Targeting the regulation of DES gene expression by

KLFs may emerge as a promising strategy for reducing the

expression of mutant DES alleles and mitigating DRCM pathology.
4.5 Hypertrophic cardiomyopathy

Hypertrophic Cardiomyopathy (HCM), a relatively common

monogenic heart disease with autosomal dominant inheritance, is

characterized by ventricular hypertrophy on echocardiography,

mostly in the left ventricle (51, 178, 179). The disease was once

assumed to be a sudden exercise death disease that primarily

affected young men, but is no longer restricted to young males.

According to the 2018 global hypertrophic cardiomyopathy

burden statistics, HCM affected 6.3 billion people or 88% of the

world’s population (178). Auspiciously, HCM treatment has

progressed from limited palliative pharmacotherapy and

occasional high-risk surgery to more definitive screening tools

and highly efficient interventional therapies, resulting in a 0.5%

annual reduction in morbidity and mortality (180–183).

Although HCM is usually a non-progressive disease, HF

symptoms may occur or worsen at any age, most often in

middle-aged individuals (184, 185). Efficient management of

myocardial hypertrophy is crucial given its potential progression

to HF. One significant hallmark of this transition is the shift in

myocardial substrate preference from FAO to glycolysis,

resembling an embryonic metabolic profile. KLFs have emerged

as key transcriptional regulators in pathological cardiac

hypertrophy and metabolism. For instance, Wang et al. (86)
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demonstrated that both cardiac-specific knockdown and

overexpression of KLF7 disrupt the balance between glycolysis

and fatty acid metabolism, leading to cardiac hypertrophy and

myocardial fibrosis. Additionally, KLF4 serves as a central

transcriptional regulator of cardiac metabolic function and

mitochondrial dynamics, reactivating fetal cardiac genes during

hypertrophic development (83, 84). In vivo studies have shown

that KLF4 can modulate isoproterenol-induced cardiac

hypertrophy by regulating myocardin (MYOCD) expression and

activity, and cardiomyocyte-specific knockdown of KLF4

exacerbates hypertrophy (85). Oxytocin (OT), a hormone

involved in cardiovascular homeostasis, mitigates cardiac

hypertrophy by targeting the lncRNA GAS5/miR-375-3p/KLF4

axis to inhibit the PI3K/AKT pathway (186). Moreover, TIEG1

has been identified as a critical player in cardiac hypertrophy

(87). The TGFb Inducible Early Gene-1 (TIEG1) is classified as a

member of the KLF10 family and is involved in gene

transcription regulation (42). Subramaniam et al. (88) studied

male mice aged 4–16 months and found that TIEG1-/- mice

exhibited cardiac hypertrophy compared to wild-type animals.

This finding demonstrates that TIEG1, a gene transcription

inducer or repressor, can inhibit cell proliferation and induce

apoptosis by activating the TGF-β/Smad pathway. KLF15 is a

pivotal regulator of cardiac metabolic homeostasis, primarily

governing myocardial lipid flux. It plays a significant role in

controlling the transcriptional network associated with cardiac

metabolism (187). Notably, KLF15 exerts its regulatory effects by

negatively modulating pro-hypertrophic and pro-fibrotic markers

such as brain natriuretic peptide (BNP) and connective tissue

growth factor (CTGF) through the p38-MAPK signaling

pathway. This pathway has been identified as a crucial negative

regulator of cardiac hypertrophy (90). Deletion or inhibition of

KLF15 reduces the suppression of pro-hypertrophic factors and

the stimulation of fibrotic signaling pathways, resulting in Left

Ventricular Hypertrophy (LVH) development (58, 89).
4.6 Ischemic cardiomyopathy

Ischemic Cardiomyopathy (ICM), generally referred to as

systolic left ventricular dysfunction in the context of obstructive

CAD, is the leading cause of HF worldwide (188, 189).

Ventricular dysfunction in CAD patients is usually caused by the

irreversible loss of viable myocardium after Acute Myocardial

Infarction (AMI) (189, 190). According to research, KLF5

regulates ceramide accumulation and lipid metabolism after

Myocardial Infarction (MI) (91). Furthermore, KLF5 is involved

in the aggravation of Ischemic Heart Failure (IHF), and induced

KLF5 increases the expression of some regulatory factors

[including Serine-Palmitoyl-Transferase-Long-Chain-Base-Subunit

(SPTLC)1 and SPTLC2], and ceramide biosynthesis, leading to

systolic dysfunction and eccentric remodeling, thereby decreasing

ejection fraction and exacerbating IHF (91).

Following infarction, the remaining surviving segmental

myocardium adapts to chronic perfusion insufficiency by

reducing its energy requirements blocking myofibrillar protein
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expression, with the heart preferentially relying on glucose

absorption rather than fatty acids for energy supply. This gene

expression reprogramming via fluctuations in the cellular

microenvironment is known as epigenetic reprogramming

(191–193). It has been reported that KLF15 is an upstream

regulator of metabolic gene expression, and that it is negatively

regulated by EZH2 (an epigenetic regulator) in a SET structural

domain-dependent manner for cardiac metabolism and structural

reprogramming (92). Additionally, KLF15 suppresses gene

expression and negatively regulates adverse cardiac remodeling

and hypertrophy in ICM progression (72, 92, 96). Specifically,

KLF15 antagonizes the expression of various genes actively

involved in cardiac remodeling. Rogers and Otis studied the

mechanism of resveratrol (an antioxidant) in ischemic heart

treatment. They found that chronic myocardial ischemia

significantly reduced KLF15 expression, which then increased the

transcription of TGF-β1 and Nox4 mRNA, and that sustained

TGF-β1/Nox4 signaling led to the production of large amounts

of oxidants, which aggravated OS in diseased hearts, as well as

myocardial fibrosis and hypertrophy (194). Haldar et al. (93)

reported that the KLF15-p53-p300 pathway may also be a

therapeutic target in CVD treatment. Specifically, they found that

KLF15 activation inhibits the p300-mediated p53 acetylation. On

the other hand, KLF15 deficiency causes p53 hyperacetylation in

the aorta and heart (93–95). Mice lacking KLF15 develop

aortopathy and cardiomyopathy in p53-dependent and p300

acetyltransferase-dependent manners.
4.7 Obesity-associated cardiomyopathy

Globally, the morbidity and mortality levels due to HF have

been on the rise, making HF a major threat to human health.

The etiology of HF is multifactorial, and studies have shown that

uncorrected overweight and obesity may be independent risk

factors for development of CVDs (195). Evidence from previous

experimental, clinical, and epidemiological studies has pointed to

the existence of a distinct disease entity known as “obesity

cardiomyopathy”, which occurs independently of other CVD risk

factors such as hyperlipidemia, hypertension, and diabetes

mellitus (196). “Obesity cardiomyopathy” refers to metabolic and

functional abnormalities of the heart caused by obesity alone

(197, 198). In general, chronic obesity is strongly associated with

myocardial remodeling, and its clinical features may range from

LVH and myocardial fibrosis which eventually evolve to HF

(199–201). Obesity also affects myocardial electrophysiology,

which increases the prevalence of atrial fibrillation (202, 203).

Multiple studies have shown that berberine prevents heart

disease, controls cardiac remodeling (204–207), and ameliorates

KLF4-dependent obesity-related cardiac damage (97, 98). Ding

et al. (99) treated high fat diet-induced obese mice with berberine

and found that this drug ameliorated myocardial mitochondrial

biogenesis and activity. However, KLF4 silencing reduced the

mitochondrial mass, ATP production, oxygen consumption, and

lipid metabolism, which were upregulated by berberine treatment.

It also reversed berberine’s structural benefits on cardiac anti-
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hypertrophic and fibrotic, anti-inflammatory, and antioxidant

properties. In summary, these findings suggest that KLF4 indirectly

mediates obesity-associated cardiac injury, controls myocardial

remodeling, and confers protection on the heart.
5 Summary and outlook

Cardiovascular diseases (CVDs), including cardiomyopathy,

contribute to high morbidity and mortality worldwide. This calls

for investigations to identify targeted strategies for preventing

and treating patients with cardiomyopathy. Unfortunately, the

etiology of cardiomyopathies has not been fully clarified given its

multifactorial nature. Furthermore, the pathophysiological

mechanisms underlying cardiac dysfunction and myocardial

remodeling in various types of cardiomyopathies are highly

intricate and necessitate additional research. As such, the

exploration of novel targets or regulators, both upstream and

downstream, that exert direct or indirect influence on the

progression of cardiomyopathy has become of paramount

importance. In recent years, there has been renewed research

interest on the role of Krüppel-Like Factors (KLFs) in various

biological processes and conditions such as myocardial diseases,

such as oxidative stress, inflammatory responses, myocardial

hypertrophy and fibrosis and apoptosis. KLFs are a group of

DNA-binding proteins associated that can activate or suppress

genes, stimulate cell growth, differentiation, apoptosis, and

biological processes related to tissue development and

maintenance. Here, we review the mechanisms underlying the

development of 7 cardiomyopathies focusing on the involvement

of 18 members of the KLFs family in terms of their classification.

For example, KLF13, localized on chromosome 15q13.3, is a

novel gene that increases the risk of cardiomyopathy (DCM),

whereas KLF15 can prevent diabetic cardiomyopathy-induced

cardiac dysfunction and myocardial fibrosis as well as

hypertrophic cardiomyopathy (HCM) by repressing pro-

hypertrophic transcription factors to attenuate LVH.

While numerous studies, including those conducted in animal

models, cell trials, and clinical settings, have highlighted the

importance of KLFs as crucial regulators or markers of

cardiomyopathies, the precise pathophysiological roles of certain

KLF members in different types of cardiomyopathy remain

poorly understood. For instance, it is unclear whether KLF2 and

KLF4 participate in gestational diabetes mellitus-associated

cardiomyopathy. Therefore, there is a need for more

comprehensive investigations to elucidate the signaling pathways

modulated by KLFs in various types of cardiomyopathies. These

pathways may include, but are not limited to, the Hippo/Yap

signaling pathway, Wnt signaling, Hedgehog (Hh) signaling,

Notch pathway, and Mitogen-activated protein kinases (MAPKs)

signaling. In the article, we describe the importance of KLFs

in cardiomyopathies and hope to provide new ideas regarding

the cellular and molecular biological mechanisms involved in the
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regulation of KLFs and reveal new insights into development of

precision medicine for patients with cardiomyopathies. In future,

we predict that pharmacology and invasive procedures will no

longer be the only means of treating cardiomyopathy, preventing

sudden death, or heart transplantation. Therefore, a better

understanding of the molecular genetics of cardiomyopathy

wil boost the development of potential therapeutic targets

for cardiomyopathy.
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