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Objectives: In recent years, the use of artificial intelligence (AI) models to generate
individualised risk assessments and predict patient outcomes post-Transcatheter
Aortic Valve Implantation (TAVI) has been a topic of increasing relevance in
literature. This study aims to evaluate the predictive accuracy of AI algorithms in
forecasting post-TAVI mortality as compared to traditional risk scores.
Methods: Following the Preferred Reporting Items for Systematic Reviews and
Meta-analyses for Systematic Reviews (PRISMA) standard, a systematic review
was carried out. We searched four databases in total—PubMed, Medline,
Embase, and Cochrane—from 19 June 2023–24 June, 2023.
Results: From 2,239 identified records, 1,504 duplicates were removed, 735
manuscripts were screened, and 10 studies were included in our review. Our
pooled analysis of 5 studies and 9,398 patients revealed a significantly higher
mean area under curve (AUC) associated with AI mortality predictions than
traditional score predictions (MD: −0.16, CI: −0.22 to −0.10, p < 0.00001).
Subgroup analyses of 30-day mortality (MD: −0.08, CI: −0.13 to −0.03,
p= 0.001) and 1-year mortality (MD: −0.18, CI: −0.27 to −0.10, p < 0.0001)
also showed significantly higher mean AUC with AI predictions than traditional
score predictions. Pooled mean AUC of all 10 studies and 22,933 patients was
0.79 [0.73, 0.85].
Conclusion: AI models have a higher predictive accuracy as compared to traditional
risk scores in predicting post-TAVI mortality. Overall, this review demonstrates
the potential of AI in achieving personalised risk assessment in TAVI patients.
Registration and protocol: This systematic review and meta-analysis was
registered under the International Prospective Register of Systematic Reviews
(PROSPERO), under the registration name “All-Cause Mortality in Transcatheter
Aortic Valve Replacement Assessed by Artificial Intelligence” and registration
Abbreviations

AI, artificial intelligence; ANN, artificial neural network; CI, confidence interval; GB, Gradient boosting;
LR, logistic regression; MD, mean difference; MLP, multilayer perceptron; TAVI, transcatheter aortic
valve implantation.
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number CRD42023437705. A review protocol was not prepared. There were no
amendments to the information provided at registration.

Systematic Review Registration: https://www.crd.york.ac.uk/, PROSPERO
(CRD42023437705).
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Introduction

Transcatheter aortic valve implantation (TAVI) is a crucial

procedure in treating severe aortic stenosis, which is

characterised by the narrowing of the aortic valve (1). TAVI

provides a minimally invasive alternative to open-heart

surgery for older patients and those with numerous

comorbidities (2) with faster recovery times, shorter

hospital stays, and less procedural risks (3–6). In patients with

severe aortic stenosis, TAVI has been found to reduce

symptoms, as well as increase quality of life and overall

survival rates (7, 8). The emphasis of this paper is to predict

the risk for TAVI, given that it has already been proven to

have multiple benefits.

The mortality rate after TAVI might vary depending on a

number of factors, including patient characteristics,

comorbidities, and intra-procedural concerns. For intermediate-

risk patients undergoing TAVI, longer-term follow-up in the

PARTNER 2 study revealed a death rate of 26.2% at 5 years (9,

10). The SURTAVI trial showed that all-cause mortality was

31.3% at 5 years using the CoreValve self-expanding prosthesis

in intermediate-risk patients (11). In a similar vein, the

CoreValve U.S. Pivotal High-Risk Study found that high-risk

patients had a 5-year mortality rate of 47.9% (12), and a

separate study found the mortality rate to be 58.8% (13). The

NOTION trial demonstrated that in low-risk patients, the

mortality rate of TAVI with the first-generation CoreValve self-

expanding prosthesis was 27.6% after 5 years of follow up (14).

The PARTNER 3 trial also showed that the 5-year all-cause

mortality for TAVI was 10.0% (15). One of the more recent

trials, Evolut trial, found that the 4-year mortality for TAVI

using self-expanding CoreValve was 10.7% (16). A separate

meta-analysis has also found the all-cause mortality to be

higher in low-risk patients undergoing TAVI over surgical

aortic valve replacement (27.5% vs. 17.3%) (17). Thus, given the

high probability of fatality and differences in mortality

depending on the risk levels of patients, prediction prior to the

start of the procedure is increasingly necessary.

Improving risk assessment and patient outcomes may be

possible with the application of artificial intelligence (AI) in

predicting death after TAVI. In-depth patient data analysis by

AI algorithms has the ability to uncover pertinent trends

and risk factors that can help forecast post-TAVI death (18).

These models can help identify high-risk individuals who

might need more measures or more intensive postoperative

surveillance. On the other hand, AI models could also
02
identify patients who may not benefit from TAVI, given that

the risk of mortality outweighs the benefits of undergoing

the procedure.

Thus, our goal in analysing the accuracy of AI-generated death

forecasts in TAVI procedures was to determine how well AI

algorithms can predict mortality outcomes for patients

undergoing TAVI. This evaluation aims to assess the effectiveness

of AI models in predicting post-TAVI death rates and evaluate

the accuracy of these forecasts.
Methods

We conducted a systematic review following guidelines from

the Preferred Reporting Items for Systematic Reviews and Meta-

analyses for systematic review (PRISMA) standard (19). In total,

we performed our search on 4 databases, including PubMed,

Medline, Embase and Cochrane, from the date of inception to 24

October 2023. Across all databases, combinations of different

search terms, including Medical Subject Headings (MeSH) terms

were generated. The following search strings were used:

“Transcatheter aortic valve replacement AND artificial intelligence”,

“Transcatheter aortic valve replacement AND machine

learning”, “Transcatheter aortic valve replacement AND deep

learning”, “Transcatheter aortic valve implantation AND artificial

intelligence”, “Transcatheter aortic valve implantation AND

machine learning”, “Transcatheter aortic valve implantation AND

deep learning”, “Aortic stenosis AND artificial intelligence”, “Aortic

Stenosis AND machine learning” and “Aortic stenosis AND deep

learning”. The search was perfomed using MeSH terms only.
Inclusion and exclusion criteria

Any retrospective studies that reported the use of AI to predict

post-operative mortality in TAVI patients were included in our

analysis. There were no randomised controlled trials identified in

our search. We excluded articles that used AI to predict aortic

stenosis, intra-cardiac parameters such as aortic valve annulus,

studies on heart murmurs, hypertrophic cardiomyopathy,

paediatric studies, narrative articles and conference abstracts. We

also excluded studies on complicated TAVI patients (e.g., TAVI

with infective endocarditis or cancer) and articles that used AI to

predict other post-TAVI parameters such as cerebrovascular

complications, pacemaker implantation, heart failure,

readmission, length of hospital stay and bleeding.
frontiersin.org

https://www.crd.york.ac.uk/
https://doi.org/10.3389/fcvm.2024.1343210
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Sazzad et al. 10.3389/fcvm.2024.1343210
Study selection

To determine suitability for inclusion of each study, we first

assessed the studies by their titles and abstracts and then retrieved

the full-text records should the study either fulfil the inclusion

criteria or if the reviewer was uncertain of the article’s suitability.

In order to ensure reproducibility of our study selection, the

studies were independently screened and evaluated by three

reviewers. All disagreements were solved by consensus amoung the

reviewers with no modification of the search and inclusion criteria.
Quality of evidence and risk of bias

GradePro quality of evidence assessment software was used to

evaluate the included studies as illustrated in the Cochrane

handbook of reviews (20). The risk of bias in all observational

cohort studies was also assessed according to guidelines from

the Cochrane handbook. Risk of bias was evaluated using the

Risk of Bias in Non-randomised Studies of Interventions

(ROBINS-I) tool (21).
Outcomes of interest

Data from each article was collected by two authors (AL, LT).

The following variables were abstracted for analysis: Authors, year

of publication, study type, patient sample size, post-TAVI

mortality, age, female, AI algorithms used. Our primary outcome

measure was the area under curve (AUC) value [mean and 95%

confidence interval (CI)] of AI models predicting post-TAVI all-

cause mortality. We included data on intra-hospital mortality,

30-day mortality, 1-year mortality and 5-year mortality in our

analyses. For studies that reported AUC values of both an

internal and external validation cohort, data from the latter was

abstracted for analysis.
Statistical analysis

Studies that reported data comparing AI and traditional scores

were analysed using Review Manager 5.3 (RevMan 5.3) software

(22). Due to the limitations of RevMan 5.3 in pooling AUC

values, reported means were converted to negative values and

inputted into the software. We calculated the mean difference

(MD) as the outcome effect measure used in our double-arm

meta-analysis. For studies that reported 95% CI, the in-built

RevMan calculator was used to estimate the missing standard

deviations (SD). For single-arm meta-analysis, the STATA 17

software was used to pool study data and generate forest plots

(23). In order to adjust for statistical heterogeneity across all

study populations, all data was analysed using random effects

models. All data is reported in mean and 95% CI [lower limit,

upper limit]. In our subgroup analysis, we divided the studies by

intra-hospital, 30-day, 1-year and 5-year mortality. For the 1-year

mortality subgroup, gradient boosting and extreme gradient
Frontiers in Cardiovascular Medicine 03
boosting models were grouped together as the models are similar

and we had insufficient data to compare each individually.

Similarly, non-gradient-boosting algorithms (random forest,

decision tree, artificial neural network, multilayer perceptron)

were also grouped together for subgroup analysis.

AI algorithms
The AI algorithms of interest to this study included random

forest (RF), gradient boosting (GB), artificial neural network

(ANN), multilayer perceptron (MLP) and logistic regression

(LR). This section includes short descriptions of each algorithm.

Further elaboration on the pros and cons of each algorithm can

be found in the discussion section.

The RF model constructs a series of decision trees and utilises

bagging and randomisation of predictors in order to accurately

predict outcomes (24). The GB model involves an ensemble of

weak learner decision trees. Each weak learner progresses

through a stepwise progression, where previous iterations of

weak learners are combined into a successive strong learner,

correcting for the errors of the preceding learner each time

(25, 26). The ANN algorithm is a mathematical model

developed based on the transmission of signals amoung neural

networks in biological nervous systems. An input signal is

channelled through a collection of nodes, which are artificial

neurons (27). Each node analyses the input signal and then

transmits an output to each of its connected neurons,

mimicking the transmission of action potentials across neurons

and synapses in the human brain. The nodes are also organised

into layers. The input signal travels from the first input layer to

the last output layer, undergoing different transformations at

each layer. The MLP algorithm is a class of feedforward ANN

that is comprised of an input layer, one or more hidden layers

and an output layer. The LR algorithm fits a logistic function

onto a dataset and predicts the probability of an independent

variable, such as mortality, from a dependent variable. The

maximimum likelihood estimation method is most commonly

used to maximise the likelihood function and find the optimal

fit of the model (28).
Results

In total, our systematic search yielded 2,239 records. After 1,504

duplicate records were removed, 735 remained for title and abstract

review. The high number of duplicates was likely due to our search

strings throughout the various databases producing similar articles.

Based on our exclusion criteria, we eliminated 669 studies and

retrieved full-text articles for 66 articles. Finally, a further 56

articles were excluded based on full-text assessment, leaving 10

studies (29–38) for data abstraction (Figure 1).
Risk of bias assessment

We conducted a risk of bias assessment on the included

studies. Overall, all 10 studies were retrospective cohort studies
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FIGURE 1

PRISMA flow chart showing systematic search. 2,234 articles were discovered on initial search, 738 remained after duplicates were removed. After our
exclusion criteria was applied to record screening based on title, abstract and full-text assessment, 10 articles remained for inclusion in our analysis.
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and were thus prone to the inherent bias associated with

observational study designs. No serious risk of bias was

detected in any of the included studies (Table 1).
Summary of included studies

Of the 10 included studies, 6 (30, 31, 33–36) reported data

on the RF algorithm, 4 (29, 32, 35, 37) on GB, 4 (30, 31, 35,

38) on ANN and MLP, and 3 (31, 36, 38) on LR. 5 studies

(30, 31, 35, 36, 38) reported using more than 1 AI model for

mortality prediction. The traditional scores used in the

studies included the STS score (30, 33), TAVI2-SCORE (29),

EuroSCORE II (32, 38) and CoreValve score (34). A summary

of the predictive variables used in each study is provided in

Supplementary Table S1.
Frontiers in Cardiovascular Medicine 04
Use of AI algorithms

A summary of the different AI algorithms, as well as their pros

and cons, is provided in Figure 2. The RF model, which divides the

dataset into subgroups using bootstrap sampling and produces

numerous decision trees from the same subset, is one of the AI

techniques utilized in the included studies. The final decision tree

is then produced by combining these trees. GB, another used

approach, sequentially merges weak learning models in a step-

wise process. By raising the weight of incorrect predictions in

each iteration to enhance succeeding models, the goal is to

produce an ensemble of models with a minimum amount of

prediction errors. An artificial neural network, specifically an

MLP has at least three layers of nodes: an input layer, a hidden

layer, and an output layer. Backpropagation is used to change

weights and reduce prediction errors throughout the learning
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FIGURE 2

Diagram illustrating the different AI algorithms: figure summarising four of the different AI algorithms used in the included studies. (A) The random forest
model first divides the dataset into subsets using bootstrap sampling, then generates different decision trees from the same subset. The trees are then
averaged to generate the final decision tree. (B) Gradient Boosting uses a stage-wise progression to combine weak learning models sequentially to
produce an ensemble of different models with minimal prediction errors. In each iteration, the weight of wrong predictions is increased in order to
improve the learning model in the successive iteration. (C) Multilayer Perceptron, a type of artificial neural network, inputs data into at least 3 layers of
nodes: an input layer, a hidden layer and an output layer. Backpropogation of data is used for learning to minimise prediction errors. (D) Logistic
Regression fits a logistic function onto a dataset. Maximum likelihood estimation is used to produce a curve with maximum likelihood.
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FIGURE 3

Forest plot comparing AI and traditional scores: forest plot comparing mean AUC values of AI mortality predictions to that of traditional scores.
Subgroup analysis was performed, dividing 5 studies into 3.1.1 30-day mortality, 3.1.2 1-year mortality and 3.1.3 5-year mortality, with AI showing
an overall better performance than traditional scores.

Sazzad et al. 10.3389/fcvm.2024.1343210
phase after data is fed into the network. Lastly, LR adapts a logistic

function to the dataset. The likelihood of the observed data is

maximized by using maximum likelihood estimate to draw the

curve. For binary classification tasks, this approach is frequently

employed. Further elaboration on the different AI algorithms can

be found in the Supplementary materials and individual AI

methods are also categorized in the Supplementary Table S2.
Meta-analysis of mortality

All 10 studies were subjected to meta-analysis. 5 studies (29,

32–34, 38) that reported data comparing the predictive ability of

AI with traditional clinical risk scores were included in a two-

arm meta-analysis. The results from all 10 studies were pooled in

a single-arm meta-analysis.
Meta-analysis comparing predictive ability of AI
vs. traditional scores

From our pooled analysis of 5 studies and a total of 9,398

patients, we observed a significantly higher mean AUC in

cohorts where post-TAVI mortality was predicted with AI than

when traditional scores were used on the same population (MD:

−0.16, CI: −0.22 to −0.10, p < 0.00001, I2: 70%). 30-day

mortality subgroup analysis of 2 studies (6,871 patients) (33, 34)

also showed a significantly higher mean AUC with AI

predictions than with traditional score predictions (MD: −0.08,
CI: −0.13 to −0.03, p = 0.001, I2: 0%). Similar findings were

observed in the 1-year mortality subgroup, consisting of 2 studies

(2,056 patients) (29, 32), with AI showing an overall better
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performance than traditional scores (MD: −0.18, CI: −0.27 to

−0.10, p < 0.0001, I2: 50%). (Figure 3.).
Meta-analysis of pooled AUC means of 10 studies
The single-arm meta-analysis of all 10 included studies, and a

combined cohort of 22,933 patients, showed a pooled mean AUC

of 0.79 [0.73, 0.85]. Due to the high overall heterogeneity (I2 =

99.06%), a subgroup analysis was conducted, separating the studies

into intra-hospital mortality, 30-day mortality, 1-year mortality

with gradient boosting, 1-year mortality with non-gradient-

boosting and 5-year mortality. The pooled mean AUC values of 2

studies reporting intra-hospital mortality was 0.95 [0.90, 1.00], I2:

88.29%. 2 studies with 30-day mortality outcomes had a mean

AUC value of 0.75 [0.72, 0.79], I2: 0%. For the 1-year mortality

subgroup, 3 studies featuring the use of gradient boosting

algorithms had a pooled AUC of 0.79 [0.72, 0.86], I2: 91.97%,

while that of the 2 studies that used non-gradient-boosting models

was 0.68 [0.67, 0.69], I2:0.19%. For 5-year mortality, 1 study

reported an AUC of 0.79 [0.75, 0.83]. Even after subgroup analysis

the heterogeneities of the intra-hospital and 1-year mortality with

gradient boosting subgroups were still high (Figure 4). This was

likely due to the differing parameters used to train the AI models,

discordant datasets, and/or the fact that AI model performance

varies with the training dataset. A further elaboration on the

heterogeneity can be found in the discussion section. Finally, the

results of our single-arm meta-analysis of traditional risk scores

reported in 5 studies demonstrated a pooled mean AUC value of

0.61 [0.56, 0.65]. The traditional risk score AUC for 30-day and 1-

year mortality AUC was 0.67 [0.64, 0.70] and 0.57 [0.53, 0.61],

respectively. For 5-year mortality, the traditional risk score AUC

reported in 1 study was 0.60 [0.57, 0.64] (Figure 5).
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FIGURE 4

Pooled mean AUC of included studies: forest plot of pooled mean AUC values for AI-predicted post-TAVI mortality, with intra-hospital, 30-day, 1-year
and 5-year mortality subgroups.
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Discussion

To the best of our knowledge, this is the first meta-analysis in

literature comparing AI models against traditional scores in

predicting post-TAVI mortality. Overall, the results of our

double-arm meta-analysis demonstrate that applying AI to

predict death in TAVI cases has a higher predictive accuracy
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than conventional clinical scoring techniques. In particular, the

30-day (AUC: 0.75) and 1-year mortality (AUC: 0.79) with non-

gradient-boosting algorithm subgroups both demonstrated high

mean AUC values with low heterogeneity. In our combined

analysis of traditional risk scores, the pooled mean AUC value

for intra-hospital mortality, 30-day mortality, 1-year mortality

with gradient boosting, 1-year mortality without gradient
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FIGURE 5

Pooled mean AUC of traditional risk scores: forest plot of pooled mean AUC values for traditional risk score-predicted post-TAVI mortality, with intra-
hospital, 30-day, 1-year and 5-year mortality subgroups.

Sazzad et al. 10.3389/fcvm.2024.1343210
boosting, and 5-year mortality was 0.95 [0.90, 1.00] 0.75 [0.72,

0.79], 0.79 [0.72, 0.86], 0.68 [0.67, 0.69] and 0.79 [0.75, 0.83],

respectively. Hence from gross comparison of short- and long-

term AUC alone, AI-based models may fare better than current

scoring methods at correctly predicting death outcomes in TAVI

patients. This suggests that AI models have the potential to aid

clinicians in predicting post-TAVI mortality in patients and act

as an adjunct or alternative to traditional clinical scores. AI

models are able to process large amounts of diverse patient data

and can be modelled to continuously analyse new data in order

to make accurate predictions in real time. This is a significant

advantage over traditional scores, which can only utilise a limited

number of variables to predict outcomes.

In the study by Kwiecinski et al. (29), the number of packed red

blood cell units transfused, length of hospital stay and minimum

estimated glomerular filtration rate provided the greatest

contribution to the AI model, with specificities of 94 (92–97)%,

33 (29–37)% and 53 (49–58)%, respectively (29). No other

studies reported the specificity values for the individual clinical

variables used in their predictive models. As an illustration of the

multiplicity of variables that AI models can evaluate, the main
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30-day mortality predictive variables reported in the study by

Lertsanguansinchai et al. (31) were height, chronic lung disease,

STS score, preoperative left ventricular ejection fraction (LVEF),

age, and preoperative left ventricular outflow tract velocity time

integral (VOT VTI), while the main 1-year mortality variables

were preoperative LVEF, STS score, hear rate, systolic blood

pressure, home oxygen use, serum creatinine level, and

preoperative LVOT Vmax. A more detailed summary of the

variables used across the included studies can be found in

Supplementary Table S1.

Researchers often compare the AI-generated death predictions

with the actual mortality results seen in real-world TAVI patients

to assess model accuracy. This evaluation aids in determining the

degree to which the AI models are capable of making trustworthy

and precise forecasts of post-operative mortality. Here, we provide

a brief summary of the advantages and disadvantages associated

with each AI algorithm featured in our study.

Firstly, the RF model is capable of analysing high-dimensional

data with a huge number of diverse predictors, which can even

exceed the number of observations (39).While a single decision

tree is prone to noise and overfitting when grown on its training
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set, the RF model improves accuracy by averaging multiple decision

trees. However, due to their complexity, RF models tend to have

low intrinsic interpretability (40). Additionally, the presence of

dependent observations in data may contribute to increased bias

and inaccurate predictive variable selection (41). While the GB

algorithm minimises errors and maximises predictive accuracy in

the final model, GB algorithms, like the RF models, may also

suffer from low interpretability. The GB model may also be

prone to over-fitting if the additive process of gradient boosting

is not regularised. ANN and MLP algorithms are suitable for

analysing non-linear relationships between dependent and

independent variables. However, these models are difficult to

apply to real-time predictions and are also prone to overfitting

(42). Finally, LR algorithms can only be used to predict discrete

functions and cannot predict continuous outcomes. It also

assumes a linear relationship between dependent and independent

variables.

Overall, AI-based prediction models are able to take into

account a myriad of patient data to generate more accurate

predictions on post-TAVI mortality than traditional scores.

However, such models require a large number of patient

variables to generate predictions, some of which may not be

readily available to clinicians in the immediate clinical setting.

Hence, at present, AI-based prediction models may be less user-

friendly than simple traditional risk scores. In future, further

research into simpler AI-based models that are able to use easily-

available clinical parameters in predictions is needed to increase

the clinical utility of these models.

Firstly, the RF model constructs a series of decision trees and

utilises bagging and randomisation of predictors in order to

accurately predict outcomes (24). The original dataset is first

divided into smaller subsets through random feature selection.

Individual decision trees are then grown on the subsets, allowing

for the construction of many decision trees with low correlation

to one another. Finally, multiple decision trees are averaged,

thereby minimising variance and improving the accuracy of the

final predictive model (24). The RF model is thus capable of

analysing high-dimensional data with a huge number of diverse

predictors, which can even exceed the number of observations (39).

While a single decision tree is prone to noise and overfitting

when grown on its training set, the RF model improves accuracy

by averaging multiple decision trees. However, due to their

complexity, RF models tend to have low intrinsic interpretability

(40). Additionally, the presence of dependent observations in

data may contribute to increased bias and inaccurate predictive

variable selection (41).

The GB model involves an ensemble of weak learner decision

trees. Each weak learner progresses through a stepwise progression,

where previous iterations of weak learners are combined into a

successive strong learner, correcting for the errors of the preceding

learner each time (25, 26). Eventually, this process is repeated until

errors are minimised and predictive accuracy maximised in the

final model. However, similar to the RF model, GB algorithms may

also suffer from low interpretability. The GB model may also be

prone to over-fitting if the additive process of gradient boosting is

not regularised.
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The ANN algorithm is a mathematical model developed based

on the transmission of signals amoung neural networks in

biological nervous systems. An input signal is channelled through

a collection of nodes, which are artificial neurons (27). Each

node analyses the input signal and then transmits an output to

each of its connected neurons, mimicking the transmission of

action potentials across neurons and synapses in the human

brain. The nodes are also organised into layers. The input signal

travels from the first input layer to the last output layer,

undergoing different transformations at each layer.

The MLP algorithm is a class of feedforward ANN that is

comprised of an input layer, one or more hidden layers and an

output layer. The input signal first passes sequentially through

the layers in a feedforward process until an output is generated.

Subsequently, the data is then backpropagated from the output

layer back into the hidden layers. The error signal of each node

that contributed to the overall error is determined and the

weights of the network updated until the gradient of the mean

squared error converges. While ANN and MLP are able to

analyse non-linear relationships between dependent and

independent variables, these models are difficult to apply to real-

time predictions and are also prone to overfitting (42).

The LR algorithm fits a logistic function onto a dataset and

predicts the probability of an independent variable, such as

mortality, from a dependent variable. The maximimum likelihood

estimation method is most commonly used to maximise the

likelihood function and find the optimal fit of the model (28). LR

algorithms can only be used to predict discrete functions and

cannot predict continuous outcomes. It also assumes a linear

relationship between dependent and independent variables.

Overall, AI-based prediction models are able to take into

account a myriad of patient data to generate more accurate

predictions on post-TAVI mortality than traditional scores.

However, such models require a large number of patient

variables to generate predictions, some of which may not be

readily available to clinicians in the immediate clinical setting.

Hence, at present, AI-based prediction models may be less user-

friendly than simple traditional risk scores. In future, further

research into simpler AI-based models that are able to use easily-

available clinical parameters in predictions is needed to increase

the clinical utility of these models.
Limitations

The main limitations of this study were firstly, the high

heterogeneity of the data, specifically in comparing the intra-

hospital mortality subgroup, 1-year mortality with gradient

boosting subgroup and the overall pooled AUC of all 10

studies. We postulated that this was due to significant

differences in the training datasets used for each AI model.

Fundamentally, there was large variability in the quantity of

data, as well as in the type and number of parameters used to

predict mortality in each model. In addition, due to the lack of

studies comparing the same AI algorithms and the same control

group, it was difficult to perform a more homogenous subgroup
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analysis on each AI algorithm. Hence, our results may not be

generalisable to all AI algorithms or all datasets predicting

mortality in patients post-TAVI.

Secondly, all the studies included in our analysis were of a

retrospective nature. There was also a lack of data comparing AI

model predictive performance to traditional scores. Therefore,

further research, including randomized controlled trials,

comparing the use of AI algorithms with traditional scores in

predicting post-TAVI mortality will be needed in the future in

order to determine the validity of our observations.

Finally, our study did not analyse other endpoints that are

known post-TAVI complications, such as stroke, pacemaker need

and heart failure, and focused solely on mortality. Hence, this

may limit the applicability of our findings in clinical practice.
Conclusion

Personalized risk assessments are the ultimate goal of research

into AI systems for predicting patient outcomes in TAVI

procedures. The potential of AI-generated mortality forecasts to

improve the precision and value of risk assessment in TAVI is

highlighted in this systematic review. AI can help healthcare

providers predict and monitor patient outcomes, which will

hopefully result in better decision-making and more desirable

post-TAVI outcomes in future.
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