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People living with HIV display
increased anti-apolipoprotein A1
auto-antibodies, inflammation,
and kynurenine metabolites: a
case–control study
Miguel A. Frias1,2* , Sabrina Pagano1,2 , Nasim Bararpour3,4,5 ,
Jonathan Sidibé3, Festus Kamau6 , Vanessa Fétaud-Lapierre1,2,
Peter Hudson7 , Aurélien Thomas3,8 , Sandrine Lecour7 ,
Hans Strijdom6 and Nicolas Vuilleumier1,2

1Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva,
Switzerland, 2Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva,
Switzerland, 3Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of
Lausanne, Lausanne, Switzerland, 4Department of Genetics, Stanford University, Stanford, CA,
United States, 5Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States,
6Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and
Health Sciences, Stellenbosch University, Cape Town, South Africa, 7Cape Heart Institute, Department
of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 8Unit of
Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne,
Geneva, Switzerland
Objective: This study aimed to study the relationship between auto-antibodies
against apolipoprotein A1 (anti-apoA1 IgG), human immunodeficiency virus
(HIV) infection, anti-retroviral therapy (ART), and the tryptophan pathways in
HIV-related cardiovascular disease.
Design: This case–control study conducted in South Africa consisted of control
volunteers (n= 50), people living with HIV (PLWH) on ART (n= 50), and untreated
PLWH (n= 44). Cardiovascular risk scores were determined, vascular measures
were performed, and an extensive biochemical characterisation (routine,
metabolomic, and inflammatory systemic profiles) was performed.
Methods: Anti-apoA1 IgG levels were assessed by an in-house ELISA.
Inflammatory biomarkers were measured with the Meso Scale Discovery®

platform, and kynurenine pathway metabolites were assessed using targeted
metabolomic profiling conducted by liquid chromatography-multiple reaction
monitoring/mass spectrometry (LC-MRM/MS).
Results: Cardiovascular risk scores and vascular measures exhibited similarities
across the three groups, while important differences were observed in
systemic inflammatory and tryptophan pathways. Anti-apoA1 IgG seropositivity
rates were 15%, 40%, and 70% in control volunteers, PLWH ART-treated, and
PLWH ART-naïve, respectively. Circulating anti-apoA1 IgG levels were
significantly negatively associated with CD4+ cell counts and positively
associated with viremia and pro-inflammatory biomarkers (IFNγ, TNFα, MIPα,
ICAM-1, VCAM-1). While circulating anti-apoA1 IgG levels were associated with
increased levels of kynurenine in both control volunteers and PLWH, the
kynurenine/tryptophan ratio was significantly increased in PLWH ART-treated.
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Conclusion: HIV infection increases the humoral response against apoA1, which is
associated with established HIV severity criteria and kynurenine pathway activation.
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Introduction

Sub-Saharan Africa bears the highest burden of human

immunodeficiency virus (HIV) globally (1). South Africa has the

largest population of people living with HIV (PLWH), estimated

at 6 million people living with the virus (which represents 12%

of the total South African population). Thanks to the availability

of improved treatments, such as anti-retroviral therapy (ART),

HIV is no longer considered a fatal illness. Therefore, the clinical

challenges confronting the HIV population have now shifted

from dealing with acquired immunodeficiency syndrome (AIDS)-

related illnesses to managing chronic diseases, such as

cardiovascular disease (CVD).

It is now established that the risk of developing CVD is

significantly elevated, accelerated, and associated with poorer

outcomes in PLWH compared to the general population. In

developed countries, HIV-infected patients experienced a two- to

six-fold increase in coronary artery disease that occurs at an

earlier stage compared to the non-infected population (2, 3). In

addition, higher mortality rates after a first myocardial infarction

are observed in HIV patients (4). Multiple factors potentially

contribute to the pathophysiology of HIV-related CVD and

include the HIV itself, adverse effects of ART, and processes such

as inflammation, immune/autoimmune activation, endothelial

injury, and disordered coagulation. These features may contribute

to the increase in HIV-related cardiovascular risk (5).

The mechanisms by which HIV and ART favour CVD have yet

to be fully elucidated, and the delineation of biomarkers to assess

cardiovascular risk in the HIV population at an early stage is

required to limit the public health burden. Among potential

candidate biomarkers and mediators that could causally be linked

to infections, immune dysregulation, and subsequent non-

communicable diseases (including CVD), the kynurenine pathway

is gaining notable momentum (6–9). Pathogens, including HIV, as

well as the cytokine host response, are known to activate the

kynurenine pathway, subsequently affecting host immune tolerance

and overall gut, vascular, and brain inflammatory responses.

Activation of the kynurenine pathway is therefore suspected to

negatively modulate the course of a broad range of pathologies,

including infections, tumoral, cardiovascular, and neurological

diseases (10–12). Recently, the kynurenine pathway has also been

shown to be involved in uncontrolled B-cell activation, leading to

the production of auto-antibodies (6), a biological signature often

observed in HIV patients (13, 14).

Among auto-antibodies produced in the context of different

RNA viral infections and of possible relevance for CVD, those

directed against apolipoprotein A1 (anti-apoA1 IgG), the major

protein fraction of high-density lipoprotein (HDL), are of
02
particular interest (15–17). Growing evidence from studies

involving hepatitis C, HIV, and SARS-CoV2 infections (18–20)

indicates that anti-apoA1 IgG may serve as a mediator of

atherogenesis through definite innate immune receptor signalling

in vivo (21–24) and as a biomarker predicting worse

cardiovascular outcomes in different human pathologies according

to numerous prospective longitudinal cohort studies [reviewed in

(25)]. In a recent study involving the Swiss HIV cohort, high anti-

apoA1 IgG levels were found to be associated with low CD4+ cell

counts, high viremia, and a pro-inflammatory systemic profile and

could promote CD4+ lymphocyte apoptosis (19). All biological

effects of anti-apoA1 IgG are mediated by its binding to TLR2,

which elicits the formation of the TLR2/TLR4/CD14 complex,

triggering pro-inflammatory and pro-atherogenic responses

through NF-κB and AP-1 pathways (19, 22, 26).

However, there is currently no information linking the HIV-

induced anti-apoA1 IgG response to tryptophan/kynurenine

metabolism. Therefore, in the present study, we aimed to

determine the links between the HIV-induced anti-apoA1 IgG

response and kynurenine metabolism, inflammation,

cardiovascular risk, and ART using a unique cohort of PLWH

ART-treated and ART-naïve from South Africa.
Materials and methods

Participants

Blood samples were collected from 144 participants recruited

in the study “EndoAfrica” (27). Patients were recruited upon

presentation at HIV clinics or community health centres in Cape

Town, South Africa. On the day of recruitment, participants

underwent procedures, including informed consent, completion

of a health questionnaire, measurement of body mass index,

waist circumference, and waist–hip ratio, assessment of blood

pressure and heart rate, provision of a urine sample, collection of

fasting blood, and examination of flow-mediated dilatation

(FMD) and carotid intima-media thickness (cIMT); most of the

clinical characteristics were also assessed on the day of

recruitment. The Table 1 is divided into groups: control

volunteers (n = 50), PLWH on ART (PLWH ART+) (n = 50), and

untreated PLWH (PLWH ART−) (n = 44). Patients were

matched between groups for age and sex. The number of patients

taking statins was not significant, as only one patient was under

statins (simvastatin) at the time of blood collection. This patient

belongs to the PLWH ART– group. Informed written consent

was obtained from all the participants. The study adhered to the

ethical guidelines of the Declaration of Helsinki and was
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TABLE 1 Clinical parameters, CVD risk, inflammatory parameters, and tryptophan pathway metabolites in the different groups.

Parameters Control volunteers PLWH ART-treated PLWH ART-naïve
N 50 50 44

Age 35 (31–42) 36 (33–45) 37 (28–44)

Gender (male/female) 16/33 15/35 13/31

HIV profile
CD4+ (cells/µL) 517 (399–716.5) 452.5 (298.75–558.25)

Viral load (RNA copies/mL) 20 (10–53) 21,925 (4,602–68,569.5)§§§§

Metabolic profile
BMI (kg/m2) 21.4 (19–27.7) 21.9 (18.9–28.1) 20.7 (18.425.55)

Waist/hip ratio 0.86 (0.81–0.89) 0.84 (0.80–0.87) 0.91 (0.85–0.95)*,§§§

Glucose (mmol/L) 4.6 (4.2–5.0) 4.9 (4.5–5.3)* 4.4 (4.1–5.1)

HbA1c (%) 5.1 (4.9–5.4) 5.2 (5–5.45) 5.4 (5.05–5.6)*

Hb (g/dL) 13.5 (12.8–14.4) 13.1 (11.9–14.1) 12.6 (11.6–13.9)*

Urine albumin/creatine ratio (mg/mmol creatinine) 0.56 (0.375–0.925) 0.9 (0.4–2.2) 1.4 (0.47–3.45)*

Blood pressure
Mean systolic pressure (mmHg) 116 (111–127.5) 117 (111–129.7) 119 (110–133)

Mean diastolic pressure (mmHg) 81 (75.65–91.5) 84.5 (78–91) 86 (76–90)

Mean heart rate (bpm) 67 (61.5–75.5) 68 (62–76) 74 (64–82)*

Lipid profile
Total cholesterol (mmol/L) 4.22 (3.62–4.47) 4.28 (3.87–4.79) 3.79 (3.22–4.41)§

HDL-cholesterol (mmol/L) 1.33 (1.26–1.60) 1.3 (1.05–1.66) 1.05 (0.93–1.35)**,§

LDL-cholesterol (mmol/L) 2.09 (1.90–2.61) 2.36 (2.03–2.77) 2.24 (1.70–2.63)

Triglycerides (mmol/L) 0.84 (0.67–1.04) 0.88 (0.71–1.16) 0.86 (0.59–1.38)

Lp(a) (U/L) 0.92 (0.53–1.53) 1.33 (0.39–2.31) 1.10 (0.43—1.88)

apoA1 (µmol/L) 45.5 (41–49.125) 43.8 (37.875–51.25) 38.5 (35.6–43.1)**,§

apoB (µmol/L) 1.47 (1.24–1.78) 1.55 (1.40–1.80) 1.47 (1.15–1.76)

apoB/ apoA1 ratio 0.61 (0.51–0.74) 0.62 (0.51–0.80) 0.69 (0.50–0.85)

Cardiovascular risk estimation
FMD (%) 7 (5.35–10.82) 6.64 (3.01–9.49) 4.96 (2.6–9.11)

cIMT (µm) 558 (497.25–647.25) 601 (560–698.5) 596.25 (540.5–657)

FRS (%) 2.15 (1.4–3.45) 2.00 (1.45–6.05) 2.10 (1.40–5.20)

Anti-apoA1 IgG OD 0.39 (0.28–0.62) 0.55 (0.38–0.91)*** 0.97 (0.63–1.54)****,§§§

Anti-apoA1 IgG POS prevalence 12/50 20/50 31/44

Inflammatory cytokines
IFN-gamma (pg/mL) 1.77 (1.28–2.89) 3.5 (1.59–6.51)* 6.49 (4.28–9.93)****,§§§

IL-10 (pg/mL) 0.13 (0.08–0.19) 0.2 (0.09–0.42)* 0.43 (0.32–0.61)****,§§§§

IL-6 (pg/mL) 0.37 (0.24–0.54) 0.72 (0.37–1.27)*** 0.80 (0.52–1.72)****

IL-8 (pg/mL) 10.91 (7.93–13.45) 14.34 (10.08–19.75)** 11.84 (8.69–16.49)

TNF-alpha (pg/mL) 1.07 (0.89–1.27) 1.55 (1.09–2.39)*** 3.04 (2.43–4.67)****,§§§§

MCP-1 (pg/mL) 998.9 (767.2–1,281) 1,017 (657.1–1,396) 1,069 (762.5–1,590)

MIP-1 alpha (pg/mL) 30.87 (19.49–43.98) 46.32 (31.21–64.72)** 56.21 (42.99–70.99)****

MIP-1 beta (pg/mL) 415.5 (298.1–582.9) 412.8 (268.3–590.5) 350.7 (240.1–455.3)

hsCRP (mg/L/L) 4.00 (1.00–8.20) 6.85 (2.72–15.93)* 5.60 (1.10–15.40)

ICAM-1 (pg/L) 425.7 (352.1–473.4) 524.3 (429.4–681.5)*** 617.4 (487.9–771.7)****

VCAM-1 (pg/L) 453.6 (391.2–541) 536.7 (484.3–688.3)*** 742.1 (630.8–966.7)****,§§§

SAA (pg/L) 1,329 (871.8–6,202) 1,911 (659.2–8,476) 2,713 (990.5–15,175)

Tryptophan pathway metabolites
L-Tryptophan (AUC) 49,132 (45,299–53,124) 44,162 (35,601–51,621)** 47,616 (43,674–53,269)

Kynurenine (AUC) 4,174 (3,597–5,452) 4,699 (3,869–5,927) 6,416 (5,195–8,195)****,§§

Kynurenine/L-Tryptophan 0.087 (0.069–0.11) 0.11 (0.08–0.14)* 0.12 (0.10–0.17)****

3-Hydroxykynurenine (AUC) 19.11 (13.88–30.16) 30.14 (18.99–46.88)* 30.19 (17.94–54.11)*

5-Hydroxyindoleacetic acid (AUC) 2,747 (2,214–3,138) 2,824 (2,444–3,624) 3,756 (2,974–4,891)****,§§

Kynurenic acid (AUC) 2,694 (2,010–5,317) 2,669 (1,649–3,837) 4,934 (2,972–7,883)*,§§

Indole-3-acetaldehyde (AUC) 74.97 (57.76–92.30) 61.82 (48.07–84.19) 64.47 (51.17–85.54)

Xanthurenic acid (AUC) 668.1 (541.5–820.6) 562.9 (461.9–677.0)* 550.0 (450.2–678.4)**

(Continued)
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TABLE 1 Continued

Parameters Control volunteers PLWH ART-treated PLWH ART-naïve
Indole-3-acetate (AUC) 2,439 (1,919–3,352) 2,012 (1,372–3,163) 2,349 (1,702–4,130)

Quinoldic acid: 2-quinoline carboxylic acid (AUC) 94.35 (58.65–127.7) 89.54 (59.25–128.5) 72.76 (55.18–101.1)

The table is divided into the following groups: control volunteers without HIV (control volunteers), PLWH ART-treated, and PLWH-ART naïve. A list of clinical parameters

and inflammatory cytokines is also provided. Values are expressed as medians (interquartile ranges). Statistical difference was evaluated using non-parametric Kruskwal–

Wallis tests.

*p < 0.05 was considered significant vs. control.

**p < 0.01 was considered significant vs. control.

***p < 0.001 was considered significant vs. control.

****p < 0.0001 was considered significant vs. control.
§p < 0.05 was considered significant between PLWH ART-treated and PLWH ART-naïve.
§§p < 0.01 was considered significant between PLWH ART-treated and PLWH ART-naïve.
§§§p < 0.001 was considered significant between PLWH ART-treated and PLWH ART-naïve.
§§§§p < 0.0001 was considered significant between PLWH ART-treated and PLWH ART-naïve.

Frias et al. 10.3389/fcvm.2024.1343361
reviewed and cleared by the Ethical Committee of the University of

Stellenbosh (South Africa).

PLWH included in this study were over 18 years old, not

pregnant, and over 3 months post-partum. PLWH on

ART were treated with efavirenz 600 mg + tenofovir DF

300 mg + emtricitabine 200 mg (n = 46), Nevirapine 200 mg

(NVP)/lamivitudine 150mg + zidovudine 300 mg (Lamzid) (1),

Lamivudine/Efavirenz/Abacavir (1), and Ritonavir 50 mg +

lopinavir 200 mg (Aluvia)/Tenofovir/Lamivudine (1). The median

duration of treatment was 176 weeks, with an interquartile range

of 108–300 weeks.

PLWH-ART naïve showed a median time between HIV

diagnosis and sampling of 65 days, with an interquartile range of

23.5–406 days (n = 32).
Blood tube collections and biochemical
parameters

A qualified research nurse conducted anthropometric

measurements, urine collection, and phlebotomy. Anthropometric

measurements, including height (cm) measured with a

stadiometer, weight (kg) measured using an electronic scale, and

waist and hip circumferences (cm) measured with a measuring

tape, were performed per standardised protocols. Body mass index

(BMI, kg/m2) and waist-to-hip ratio were calculated. Systolic blood

pressure (SBP, mmHg) and diastolic blood pressure (DBP, mmHg)

were measured thrice at 5-min intervals using an Omron M6

automatic digital blood pressure monitor (Omron Healthcare,

Kyoto, Japan) around the left brachium. Subsequently, the average

value was calculated. Study participants fasted from 10:00 pm the

night before clinical assessments. Participants with unknown HIV

status were tested for HIV using a rapid HIV test (SD Bioline HIV

1/2 3.0 immunochromatographic kit; Standard Diagnostics,

Republic of Korea) to determine their HIV status. Urine and

fasting blood samples were collected and sent to the National

Health Laboratory Service (NHLS) for biochemical analyses using

standard laboratory techniques. Plasma lipid profiles [total

cholesterol (TC), high-density lipoprotein cholesterol (HDL-C),

low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG)

levels, mmol/L] were determined using a chemiluminescence

methodology (cobas® 301/501 analyser, Roche/Hitachi cobas® c
Frontiers in Cardiovascular Medicine 04
systems, Basel, Switzerland). Levels of liver enzymes [gamma-

glutamyl transferase (GGT, U/L) and alanine aminotransferase

(ALT, U/L)] were determined via an enzymatic chemiluminescence

methodology using a cobas® 311/501 analyser (Roche/Hitachi

cobas® c systems, Basel, Switzerland). Levels of high-sensitivity C-

reactive protein (hsCRP, mg/L) were obtained via an IMMAGE®

Immunochemistry Systems and Calibrator 5 Plus assay kit

(Beckman Coulter, Inc., CA, USA). Fasting glucose levels (mmol/L)

and glycated haemoglobin (HbA1C, Hb%) were determined using

a chemiluminescence methodology (haemolysate application on the

cobas® 311/501 analyser, Roche/Hitachi cobas® c systems, Basel,

Switzerland). Haemoglobin (Hb, g/dL) levels were determined

using a chemiluminescence method (whole blood application on

the cobas® 311/501 analyser, Roche/Hitachi cobas® c systems,

Basel, Switzerland). Urine samples were analysed to determine

microalbuminuria (mg/L) and creatinine (mmol/L) using an

enzymatic chemiluminescence method by cobas® 501/502 and

cobas® 311/501 analysers (Roche/Hitachi cobas® c systems, Basel,

Switzerland), respectively, and the albumin-to-creatinine ratio

(ACR) (mg/mmol) was computed. In HIV+ participants, the levels

of cluster of differentiation four (CD4)+ T-cell count and viral

load (VL) were determined by flow cytometry (FC 500 MPL) with

MXP software (Beckman Coulter, Brea, CA, USA) and the

COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 (Roche

Diagnostics Ltd., Burgess Hill, UK), respectively (28).

Blood samples were collected in Becton Dickinson vials to

obtain serum or EDTA plasma. After collection, the serum was

allowed to coagulate at room temperature for 30 min. Serum and

plasma samples were centrifuged at 2,300g for 5 min at room

temperature, aliquoted, and stored at −80°C until further

analyses. Apolipoproteins A1 and B were analysed by a Cobas

e501 automated system using electrochemiluminescence

technology from Roche Diagnostics (Roche, Rotkreuz,

Switzerland) at the University Hospital of Geneva,

Geneva, Switzerland.
Cardiovascular event risk estimation

Cardiovascular risk was assessed using the 10 years

Framingham risk score (FRS) calculation, the extent of carotid

atherosclerotic vascular disease was evaluated using the carotid
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intima-media thickness (cIMT) measurement, and the endothelial

function was assessed using the flow-mediated dilation

(FMD) measurement.

The FRS was calculated using the calculator prepared by R.B.

D’Agostino and M.J. Pencina based on a publication by

D’Agostino et al. (29). FRS calculation is based on gender, age,

systolic blood pressure, treatment for hypertension, smoking,

presence of diabetes, total cholesterol, and HDL cholesterol.

FMD assessment was performed using a MyLabTM Five mobile

ultrasound system (Esaote, Italy). The FMD protocol followed

previously published recommendations (30, 31). Participants

were positioned supine on an examination bed, with their right

arm abducted and supinated. A blood pressure cuff (deflated)

was placed around the proximal part of the forearm.

Subsequently, the ultrasound probe was positioned proximal to

the cubital fossa (mid to distal humerus), just below the biceps

brachii muscle belly, until the brachial artery was visually located

on the ultrasound image. The ultrasound probe was then secured

in this position using a probe holder. Next, cross-sectional still

images were captured with the ultrasound probe at three

different locations along the designated section of the artery to

obtain baseline brachial artery diameter measurements. Following

this, the blood pressure cuff was inflated to 200 mmHg (or 50

mmHg supra-systolic in the case of individuals with systolic

blood pressure greater than 150 mmHg), and blood flow to the

forearm was occluded for 5 min. After the blood pressure cuff

was deflated, additional cross-sectional ultrasound stills were

taken along the same section of the artery for a duration of 2

min. For still analysis, the built-in manual measurement tool of

the MyLabTM Five mobile ultrasound system was used to

measure the brachial artery diameter in millimetres, consistently

at the end of diastole, in all the stills. The three baseline

measurements were used to calculate a mean baseline brachial

artery diameter, and the maximum post-occlusion measurement,

usually at approximately 60 s after blood pressure cuff release,

was used to calculate the FMD percentage according to the

following formula:

FMD % ¼ maximum post-occlusion(diameter(mm)�mean baseline diameter(mm))
mean baseline diameter(mm)

� 100

To ensure reliable data collection, the ultrasound operators were

subjected to stringent training by experts and multiple practice

sessions with student volunteers and colleagues.

To keep inter-operator variability to a minimum, only three

trained and experienced operators were employed in this study,

and image analysis and data acquisition were performed

independently by a single person (32).

Of note, for statistical correlation tests, the FMD values used

for correlation analysis included negative values. To overcome

negativity, four was added to the FMD value to shift them from

negative value and then the values were log2-transformed.

The carotid intima-media thickness (cIMT) was measured

using an Esaote MyLab Five portable ultrasound device (Genoa,

Italy) equipped with an Esaote Doppler probe (LA523, 12 MHz)

and QIMT software, which automatically and accurately
Frontiers in Cardiovascular Medicine 05
measures all the parameters needed for carotid IMT

measurements. For the IMT protocol, participants were asked to

lie in a supine position with their head resting comfortably and

their neck slightly hyperextended and tilted 45° to the opposite

side of the carotid artery being assessed. The operator (author of

this dissertation) used the index and middle fingers to locate the

pulsating carotid artery to guide the position of the probe on the

participant’s neck. The position of the probe was further adjusted

until a clear and stable image was obtained on the ultrasound.

The lateral angle of the image was assessed as far as possible. In

cases where a lateral view was not optimal (clear), an anterior or

posterior angle was used. Once the image was clear and stable,

the region of interest was manually placed 5 mm proximal to the

dilatation of the carotid bulb. Thereafter, QIMT software

automatically detected and analysed the vascular boundaries in

radio frequency (RF) mode. The software further calculated the

diameter and the thickness of the intima-media layer, as well as

the median and standard deviation IMT values, using high

spatial resolution. At this stage, the IMT measurements were also

calculated and expressed in micrometres (μm), with the standard

deviation changing. Once the standard deviation fell below

25 μm (the value also turns green), the IMT image was frozen

and saved. These automatic and accurate measurements are

largely independent of the investigator and the device settings.

For this study, both the left and right common carotid arteries

were assessed, and values from both sides were averaged and

used in data analysis.
Inflammatory cytokine assessment

All inflammatory biomarker analyses were performed on serum

samples at the Geneva University Hospitals. Inter-cellular adhesion

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-

1), interleukin (IL)-6, -8, -10, interferon (INF)-gamma, tumour

necrosis factor (TNF)-alpha, macrophage inflammatory protein 1-

alpha and -beta (MIP1 alpha and MIP1 beta), serum amyloid A

(SAA) and monocyte chemoattractant protein-1 (MCP-1), were

measured using the Meso Scale Discovery (MSD) platform

(Rockville, MD, USA). Analyte concentrations were determined by

Discovery Workbench® software 4.0 using a four-parameter

logistic fit model. The lower limits of detection in pg/mL were as

follows: IL-6 and IL-8, 0.04; IL-10, 0.03; INFγ, MIP1 alpha, MIP1

beta, SAA, TNF-α, 0.04; and MCP-1, 0.09. Intra-run CVs were

below 7%, and inter-run CVs were below 15%.
Assessment of anti-apoA-1 IgG levels

Anti-apoA-1 IgG levels were measured as previously described

(17, 23, 33). Briefly, MaxiSorp plates (NuncTM, Denmark) were

coated with purified, human-derived delipidated apolipoprotein

A-1 (20 μg/mL; 50 μL/well) for 1 h at 37°C. After washing, all

wells were blocked for 1 h with 2% bovine serum albumin (BSA)

in phosphate-buffered saline (PBS) at 37°C. Patient samples were

also added to a non-coated well to assess individual non-specific
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binding. After six washing cycles, 50 μL/well of signal antibody

(alkaline phosphatase-conjugated anti-human IgG; Sigma-

Aldrich, St. Louis, MO, USA), diluted 1:1,000 in a PBS/BSA 2%

solution, was added and incubated for 1 h at 37°C. After six

more washing cycles, phosphatase substrate p-

nitrophanylphosphate disodium (Sigma-Aldrich) dissolved in

diethanolamine buffer (pH 9.8) was added and incubated for

30 min at 37°C (Molecular Devices TM Filtermax 3). The optical

density (OD) was determined at 405 nm, and each sample was

tested in duplicate. Corresponding non-specific binding was

subtracted from the mean OD for each sample. The specificity of

detection was assessed using conventional saturation tests by

western blot analysis. As previously described, elevated levels of

anti-apoA-1 IgG (seropositivity) were defined by an OD cut-off

of OD ≥0.64 and a ratio between the sample net absorbance and

the positive control net absorbance × 100 above 37,

corresponding to the 97.5th percentile of a reference population.
Human aortic endothelial cells (HAECs)

HAECs were purchased from Ruwag (Bettlach, Switzerland).

Briefly, HAECs were grown in a complete EBM-2 medium

supplemented with 5% FBS (foetal bovine serum). HAECs were

stimulated in EBM-2 medium supplemented with 0% FBS for

24 h without or with polyclonal goat anti-apoA1 IgG (Academy

Bio-Medical Co) (40 µg/mL) or polyclonal goat IgG (Meridian

Life Science) (40 µg/mL). The protocol was chosen based on

previous evaluations of the optimal time course for inducing a

pro-inflammatory response, which determined that 24 h of

stimulation with anti-apoA1 IgG at a concentration of 40 µg/mL

yielded better results (21–24, 26, 33, 34). Afterwards, cells were

collected, and RNA was isolated and analysed using a

LightCycler 480 Real-Time PCR System (Roche) in 96-well

plates. The amplification curves were analysed using Roche

LightCycler software to determine Cp (by the second derivative

method). Primers for human ICAM-1 (Hs 00164932_m1),

VCAM-1 (Hs 01003372_m1), and GAPDH (Hs 99999905_m1)

as housekeeping genes were used and purchased from Thermo

Fisher (Basel, Switzerland). The stimulating medium was

collected, and ICAM-1 and VCAM-1 were quantified using the

Meso Scale Discovery platform, as described above. In the same

supernatant, the levels of kynurenine, tryptophan and kynurenic

acid were measured using liquid chromatography-multiple

reaction monitoring/mass spectrometry (LC-MRM/MS).
Kynurenine pathway metabolomics

Metabolites were extracted using a methanol–ethanol solvent

mixture in a 1:1 ratio. After protein precipitation, the

supernatant was evaporated to dryness and finally resuspended

with 100 µL of 10% methanol (MeOH) in H2O. The samples

were analysed by LC-MRM/MS on a hybrid triple quadrupole-

linear ion trap (QqQLIT) system (Qtrap 5500, Sciex) coupled to

an LC Dionex Ultimate 3,000 (Dionex, Thermo Scientific).
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Analysis was performed in positive and negative electrospray

ionisation modes using a TurboV ion source. The MRM/MS

method included 299 and 284 transitions in positive and negative

modes, respectively, corresponding to 583 endogenous

metabolites. The chromatographic separation was performed on a

Kinetex C18 column (100 × 2.1 mm, 2.6 µm). For the positive

mode, mobile phase A consisted of 0.1% FA in H2O and mobile

phase B consisted of 0.1% FA in acetonitrile (ACN). For the

negative mode, mobile phase A consisted of 0.5 mM ammonium

fluoride in H2O and mobile phase B consisted of 0.5 mM

ammonium fluoride in ACN.

The linear gradient program was as follows: 0–1.5 min, 2% B;

1.5–15 min, up to 98% B; 15–17 min, held at 98% B; 17.5 min,

down to 2% B, with the flow rate maintained at 250 µL/min.

The MS instrument was controlled by Analyst software v.1.6.2

(AB Sciex). Peak integration was performed with MultiQuant

software v.3.0 (AB Sciex). The integration algorithm was MQ4

with a Gaussian smoothing of a half-width equal to 1.5 points.

Data obtained after MSTUS (MS Total useful signal)

normalisation were used (35, 36). For better visualisation, a

factor of 106 was applied after normalisation.
Statistics

Non-parametric Kruskal–Wallis and Mann–Whitney tests were

used for assessing differences between groups, and Spearman tests

were used for correlation analysis. In in vitro experiments with

HAECs, paired Wilcoxon tests were used for analysing differences

between groups. For metabolite analyses, the data were expressed

as log-normalised. The correlation between anti-apoA1 IgG, cIMT,

FMD, and metabolites was analysed using Spearman’s rank test.

Differences between groups were tested using the Mann–Whitney

test. P < 0.05 was considered as significant. Statistical analyses were

performed using Prism 9 (GraphPad Prism, CA, USA).
Results

Population characteristics

Participants were divided into three groups: HIV-free control

volunteers (n = 50), HIV-positive patients on ART (n = 50), and

HIV-positive ART naïve patients (n = 44) (Figure 1).

Cardiovascular risk profile, subclinical atherosclerosis status, and

endothelial dysfunction were assessed using FRS, cIMT, and

FMD, respectively. The baseline demographic and clinico-

biological characteristics of the 144 patients are summarised in

Table 1. Across the three groups (healthy volunteers, PLWH

ART-treated, and PLWH ART-naïve), we observed a decreasing

trend for HDL-C and apoA1 levels, with the lowest levels

observed in PLWH ART-naïve (Table 1), while increasing trends

were observed for most markers of systemic inflammation

measured in negative controls vs. the PLWH group, with a few

exceptions. MIP-1 beta, MCP-1, and SAA levels were similar

between the three groups. IL-8 and hsCRP were significantly
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1343361
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Study design. Clinical parameters and samples from 144 patients were analysed. These subjects were divided into three groups: control volunteers
without HIV (n= 50), PLWH on ART (PLWH ART+) (n= 50), and PLWH ART-naïve (PLWH ART−) (n= 44). The analysis included clinical parameters,
inflammatory profile, autoimmune response, and kynurenine pathway metabolites.
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increased in PLWH ART-treated compared to healthy volunteers,

while we observed no differences between healthy volunteers and

PLWH ART-naïve for these parameters (Table 1). Regarding the

tryptophan pathway metabolites, similar trends were observed for

most tryptophan metabolites across these three groups, with the

kynurenine/tryptophan ratio being the highest in PLWH ART-

naïve. Conversely, a decreasing trend was observed for

xanthurenic acid across these groups (Table 1).

Despite the trends observed in the biochemical variables and

biomarkers, which were overall suggestive of a pro-atherogenic

profile, there were no differences in FRS, cIMT, and FMD

between the three groups.
Correlation between FRS and cIMT

Spearman correlations indicated positive and significant

correlations between cIMT and FRS across all three subgroups (r

ranging between 0.41 and 0.51), but no correlation was observed

between FMD and FRS (Figure 2).

Except for IL-6, which modestly correlated with the FRS across

the three groups, no significant associations between the other

cytokines and the FRS were observed (Figure 2A). Similarly, no

associations were found between FRS and tryptophan pathway

metabolites (Figure 2A) or between cIMT and cytokines or

tryptophan pathway metabolites (Figure 2B).
Anti-apoA1 IgG levels across study groups
and associations with inflammatory
cytokines and tryptophan pathway
metabolites

As shown in Table 1, participants with HIV displayed higher

median anti-apoA1 IgG levels and seropositivity rates than
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healthy volunteers, while PLWH ART-naïve displayed the highest

values and seropositivity rates. The association of anti-apoA1 IgG

with the different parameters was analysed in the three groups.

Anti-apoA1 IgG was not associated with FRS, cIMT, or FMD,

despite a possible trend with FRS and cIMT in the PLWH ART-

treated group (p = 0.061 and p = 0.083, respectively) (Table 2).

When dichotomising the three study groups according to anti-

apoA1 IgG seropositivity status, we observed that HIV-negative

anti-apoA1 IgG seropositive participants had higher circulating

median hsCRP, ICAM-1, SAA, kynurenine, indole-3-acetate, and

5-hydxoxyindolacetate levels compared to seronegative

participants (Table 2). Among PLWH, anti-apoA1 IgG

seropositive individuals displayed higher median values of INFγ,

TNFα, MIP1alpha, ICAM-1, VCAM-1, kynurenine, kynurenic

acid, 5-hydxoxyindolacetate, and kynurenine/tryptophan ratio

than seronegative ones. Anti-apoA1 IgG seropositive individuals

displayed lower CD4+ cell counts and higher viral load than

seronegative individuals. Despite limited statistical power, we

further explored the unique study group consisting of PLWH

ART-naïve to better understand the possible contribution of

ART to inflammation, the kynurenine pathway, and

cardiovascular phenotype. In the PLWH ART-treated group,

anti-apoA1 IgG was positively correlated with IL-8, hsCRP,

ICAM-1, VCAM-1, and SAA, while in the PLWH ART-naïve

group, anti-apoA1 IgG was positively correlated with INFγ and

TNFα and inversely correlated with SAA (Figure 2C). Regarding

the tryptophan/kynurenine pathway metabolites, the kynurenine/

tryptophan ratio and xanthurenic acid were increased and

decreased, respectively, in PLWH anti-apoA1 IgG seropositive

participants (Table 2). The tryptophan pathway metabolites were

associated with HIV parameters. While CD4+ cell counts were

positively correlated with xanthurenic acid and negatively

correlated with kynurenine, 5-hydroxyindoleacetate,

3-hydroxykynurenine, and kynurenine/tryptophan ratio, the

viral load was positively correlated with kynurenine,
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FIGURE 2

Cardiovascular risk estimation by Spearman’s rank correlation. (A) Spearman’s rank correlation between the FRS and clinical parameters. The heatmap
is divided into subject groups of PLWH (n= 94), PLWH ART-treated (PLWH-ART+, n= 50), PLWH ART-naïve (PLWH-ART−, n= 44), and control
volunteers (n= 49). (B) Spearman’s rank correlation between cIMT and clinical parameters. The heatmap is divided into subject groups of PLWH (n
= 74), PLWH ART-treated (PLWH-ART+, n= 46), PLWH ART-naïve (PLWH-ART−, n= 28), and control volunteers (n= 48). (C) Spearman’s rank
correlation between anti-apoA1 IgG and clinical parameters. The heatmap is divided into subject groups of PLWH (n= 94), PLWH ART-treated
(PLWH-ART+, n= 50), PLWH ART-naïve (PLWH-ART−, n= 44), and control volunteers (n= 49). FRS, cIMT, and anti-apoA1 IgG were correlated to
the following categories: HIV profile, CV risk estimation, inflammatory cytokines, and kynurenine pathway metabolites. In each category,
parameters were top-down ranked according to the r value. Statistic difference was evaluated using non-parametric Spearman ranking tests:
* p-values <0.05, ** < 0.01, *** < 0.001, and **** < 0.0001 were considered significant.
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5-hydroxyindoleacetate, and kynurenic acid and negatively

correlated with xanthurenic acid (Figure 3). Of note, ART

affected the levels of kynurenine, kynurenine/tryptophan ratio, 5-

hydroxindoleacetate, kynurenic acid, and xanthurenic acid.

Interestingly, xanthurenic acid was associated with anti-apoA1

IgG seropositivity in PLWH ART-naïve and HIV parameters

(Table 2 and Figure 3). In addition, in the HIV ART-treated

group, anti-apoA1 IgG seropositive patients displayed a

significantly lower body mass index (Table 2).
Anti-apoA1 IgG and adhesion molecules in
HAECs

To identify a possible causal link between higher levels of

circulating adhesion molecules (ICAM-1 and VCAM-1) and

some metabolites of the tryptophan pathway, we evaluated in

vitro the impact of anti-apoA1 IgG stimulation on VCAM-1 and

ICAM-1 production on HAECs, as well as the levels of

tryptophan metabolites in the cell supernatant. HAECs were

incubated for 24 h with polyclonal anti-apoA1 IgG or the isotype

control antibody (40 µg/mL), followed by the measurement of

the ICAM-1 and VCAM-1 intra-cellular mRNA expression levels

as well as their presence in the cell supernatant. The results

indicated that anti-apoA1 IgG treatment of HAECs induced the

mRNA expression as well as the release into the medium of
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ICAM-1 and VCAM-1 in vitro (Figures 4A–D). In the same

supernatant, the levels of kynurenine, tryptophan, and kynurenic

acid were measured, and we did not observe a significant change

in tryptophan, kynurenine, kynurenine/tryptophan ratio, or

kynurenic acid upon anti-apoA1 IgG stimulation (Figures 4E–H).
Discussion

The first important finding of this study is the confirmation that

HIV infection increases the humoral autoimmune response against

apoA1 in our study population. Consistent with previous

observations indicating that RNA virus infections, such as

hepatitis C, SARS-CoV2, and HIV, induce an anti-apoA1 IgG

response (18–20), this study confirms preliminary results

suggesting that such biological signature is associated with

canonical biological determinants of HIV severity, including

higher viremia and lower CD4+ cell counts, which are known to

be major determinants of cardiovascular complications in PLWH

(37, 38). The unique design of this study allowed us to

demonstrate an anti-apoA-1 IgG seropositivity (expressed by anti-

apoA-1 IgG positivity prevalence) gradient across the three study

groups, starting at 24% in healthy volunteers, 54% in PLWH

ART-treated, and reaching 70% in PLWH ART-naïve. Although

no causal relationship can be inferred from our data, a previous
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TABLE 2 Difference between anti-apoA1 IgG POS and anti-apoA1 IgG NEG in the different group populations.

Parameters HIV-free
anti-apoA1

NEG
(n = 37)

HIV-free
anti-apoA1

POS
(n = 12)

PLWH anti-
apoA1 NEG
(n = 43)

PLWH anti-
apoA1POS
(n = 51)

PLWH ART-
treated
anti-

apoA1NEG
(n = 30)

PLWH ART-
treated
anti-

apoA1POS
(n = 20)

PLWH ART-
naïve anti-
apoA1NEG
(n = 13)

PLWH ART-
naïve anti-
apoA1POS
(n = 31)

Metabolic parameters
BMI 23.10 20.89 22.40 20.10 22.65 19.80* 20.59 20.70

HIV profile
CD4+ (cells/µL) 552 414** 554 391** 526 444

Viral load (RNA copies/mL) 51 7,836* 27.5 15 25,047 24,249

Lipid profile
Triglycerides (mmol/L) 0.84 0.90 0.88 0.86 0.88 0.96 1.10 0.77

Total cholesterol (mmol/L) 4.22 4.16 4.23 3.88 4.46 4.16 3.78 3.79

HDL-C (mmol/L) 1.32 1.33 1.15 1.14 1.47 1.25 0.99 1.09

LDL-C (mmol/L) 2.03 2.32 2.38 2.24 2.48 2.23 2.09 2.25

apoB/apoA1 0.607 0.618 0.622 0.677 0.615 0.626 0.673 0,692

Cardiovascular risk estimation
FRS (%) 0.35 0.30 0.2 0.5 0.2 1.3 0.7 0.3

FMD (%) 3.457 3.551 3.336 3.186 3.395 3.366 3.011 3.163

cIMT (μm) 589 520.3 593.5 648 599 680.5 586.5 613.3

Inflammatory cytokines
INFγ (pg/mL) 1.74 1.795 2.910 5.16** 2.72 4.35 5.53 7.21

IL-6 (pg/mL) 0.33 0.36 0.67 0.87 0.62 0.975** 1.01 0.66

IL-8 (pg/mL) 10.53 12.82 11.71 13.46 11.85 18.71* 11.71 11.89

TNF (pg/mL) 1.01 1.24 1.69 2.9*** 1.39 1.99* 2.68 3.26

MIP1 alpha (pg/mL) 30.17 31.19 46.79 56.66** 40.67 49.73 49.14 63.55

hsCRP (mg/L) 2,823 7,772* 4,382 5,952 4,011 13,324** 14,947 4,137

ICAM-1 (pg/L) 416.6 506.1** 515.6 637.8* 490 640.7* 582.6 637.8

VCAM-1 (pg/L) 463.6 446.5 537.4 714.7** 520.1 571.7* 728.2 767.5

SAA (pg/L) 1,153 9,396** 1,829 2,608 1,557 7,085* 8,104 2,233*

Tryptophan pathway metabolites
L-Tryptophan (AUC) 48,775.5 49,910.3 45,191.9 47,271.4 45,111.7 41,359.4* 45,191.9 47,666.7

Kynurenine (AUC) 4,028.5 5,374.4** 4,883.4 5,875.5* 4,355.0 5,145.8 7,041.0 6,312.3

Kynurenic acid (AUC) 2,628.1 2,693.7 2,678.8 4,058.0* 2,232.6 3,604.4 4,911.3 5,175.8

Indole-3-alcetaldehyde (AUC) 74.5 77.2 63.2 59.6 473.6 591.0 76.4 57.5

Xhanturenic acid (AUC) 712.0 595.9 596.0 525.7 562.9 536.2 631.5 525.7*

Indole-3-acetate (AUC) 2,282.4 3,135.4* 2,444.8 1,974.9 2,367.6 1,790.4 2,519.2 2,330.1

5-hydxoxyindolacetate (AUC) 2,638.8 3,600.2** 2,855.8 3,497.5* 2,762.3 3,002.3 3,312.7 3,911.3

3-hydroxykyunerinie (AUC) 18.83 27.02 28.79 32.57 28.94 36.72 22.31 30.86

Kynurenine/L-Tryptophan 0.079 0.108 0.104 0.124* 0.101 0.122** 0.155 0.126

The table is divided into the following groups: HIV-free, PLWH, PLWH ART-treated, and PLWH ART-naïve. A list of clinical parameters, inflammatory cytokines, and

tryptophan pathway metabolites is provided. Values are expressed as medians. Statistical difference was evaluated using non-parametric Mann–Whitney tests.

*p < 0.05 was considered significant between anti-apoA1 IgG-positive and -negative patients.

**p < 0.01 was considered significant between anti-apoA1 IgG-positive and -negative patients.

***p < 0.001 was considered significant between anti-apoA1 IgG-positive and -negative patients.
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study showed that anti-apoA1 IgG could promote CD4+ cell

apoptosis and elicit a proatherogenic response by promoting

inflammation, foam cell formation, and myocardial necrosis in a

TLR2/TLR4/CD14-dependent manner (19, 21, 23, 26). Despite

the inconsistent data regarding ART and cardiovascular risk, the

cardiovascular benefits of early ART are nowadays recognised to

offset their potential intrinsic cardiovascular hazards by effectively

controlling the exaggerated pro-inflammatory and pro-coagulant

states in individuals living with HIV (31). The lower rate of anti-

apoA1 seropositivity observed in ART-treated individuals is in

line with the proposed pro-atherogenic properties of anti-apoA1

IgG. In addition, anti-apoA1 IgG could directly promote the
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endothelial expression of ICAM-1 and VCAM-1. Although the

present study did not investigate underlying molecular

mechanisms, previous publications showed that ICAM-1 and

VCAM-1 expression is TLR2/TLR4-dependent (39–41),

suggesting that the same innate immune receptors could be

involved in anti-apoA1 IgG-induced trans-endothelial migration

of immunocompetent cells. The impact of ART on auto-

antibodies is poorly documented; however, the observation in our

study is in line with the findings of Marinho and colleagues (42),

who showed that the anti-retroviral nevirapine (NVP) was able to

lower the titres of anti-HDL auto-antibodies, which are closely

related to anti-apoA1 antibodies. However, since only one
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FIGURE 3

Spearman’s rank correlation between the HIV profile and kynurenine pathway metabolites. The heatmap is divided into subjects groups of PLWH
(n= 94), PLWH ART-treated (PLWH-ART+, n= 50), PLWH ART-naïve (PLWH-ART−, n= 44) and by the following parameters: CD4+ cell count
(cells/µL) and viral load (RNA copies/mL). In each category, parameters were top-down ranked according to the r value. Statistic difference was
evaluated using non-parametric Spearman ranking tests: * p-values <0.05, ** < 0.01, *** < 0.001, and **** < 0.0001 were considered significant.
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participant in the current study cohort was treated with NVP, we

could not replicate this observation with anti-apoA1 IgG.

Importantly, we could not detect any significant association

between these auto-antibodies and the FRS, cIMT, or FMD. This

is in contrast with previous data derived from other populations

(43, 44). The inconsistency could be explained by several

mutually non-exclusive reasons, including differences in study

populations and statistical power, variability in imaging

diagnostic modalities, the fact that these antibodies seem to

behave as independent cardiovascular risk factors in the general

population (15), or because these antibodies have mostly been

associated with atherosclerotic plaque vulnerability rather than

the size of atherosclerotic lesions (23).

The second important finding of the present study is the

identification of significant correlations between anti-apoA1 IgG

and tryptophan metabolism, showing that the auto-antibodies are
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associated with increased activation of the tryptophan pathway,

characterised by lower tryptophan levels and higher kynurenine

metabolite levels, resulting in a higher kynurenine/tryptophan

ratio. Although our in vitro experimental approach using HAECs

may not be regarded as an optimal model to demonstrate a

possible causal association between anti-apoA1 IgG and the

kynurenine pathway, it is, to our knowledge, the first report

linking anti-apoA1 IgG antibodies to this pathway. Further

experimental work on various immunocompetent cells is

required to determine whether anti-apoA1 IgG could directly

modulate the activation of indoleamine 2,3-dioxygenase (IDO)

enzyme required to convert tryptophan to kynurenine (45). This

will help to better delineate the respective contributions of anti-

apoA1 IgG and kynurenine in VCAM-1/ICAM-1 expression, as

IDO inhibition has been shown to increase atherosclerotic lesions

size and upregulation of VCAM-1 (45).
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FIGURE 4

Anti-apoA1 IgG treatment induces ICAM-1 and VCAM-1 expression but not tryptophan pathway metabolites. HAECs were incubated with anti-apoA1
IgG (40 µg/mL) or control IgG (40 µg/mL) for 24 h. Cells were lysed, mRNA was extracted, and the expression of VCAM-1 and ICAM-1 was analysed (A,
B). The incubation medium was collected and the levels of VCAM-1 and ICAM-1 were quantified using the MSD platform (C,D). The incubation
medium was collected, and the levels of kynurenine, tryptophan, kynurenine/tryptophan ratio (Kyn/Tryp), and kynurenic acid were quantified using
LC/MRM-MS (E–H). Results are expressed as medians with interquartile ranges. Statistical difference was evaluated using non-parametric Wilcoxon
tests; p < 0.05 was considered significant.
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Activation of the tryptophan catabolism pathway has been

implicated in the pathogenesis of various processes, including,

among others, coronary artery disease (46) and HIV; increased

levels of various tryptophan metabolite levels were found to be

associated with HIV serostatus, severity of HIV infection, low-

grade inflammation in HIV-positive individuals with virological

suppression, and long-term non-AIDS-related events (47), as

well as being modulated by ART (48–51). The significant

correlations observed in the present study between kynurenine

and the kynurenine/tryptophan ratio, CD4+ cell counts, and

viral load results are in line with these observations, as well as

the fact that ART was associated with lower levels of

kynurenine and the kynurenine/tryptophan ratio. In this study,

we extended the list of kynurenine metabolites associated with

HIV parameters and/or ART with additional kynurenine

metabolites, viz., xanthurenic acid, 5-hydroxyindoleacetate,

3-hydroxykynurenine, and kynurenic acid.

The fact that the levels of tryptophan pathway metabolites were

not associated with an increased FRS nor with higher

atherosclerosis burden measures (cIMT, FMD) contrasts with

other studies demonstrating a correlation between tryptophan

metabolites and cIMT (52, 53). This divergence can certainly be

partly explained by an age difference between our study and

others (median age of 35 years in our study vs. >42 years),

although other factors cannot be excluded (52, 53).

The first limitation of our study relates to the fact that, despite

significant correlations retrieved between cIMT and FRS across all

three subgroups, no inter-group differences in the FRS (cIMT and

FMD) were observed. Although this is most likely explained by

relatively small sample sizes and the young age of the included

participants (median: 35 years old), the absence of inter-group

difference in terms of cardiovascular risk or atherosclerosis-
Frontiers in Cardiovascular Medicine 11
related burden renders the interpretation of the current

correlations with CVD rather difficult. Another limitation resides

in the fact that the kynurenine pathway functionality in

endothelial cells is still debated, and experiments on

immunocompetent cells are required before formally concluding

the absence of a causal association between anti-apoA1 IgG and

kynurenine pathway activation. Moreover, we did not measure

other auto-antibodies, such as anti-HDL antibodies. Given that

anti-apoA1 IgG is the most extensively studied and validated, we

focused on this specific class of auto-antibodies rather than those

ascribed to a “broader” HDL autoimmune response, including

antibodies against HDL, against LCAT and against-PON-1 (25).

Finally, while demonstrating that anti-apoA1 IgG induced

ICAM-1 and VCAM-1, we hypothesised that TLR2/TLR4

pathway activation explains our current results, corroborating

and extending the pro-atherogenic properties of anti-apoA1 IgG

reported previously, probably through the same mechanism (19,

22, 26). In fact, VCAM-1/ICAM-1 expression is mediated by

TLR2/TLR4, and subsequent identical intra-cellular pathway

activation is reported (40, 54). We neither investigate the

association between persistent HIV proteins (such as Nef, Tat,

and gp120 proteins), known to potentially induce endothelial

dysfunction by promoting apoptosis, inflammatory cytokines,

and ICAM-1/VCAM-1 expression (55–57), and the levels of anti-

apoA1 IgG and kynurenine pathway metabolites nor the other

parameters measured in this study. Further investigations would

be necessary to elucidate the precise mechanism of action of

anti-apoA1 IgG on endothelial cells; however, such investigations

fall outside the scope of the present study.

In conclusion, our data highlighted that HIV infection increases

the humoral response against apoA1 in our study cohort, an effect

that is associated with biological features of HIV severity. We also
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demonstrated that these auto-antibodies may induce ICAM-1 and

VCAM-1 expression in endothelial cells. Furthermore, this work

delineates, for the first time, an intimate relationship between

anti-apoA1 IgG and kynurenine pathway activation, whose

pathophysiological relevance is broad and covers HIV,

autoimmunity, and atherosclerosis pathogenesis. Whether anti-

apoA1 IgG could directly modulate kynurenine pathway activation

and be used as a biomarker to predict incident cardiovascular

events in PLWH remains to be demonstrated.
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