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Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
Background: Our study aimed to develop machine learning algorithms capable
of predicting red blood cell (RBC) transfusion during valve replacement surgery
based on a preoperative dataset of the non-anemic cohort.
Methods: A total of 423 patients who underwent valvular replacement surgery
from January 2015 to December 2020 were enrolled. A comprehensive
database that incorporated demographic characteristics, clinical conditions,
and results of preoperative biochemistry tests was used for establishing the
models. A range of machine learning algorithms were employed, including
decision tree, random forest, extreme gradient boosting (XGBoost), categorical
boosting (CatBoost), support vector classifier and logistic regression (LR).
Subsequently, the area under the receiver operating characteristic curve (AUC),
accuracy, recall, precision, and F1 score were used to determine the predictive
capability of the algorithms. Furthermore, we utilized SHapley Additive
exPlanation (SHAP) values to explain the optimal prediction model.
Results: The enrolled patients were randomly divided into training set and testing
set according to the 8:2 ratio. There were 16 important features identified by
Sequential Backward Selection for model establishment. The top 5 most
influential features in the RF importance matrix plot were hematocrit,
hemoglobin, ALT, fibrinogen, and ferritin. The optimal prediction model was
CatBoost algorithm, exhibiting the highest AUC (0.752, 95% CI: 0.662–0.780),
which also got relatively high F1 score (0.695). The CatBoost algorithm also
showed superior performance over the LR model with the AUC (0.666, 95%
CI: 0.534–0.697). The SHAP summary plot and the SHAP dependence plot
were used to visually illustrate the positive or negative effects of the selected
features attributed to the CatBoost model.
Conclusions: This study established a series of prediction models to enhance
risk assessment of intraoperative RBC transfusion during valve replacement in
no-anemic patients. The identified important predictors may provide effective
preoperative interventions.

KEYWORDS

intraoperative transfusion, machine learning algorithm, prediction, non-anemic,

valve replacement
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1344170&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2024.1344170
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1344170/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1344170/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1344170/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1344170/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1344170/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1344170
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zhou et al. 10.3389/fcvm.2024.1344170
1 Introduction

Cardiac surgery patients are prone to suffer from blood

transfusion therapy. Firstly, cardiovascular patients have a higher

incidence of perioperative anemia (1). Secondly, cardiac surgery

easily encounters ongoing blood loss and hemodilution

intraoperatively. Thus, allogeneic transfusion is the standard

treatment for perioperative anemia in patients undergoing

cardiac surgery, and a wide variety of blood products have saved

most patients’ lives. Historical cohort studies have consistently

shown that allogeneic transfusion, particularly when administered

intraoperatively, is related to increased postoperative

complications, including infectious disease, renal failure, acute

lung injury, and neurological adverse events (2–4). Our previous

cohort study also revealed that intraoperative red blood cell

(RBC) transfusion significantly increased the risk of postoperative

hypoxemia in non-anemic adults undergoing isolated valve

replacements (5). Therefore, it is widely accepted that

intraoperative transfusion can act as a trigger for adverse events

in cardiac surgery.

With the rapid advances in artificial intelligence, data-driven

machine learning algorithms are being used to predict diverse

clinical outcomes (6–8). Importantly, machine learning models

have been widely used for the prediction of events in the

cardiovascular field as well (9, 10). Machine learning algorithms

provides new tools to overcome challenges for which traditional

statistical methods are ill-suited, especially for making

classification predictions using very specific sets of input features.

The prediction of blood transfusion is a very suitable project for

artificial intelligence, which has already been gaining

sophistication with the help of various machine learning

algorithms (11). Accurate prediction of intraoperative transfusion

contributes to patient blood management and the prevention of

the potential risks after transfusion. Patient blood management

in cardiac surgery will facilitate a reduction in the misuse of

allogeneic blood transfusion (12), illustrating the patients who

are most likely to undergo transfusion should benefit most from

disciplined blood management strategy. Therefore, it is necessary

to build predictive models in cardiac surgery patients.

Herein, we attempted to establish machine learning-based

algorithms in depth for predicting intraoperative RBC transfusion

by incorporating preoperative data of the non-anemic adults

undergoing valvular replacements and to evaluate its advantages

compared with the traditional linear model, providing a new

paradigm for predicting blood transfusion in cardiac surgery patients.
2 Methods

2.1 Study design and ethics statement

We enrolled the consecutive patients aged 18 to 80 years

undergoing valvular replacements at Shanghai General Hospital,

School of Medicine, Shanghai Jiao Tong University between

January 2015 and December 2020. Exclusion criteria for this

study included: (1) hemoglobin levels ≤12 g/dl for females and
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≤13 g/dl for males, (2) emergency surgery, (3) massive

transfusion, (4) re-operation of valvular surgery, (5) combined

coronary surgery, aortic surgery, or ablation surgery, and (6) left

ventricular ejection fraction (LVEF) <35%.

This retrospective study was approved by the ethics committee

of Shanghai General Hospital (Approval number: 2020KY223). All

the research procedures were carried out in accordance with

relevant guidelines and regulations. As the data involved in this

study were recruited from electronic medical records and

reported without personal identifiers, the need for informed

consent from the patients was waived.
2.2 Transfusion criteria

Intraoperative RBC transfusion was primarily determined by a

hemoglobin level below 8.0 g/dl or hematocrit less than 25% after

cardiopulmonary bypass, as per the established criterion (13). In

our study, we defined massive transfusion as the administration

of 5 or more units of RBCs within 4 h (14, 15). This definition is

based on evidence indicating that massive hemorrhage is often

linked to significant trauma, abnormal anatomy, or surgical

techniques (16). The transfusion of other blood components

varied among surgeons based on the extent of blood loss and

intraoperative coagulation and bleeding.
2.3 Data collection

Preoperative patient characteristics were extracted from

medical records, encompassing demographic information (e.g.,

age, gender, BMI), past medical history, and findings from

laboratory tests, electrocardiogram, and echocardiography. These

details also included smoking/drinking habits, comorbidities such

as hypertension, diabetes, cerebrovascular disease, and atrial

fibrillation, New York Heart Association (NYHA) class, LVEF,

and a variety of blood tests such as serum ferritin, albumin, and

platelet count.
2.4 Construction of machine learning
algorithms

The patients included in this study were categorized into two

groups based on whether they received intraoperative RBC

transfusion (IRT), referred as the IRT group and non-IRT group

respectively. The entire dataset was then randomly split into a

training set and a testing set using an 8:2 ratio. Basically, the

training dataset was used for feature selection. Then, a random

forest (RF) algorithm-based feature selection method, Sequential

Backward Selection (SBS), was used to filter the variables. In

detail, firstly the RF algorithm uses feature importance as a

ranking criterion. Secondly, the SBS method removes the least

important feature in a full feature subset until the desired

number of features is obtained. Subsequently, we measured the

performance of each RF model with varying numbers of
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variables by plotting their accuracy. Finally, we identified the

optimal number of features based on the highest model accuracy.

Then, the proposed prediction models for binary classification

include the advanced ensemble learning methods, consisting of

both nonlinear and linear algorithms. Nonlinear models included

decision tree classifier, RF classifier, extreme gradient boosting

(XGBoost) classifier, categorical boosting (CatBoost) classifier,

support vector classifier (SVC). In contrast, the linear model was

logistic regression (LR). Basically, the unit of a RF is the decision

tree. RF consists of hundreds or thousands of decision trees and

integrates all the categorical voting results, designating the

category with the most votes as the final output (17). Unlike the

bagging idea of RF, the boosting algorithms improve the

prediction power by converting several weak learners to strong

learners, such as CatBoost and XGBoost, both of which are based

on the Gradient Boosting Decision Tree (18). Different from the

tree-based methods, SVC finds a hyper-plane that creates a

boundary between the types of data, which is a supervised

machine learning model that has higher speed and better

performance with a limited number of samples (19).

After developing the models, we aimed to evaluate the

predictive validity of various machine learning models. To

achieve this, we calculated and compared the areas under the

receiver operating characteristic curve (AUC) and the accuracy of

the algorithms. Moreover, we analyzed precision, which is the

fraction of true positive examples among those classified as

positive by the model, and recall, which is the fraction of positive

examples classified correctly by the model. We also used the F1-

score, defined as the harmonic mean of the model’s precision

and recall, to determine the model’s overall accuracy on the

dataset. Finally, to ensure correct interpretation of the prediction

model, we employed the SHapley Additive exPlanation (SHAP)

values. These values provided consistent and locally accurate

attribution for each feature, allowing us to determine not only

the importance of each feature but also its positive or negative

impact on predictions (20). As most machine learning models

are often considered as “black boxes”, SHAP values can be

particularly useful in interpreting their results.
2.5 Statistical analysis

Continuous variables were expressed as either mean and

standard deviation or median and interquartile range depending

on whether they followed a Gaussian distribution. Categorical

variables were reported as frequency and percentage. For group

comparison of continuous variables, the Student’s T-test was used

if they followed a Gaussian distribution, while the Mann–Whitney

U test was used for non-Gaussian data. The difference in the

distribution of categorical variables between groups was tested

using either the chi-squared test or Fisher’s exact test, as appropriate.

For statistical analyses, we used SPSS software (ver. 22.0, SPSS

Inc., Chicago, IL, USA). Model development was carried out using

Python (ver. 3.9.6) with the packages of catboost (1.0.6), sklearn

(3.0.0), shap (0.41.0), and xgboost (1.6.1). Graphics were

generated using Python (ver. 3.9.6) with the package of
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matplotlib (3.5.2). A P-value <0.05 was considered statistically

significant for a two-sided test.
3 Results

3.1 Characteristics of study population

We finally enrolled the medical records of 423 consecutive

patients undergoing isolated valvular replacements from January

2015 to December 2020. The structured workflow of the patient

recruitment and grouping was presented in Figure 1. The

patients had a mean age of 60.1 ± 11.4 years, and 102

participants (24.1%) received intraoperative RBC transfusion.

They were randomly assigned to a training set (n = 338) or a

testing set (n = 85). An overview over the preoperative patient

data is given in Table 1. Each individual patient had 30

preoperative clinical characteristics. The incidences of

intraoperative RBC transfusion were 22.8% and 29.4% in the

training set and testing set, respectively.
3.2 Machine learning predictive model
development

A RF algorithm was applied to find the most critical variable

associated with intraoperative RBC transfusion. The importance

of each feature was ranked in descending order (Figure 2). The

top 10 most significant preoperative feature listed in

Supplementary Table S1 were hematocrit, hemoglobin, ALT,

fibrinogen, ferritin, platelet count, APTT, folic acid, transferrin

saturation (TAST), and vitamin B12. Afterward, all features were

included in SBS one by one in order of their feature ranks. Based

on the highest model accuracy (Figure 3), SBS excluded 14

features, illustrating that there were 16 important features

incorporated in the subsequent machine learning models.

Using solely these 16 features, we trained six different models.

As Figure 4 showed, the best AUC in the testing set were yielded by

CatBoost method (AUC: 0.752), followed by RF model (AUC:

0.722) and XGBoost classifier (AUC: 0.705). In addition, RF

classifier got the highest accuracy (accuracy: 0.734) and recall

(recall: 0.728), while CatBoost method was slightly inferior

(accuracy: 0.732 and recall: 0.725). CatBoost classifier also

achieved decent F1 score (F1: 0.695), making the optimal model

overall. Notably, the linear model, LR, was not effective enough

and achieved the lowest recall, precision and F1 score among all

the learning models. The detailed parameters of other algorithms

are presented in Table 2.
3.3 Machine learning-based model
interpretation

To identify the features that influenced the prediction model

the most, the importance of selected feature in the CatBoost

algorithm was calculated (Figure 5A). The importance of each
frontiersin.org
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FIGURE 1

Workflow chart for recruitment in this study. LVEF, left ventricular ejection fraction; IRT, intraoperative red blood cell transfusion.
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feature was listed in Supplementary Table S2. Importantly, SHAP

values were established to provide accurate attribution values for

each feature within the CatBoost model. Finally, we depicted the

SHAP summary plot of CatBoost algorithm (Figure 5B) and the

SHAP dependence plot of all the features within CatBoost model

(Supplementary Figure S1) to visualize the factors that facilitated

intraoperative RBC transfusion.
4 Discussion

Given the strong association between intraoperative RBC

transfusion and postoperative complications, predicting the need

for such transfusions is critical to enabling early interventions

that can address potential complications and improve patient

prognosis following cardiac surgery. However, few studies

have been conducted to predict intraoperative transfusion in

cardiac surgery. To our knowledge, we were the earliest to

establish the artificial intelligence algorithm for predicting

intraoperative transfusion in non-anemic cohorts. As is known,

nonlinear machine learning methods have remarkable superiority

only if there is no way to fit the dataset linearly (21). Thus,

we established five nonlinear machine learning models and

one classical statistical regression model with preoperative

characteristics. As we investigated, the optimal model, CatBoost
Frontiers in Cardiovascular Medicine 04
algorithm, was superior to LR with an AUC of 0.752 (CatBoost)

vs. 0.666 (LR), implying intraoperative RBC transfusion is not

simply linearly related to preoperative risk factors based on our

dataset. Undoubtedly, with the proficiency of artificial

intelligence in handling nonlinear prediction tasks, more and

more machine learning models are being used to predict

transfusions in a series of different diseases, offering new

approaches to improve clinical outcomes (22, 23).

Currently, machine learning technology is so advanced that it

has given birth to many applications of predictive tasks in the

field of medicine, which has the potential to revolutionize

medical strategies and paradigms (24–26). However, there are

still concerns about the overuse and misuse of machine learning

in clinical research (27). The prejudice of machine learning

algorithm mainly originates from the biased datasets, which is

more common in the medical field. When the overall event rate

is very low, machine learning models can easily build predictions

with high accuracy and high AUC due to the high prediction

rate for negative events. Mitterecker et al. (28) developed

machine learning models of transfusion prediction based on large

cohort using preoperative characteristics. When the overall event

rate (transfusion) reached 12.4%, the models acquired not only

very high accuracy, AUC, and negative predictive values, but also

satisfactory recall and precision. On the contrary, accuracy and

AUC of models still preserved a very high level but the recall
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TABLE 1 Patient characteristics and preoperative variables.

Clinical feature Training set (n = 338) Testing set (n = 85)

Non-IRT (n = 261) IRT (n = 77) P-value Non-IRT (n = 60) IRT (n = 25) P-value
Male 168 (64.4) 23 (29.9) <0.001 29 (48.3) 4 (16.0) 0.011

BMI (kg/m2) 0.960 0.809

<18.5 10 (3.8) 3 (3.9) 7 (11.7) 3 (12.0)

18.5–25 137 (52.5) 38 (49.4) 27 (45.0) 9 (36.0)

25–30 93 (35.6) 30 (39.0) 22 (36.7) 10 (40.0)

≥30 21 (8.1) 6 (7.7) 4 (6.6) 3 (12.0)

Age (years) 0.003 0.112

<60 125 (47.9) 24 (31.2) 30 (50.0) 11 (44.0)

60–75 115 (44.1) 38 (49.4) 25 (41.7) 14 (56.0)

≥75 21 (8.0) 15 (19.5) 5 (8.3) 0 (0.0)

Hypertension 81 (31.0) 33 (42.9) 0.054 16 (26.7) 6 (24.0) 0.798

Diabetes 17 (6.5) 9 (11.7) 0.134 2 (3.3) 2 (8.0) 0.716

Smoking 20 (7.7) 3 (3.9) 0.370 8 (13.3) 1 (4.0) 0.375

Drinking 8 (3.1) 1 (1.3) 0.658 8 (13.3) 1 (4.0) 0.375

Stroke 15 (5.7) 5 (6.5) 0.807 5 (8.3) 3 (12.0) 0.905

Preoperative atrial fibrillation 78 (29.9) 32 (41.6) 0.055 16 (26.7) 12 (48.0) 0.057

Type of surgery 0.161 0.103

Isolated mitral valve replacement 127 (48.7) 39 (50.6) 30 (50.0) 16 (64.0)

Isolated aortic valve replacement 63 (24.1) 21 (27.3) 14 (23.3) 5 (20.0)

Isolated tricuspid valve replacement 27 (10.3) 3 (3.9) 3 (5.0) 2 (8.0)

Mitral valve and aortic valve replacement 44 (16.9) 13 (16.9) 13 (21.7) 1 (4.0)

Mitral valve, aortic valve, and tricuspid valve replacement 0 (0.0) 1 (1.3) 0 (0.0) 1 (4.0)

PT (s) 13.71 ± 5.32 12.99 ± 2.90 0.125 13.92 ± 3.73 13.79 ± 4.06 0.888

APTT (s) 29.60 ± 5.72 30.37 ± 7.44 0.405 28.59 ± 4.87 28.21 ± 4.95 0.746

TT (s) 18.43 ± 3.60 18.30 ± 3.55 0.768 18.67 ± 3.38 19.38 ± 3.46 0.389

Fibrinogen (g/L) 2.70 ± 0.79 2.79 ± 1.03 0.491 2.71 ± 0.73 2.90 ± 1.02 0.355

ALT (U/L) `32.22 ± 34.66 29.80 ± 29.11 0.577 30.57 ± 21.52 31.19 ± 26.87 0.911

Total bilirubin (µmol/L) 19.42 ± 12.69 17.03 ± 9.38 0.074 21.71 ± 25.45 17.40 ± 14.45 0.430

Serum creatinine (μmol/L) 80.20 ± 45.06 77.45 ± 22.81 0.606 81.13 ± 32.62 71.40 ± 15.36 0.065

eGFR [ml/(min·1.73 m2)] 0.063 0.159

≥120 38 (14.5) 3 (3.8) 11 (18.3) 1 (4.0)

90–120 95 (36.4) 27 (35.1) 15 (25.0) 9 (36.0)

60–90 102 (39.1) 38 (49.4) 22 (36.7) 12 (48.0)

<60 26 (10.0) 9 (11.7) 12 (20.0) 3 (12.0)

Hemoglobin (g/L) 138.79 ± 13.79 130.22 ± 12.94 <0.001 137.29 ± 14.12 129.77 ± 9.26 0.016

Blood type 0.843 0.977

A 84 (32.2) 27 (35.1) 19 (31.7) 9 (36.0)

B 65 (24.9) 17 (22.0) 13 (21.7) 5 (20.0)

O 91 (34.9) 25 (32.5) 22 (36.7) 9 (36.0)

AB 21 (8.0) 8 (10.4) 6 (10.0) 2 (8.0)

Platelet count (×109/L) 170.92 ± 53.27 165.31 ± 66.58 0.499 181.38 ± 55.31 180.40 ± 57.58 0.941

Hematocrit (%) 41.74 ± 4.95 39.56 ± 4.11 <0.001 40.99 ± 4.42 39.96 ± 3.48 0.305

Vitamin B12 (pg/ml) 564.86 ± 309.34 628.45 ± 406.44 0.143 564.67 ± 386.72 514.68 ± 220.97 0.547

Folic acid (ng/ml) 8.44 ± 4.32 8.38 ± 4.57 0.904 8.81 ± 5.18 8.36 ± 3.91 0.697

Ferritin (ng/ml) 237.41 ± 187.47 184.87 ± 137.35 0.023 219.50 ± 142.08 170.41 ± 138.78 0.148

TAST (%) 31.50 ± 13.70 30.76 ± 13.75 0.679 29.12 ± 13.90 28.26 ± 12.46 0.791

LVEF (%) 57.70 ± 7.96 57.42 ± 9.71 0.812 56.92 ± 9.83 58.08 ± 7.42 0.597

Albumin (g/L) 37.18 ± 7.27 36.24 ± 9.71 0.320 36.90 ± 6.73 37.55 ± 6.00 0.488

HbA1c (%) 6.32 ± 1.29 6.44 ± 1.35 0.461 6.14 ± 0.94 6.39 ± 1.06 0.283

NYHA functional classification 0.693 0.326

≤2 35 (13.4) 9 (11.7) 5 (8.3) 0 (0.0)

>2 226 (86.6) 68 (88.3) 55 (91.7) 25 (100.0)

LVEF, left ventricular ejection fraction; BMI, body mass index; NYHA, New York Heart Association; PT, prothrombin time; APTT, activated partial thromboplastin time,

TT, thrombin time; ALT, alanine transaminase; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; TAST, transferrin saturation; IRT, intraoperative

RBC transfusion.
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FIGURE 2

Importance matrix plot generated by the RF model to aid in feature selection. This plot provided a visual representation of the importance of each
covariate and assisted in developing the final predictive model. LVEF, left ventricular ejection fraction; BMI, body mass index; NYHA, New York
Heart Association; PT, prothrombin time; APTT, activated partial thromboplastin time, TT, thrombin time; ALT, alanine transaminase; eGFR,
estimated glomerular filtration rate; HbA1c, hemoglobin A1c; TAST, transferrin saturation.

Zhou et al. 10.3389/fcvm.2024.1344170
and precision decreased sharply, when the overall event rate

(massive transfusion) was only 0.4%. Interestingly, there are

many measurements of model performance, but most of them do

not show positive correlation, such as recall and precision. In

fact, the performance of the model is closely related to the

purpose of prediction. For the prediction of clinical outcomes, a

higher prediction rate for positive events represents a lower rate

of missed diagnoses, even if there are false predictions of

negative events that can be further ruled out by other diagnostic

methods. Historically, there have also been articles on predicting

transfusion in cardiac surgery that sacrifice some performance
Frontiers in Cardiovascular Medicine 06
metrics, such as recall and precision, to achieve high accuracy

and AUC, which may not contribute much to the successful

prediction of positive events from our point of view (29, 30).

Therefore, in this study, we were not pursuing high accuracy and

AUC of the models, but we try to build a more balanced model

with improved precision and recall. For the biased datasets, we

believe that the F1 score is more convincing for the evaluation of

the model. Thus, based on the combination of AUC, recall,

precision and F1 score, the CatBoost algorithm was selected as

the optimal model even though the other methods were just

slightly worse.
frontiersin.org
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FIGURE 3

Feature selection by the Sequential Backward Selection (SBS) feature selection method. Firstly, the random forest algorithm was used to determine the
importance of each feature. The features were then ranked in descending order based on their importance. Secondly, SBS was employed to remove
the least important feature of the full feature subset until a new feature subspace with the desired number of features was obtained. Lastly, the optimal
number of variables excluded from the model was determined by achieving maximum accuracy (indicated by the red circle). Specifically, 14 variables
were deemed to be optimal for exclusion from the model.

Zhou et al. 10.3389/fcvm.2024.1344170
Of note, machine learning models are only a collection of

predictive tools, as clinicians need to understand how they work.

With SHAP values, the predictive pattern of the optimal machine

learning model was fundamentally understood in our study and

many risk factors, including female, low hemoglobin, low ferritin,

low platelets, low folic acid, hypoalbuminemia, and high HbA1c,

were detected. Actually, several factors have already been found

to be associated with an increased risk of perioperative

transfusion, such as the female gender and preoperative anemia

(31). The anemic cardiac surgery patients have been reported to

be more likely to get perioperative transfusion (31–33). It is of

concern that low hemoglobin also played an important role in

the prediction of positive events in non-anemic cohorts

according to our results. However, there is no clinical evidence

for direct intervention for relatively low hemoglobin levels in

non-anemic patients. Interestingly, in previous work, we

identified some factors that affect intraoperative RBC transfusion

using LR model, such as female, hemoglobin, and the state of

iron deficiency (5). Both linear and nonlinear models confirmed

iron deficiency as a risk factor for intraoperative RBC

transfusion, indicating that correcting preoperative iron

deficiency might contribute to reducing the risk of intraoperative

transfusion. Recently, a range of study found that preoperative

intravenous iron treatment would significantly increase

hemoglobin level (34) and reduce allogeneic transfusion (35) in

non-anemic patients with iron deficiency undergoing cardiac

surgery, supporting our findings about the impact of iron

deficiency on non-anemic patients. In addition, another indicator

that can be corrected preoperatively was hypoalbuminemia,
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which was reported as a risk factor of transfusion in other kinds

of surgeries (36, 37). Of note, diabetes was not included in the

machine learning model, while high HbA1c was adopted as a

risk factor. Indeed, long-term high blood glucose levels can have

detrimental effects on vascular health, potentially leading to

increased vascular fragility in patients. This heightened

vulnerability to intraoperative bleeding underscores the

importance of closely monitoring and actively regulating

perioperative blood glucose levels. By maintaining optimal blood

glucose control during the perioperative period, healthcare

providers can mitigate the risk of excessive bleeding and promote

better patient outcomes.

Although our study provides valuable insights into predicting

intraoperative RBC transfusion, it is important to acknowledge

and consider certain limitations inherent in the research design.

Firstly, the design was a single-center retrospective study with a

small scale. The absence of an external validation set limited the

accuracy of predictions. Consequently, before the models can be

applied to external datasets, their predictive performance would

require training and evaluation again. Secondly, our dataset is

still a biased set. Continued inclusion of more patients and more

characteristics is an effective way to increase the diversity of the

datasets, addressing the bias. Thirdly, the certain data included in

our study consists of continuous variables, which may not

provide precise guidance for subsequent clinical applications. It is

suggested that the establishment of additional criteria to convert

these continuous variables into categorical variables, enabling

their inclusion in the machine learning model for further

analysis and refinement.
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FIGURE 4

Comparison of receiver operating characteristic curves (AUCs) among machine learning models in the testing set. Among them, CatBoost displayed
the most remarkable performance with the highest AUC value for predicting outcomes, demonstrating its potential in the field of predictive modeling.
SVC: support vector classifier.

TABLE 2 Performance of machine learning models.

Model Accuracy AUC Recall Precision F1
score

XGBoost classifier 0.725 0.705 0.718 0.688 0.686

Random forest classifier 0.734 0.722 0.728 0.735 0.652

Decision tree classifier 0.606 0.675 0.675 0.725 0.713

CatBoost classifier 0.732 0.752 0.725 0.703 0.695

Support vector classifier 0.659 0.631 0.665 0.717 0.673

Logistics regression 0.635 0.666 0.625 0.684 0.650

AUC: receiver operating characteristic curve.
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5 Conclusions

In summary, we have successfully identified and selected

16 crucial preoperative predictors for predicting intraoperative

RBC transfusion following admission. Our study employed a

range of cutting-edge machine learning algorithms, with the

CatBoost classifier demonstrating the most robust performance

for risk prediction. Furthermore, by leveraging the SHAP values

from the CatBoost model, our team was able to identify key risk

factors for intraoperative RBC transfusion in non-anemic
frontiersin.org
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FIGURE 5

Feature importance and SHapley Additive exPlanation (SHAP) summary plot of the CatBoost model (A). The variables are ranked in decreasing order of
their impact on the final model output (B). It is displayed that a dot estimation of the CatBoost model’s output for each patient in the dataset. The color
of each dot indicates the SHAP value of specific features; red denotes a higher SHAP value, while blue indicates a lower value. Higher SHAP values are
associated with an increased risk of intraoperative red blood cell transfusion. LVEF, left ventricular ejection fraction; APTT, activated partial
thromboplastin time; TT, thrombin time; ALT, alanine transaminase; TAST, transferrin saturation.

Zhou et al. 10.3389/fcvm.2024.1344170
patients, ultimately providing new insights and recommendations

for improving cardiac surgical care.
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