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Characteristics of pulmonary
artery strain assessed by
cardiovascular magnetic
resonance imaging and
associations with metabolomic
pathways in human ageing
Hongzhou Zhang1,2†, Shuang Leng2,3†, Fei Gao2,3,
Jean-Paul Kovalik3,4, Hai Ning Wee3, Kee Voon Chua3,
Jianhong Ching3,5, John C. Allen3, Xiaodan Zhao2, Ru-San Tan2,3,
Qinghua Wu6*, Tim Leiner7, Angela S. Koh2,3*‡ and Liang Zhong2,3*‡

1Department of Cardiovascular Medicine, First Affiliated Hospital of Gannan Medical University,
Ganzhou, Jiangxi, China, 2National Heart Research Institute Singapore, National Heart Centre
Singapore, Singapore, Singapore, 3Duke-NUS Medical School, Singapore, Singapore, 4Department of
Endocrinology, Singapore General Hospital, Singapore, Singapore, 5KK Research Centre, KK Women’s
and Children’s Hospital, Singapore, Singapore, 6Department of Cardiology, The Second Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi, China, 7Department of Radiology, Mayo Clinic,
Rochester, MN, United States

Background: Pulmonary artery (PA) strain is associated with structural and
functional alterations of the vessel and is an independent predictor of
cardiovascular events. The relationship of PA strain to metabolomics in
participants without cardiovascular disease is unknown.
Methods: In the current study, community-based older adults, without known
cardiovascular disease, underwent simultaneous cine cardiovascular magnetic
resonance (CMR) imaging, clinical examination, and serum sampling. PA global
longitudinal strain (GLS) analysis was performed by tracking the change in
distance from the PA bifurcation to the pulmonary annular centroid, using
standard cine CMR images. Circulating metabolites were measured by cross-
sectional targeted metabolomics analysis.
Results: Among n= 170 adults (mean age 71 ± 6.3 years old; 79 women), mean
values of PA GLS were 16.2 ± 4.4%. PA GLS was significantly associated with age
(β=−0.13, P= 0.017), heart rate (β=−0.08, P= 0.001), dyslipidemia (β=−2.37, P
= 0.005), and cardiovascular risk factors (β=−2.49, P= 0.001). Alanine (β=
−0.007, P= 0.01) and proline (β =−0.0009, P=0.042) were significantly
associated with PA GLS after adjustment for clinical risk factors. Medium and
long-chain acylcarnitines were significantly associated with PA GLS (C12, P=
0.027; C12-OH/C10-DC, P= 0.018; C14:2, P= 0.036; C14:1, P= 0.006; C14, P
= 0.006; C14-OH/C12-DC, P=0.027; C16:3, P= 0.019; C16:2, P= 0.006;
C16:1, P= 0.001; C16:2-OH, P= 0.016; C16:1-OH/C14:1-DC, P= 0.028; C18:1-
OH/C16:1-DC, P= 0.032).
Abbreviations

CMR, cardiovascular magnetic resonance; CVRF2, cardiovascular risk factor ≥2 (hypertension,
dyslipidemia, ever smoked); EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume;
GLS, global longitudinal strain; PA, pulmonary artery; PAH, pulmonary arterial hypertension; PWV,
pulse wave velocity; RV, right ventricle; RVOT, RV outflow tract; SD, standard deviation; SV, stroke volume.
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Conclusion: By conventional CMR, PA GLS was associated with aging and vascular
risk factors among a contemporary cohort of older adults. Metabolic pathways
involved in PA stiffness may include gluconeogenesis, collagen synthesis, and
fatty acid oxidation.
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1 Introduction

Similar to the aorta, the pulmonary artery (PA) is susceptible to

vascular remodeling against a background of age- and risk factor-

related insults over time (1–3). In the PA, age-related vascular

remodeling increases PA pressure due to decreased vascular

compliance (2, 4, 5), leading to diseases such as pulmonary

arterial hypertension (PAH) and heart failure.

While age-associated increases in PA pressure and diameter are

well appreciated, PA stiffness in aging is rarely characterized. PA

stiffness has been largely reported among clinical cardiovascular

disease cohorts, utilizing advanced techniques such as invasive

hemodynamics (6) or surrogate measures via echocardiogram

(7–9). These methods are inherently disadvantageous for

understanding PA stiffness in non-disease cohorts as they are

invasive, variable—due to short transit time in the pulmonary

trunk—or rely on complicated phase-contrast imaging, making

them impractical for community-based studies. Among aging

cohorts that may have unstable renal function, non-contrast-

enhanced conventional cardiovascular magnetic resonance

(CMR) appears advantageous over other techniques.

PA stiffness is a key disturbance associated with poor outcomes

in both left and right heart diseases (10–13). Underscoring the

important mechanical relationship between the PA and right

ventricle (RV), the movement of the pulmonary valve plane

arising from RV contraction causes longitudinal movement of

the PA. Together with the expansibility of the artery, longitudinal

movement contributes to PA deformation over a cardiac cycle.

As the PA is mechanically connected to the RV, assessing PA

stiffness across the longitudinal length of the PA may be useful

for understanding diseases of the right heart (10, 13). This might

be especially important in the absence of elevated pulmonary

pressures, which calls for more sensitive tools to ascertain the

state of PA stiffness before hemodynamic pressures rise.

Evidence-based therapies for the field of pulmonary

hypertension remain less developed compared to therapeutics for

left heart diseases, such as left ventricular heart failure. A key

barrier lies in insufficient mechanistic understanding of the

pathogenesis of pulmonary arterial diseases at the molecular level

in human cohorts. Mapping molecular signals to sensitive

quantitative measures of arterial properties can potentially

facilitate exploratory interrogation of the complex vascular

biology mechanisms that underpin the development of

symptomatic vascular disease. The feasibility of this approach is

supported by mechanistic studies that have shown changes

in circulating metabolic intermediates in subjects with

asymptomatic arterial stiffness (14, 15) as well as in subjects with

PAH (16, 17). Whether disruptions in metabolic pathways, as
02
indicated by metabolic intermediates, are observed in the

pulmonary vasculature remains under-investigated.

With these considerations in mind, we proposed a method for

assessing PA global longitudinal strain (GLS) based on CMR

feature tracking methods and demonstrated significant

correlations between PA GLS and surrogates of PA stiffness,

including PA relative area change and pulse wave velocity

(PWV) (18). Analogous to GLS of the ascending aorta as a

measure of aortic stiffness (19), we further hypothesize that PA

GLS obtained by this method may be associated with clinical

factors such as age and vascular risk factors that alter PA

stiffness. Guided by our prior work that detected associations

between vascular stiffness and targeted metabolites in the

acylcarnitines and related pathways, we studied serum

metabolomics in conjunction with PA GLS to discover key

metabolic pathways involved in PA stiffness.
2 Materials and methods

2.1 Study population

One hundred and seventy subjects were recruited from the

Cardiac Aging Study, a prospective study initiated in 2014 that

examines characteristics and determinants of cardiovascular

function in older adults (20) without known cardiovascular

disease. All participants had no self-reported history of

physician-diagnosed cardiovascular diseases (such as coronary

heart disease, atrial fibrillation), stroke, or cancer. The study

adhered to the principles outlined in the Declaration of Helsinki,

and the SingHealth Centralised Institutional Review Board

approved the study protocol. Participants provided written

informed consent upon enrollment.

All participants were examined and interviewed during a single

study visit. They completed a standardized questionnaire that

included medical history and coronary risk factors. Hypertension

was defined by the current use of antihypertensive drugs or

physician-diagnosed hypertension. Diabetes mellitus was defined

by the current use of anti-diabetic agents or physician-diagnosed

diabetes mellitus. Dyslipidemia was defined by the current use of

lipid-lowering agents or physician-diagnosed dyslipidemia.

Smoking history was categorized as ever smokers (former or

current smoking) or never smokers. Sinus rhythm status was

ascertained through a resting electrocardiogram. Clinical data

were obtained on the same day as the assessment of CMR

imaging and serum collection.

A validated non-exercise prediction model was employed to

estimate peak oxygen uptake, VO2 (ml/kg/min) (21). The
frontiersin.org
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physical activity questionnaire included the frequency of exercise,

length of time, and intensity for each workout. This model is

closely linked to specific measures of cardiovascular structure and

function (22).
2.2 CMR acquisition

Cine CMR scans were performed using a balanced fast field

echo sequence. All subjects were imaged on a 3 T magnetic

resonance imaging system (Ingenia, Philips Healthcare, The

Netherlands). The CMR acquisition protocol and typical

parameters were published previously (23). Standard end-

expiratory breath-hold cine images were obtained using a steady-

state free precession pulse sequence, retrospective

electrocardiographic gating, and a typical temporal resolution of

30 frames per cardiac cycle. These images were acquired in the

PA bifurcation, RV outflow tract (RVOT), coronal RVOT, and

RV 3-chamber views (Figure 1A). Additionally, end-expiratory

breath-hold cine images were acquired in multi-planar long-axis

views, including 2-, 3-, and 4-chamber views.
2.3 PA global longitudinal strain

PA GLS was assessed by one operator (H.Z.Z.) using an in-

house semi-automatic algorithm (18) while remaining blinded to

the clinical characteristics of participants and other CMR

measurements. The motion of the PA bifurcation and the

pulmonary valve annulus was automatically tracked over the

cardiac cycle in PA bifurcation, RVOT, coronal RVOT, and RV
FIGURE 1

Measurement method of pulmonary artery (PA) global longitudinal strain
ventricular (RV) 3-chamber (b, green diamonds), coronal RV outflow tract
diagram of feature tracking. The trajectory of the centroid (red star) derive
the red dotted line] between two red stars was automatically tracked throu
LS at a time point (t) relative to the initial time point (t= 0) at end-diastole
maximal absolute strain value.
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3-chamber views (Figure 1A). The trajectory of the centroid

derived from six pulmonary annular points was obtained. The

distance (L) from PA bifurcation to the centroid was calculated

throughout the cardiac cycle. Longitudinal strain at a time point

(t) relative to the initial time point (time 0) at end-diastole was

calculated as 100 × (Lt–L0)/L0 (Figure 1B), and the PA GLS was

defined as the maximal absolute strain value (Figure 1C). Details

on the measurement of PA GLS can be found in the

Supplementary Material.

Reproducibility was assessed in 20 randomly selected subjects.

Inter-observer variability was evaluated by two independent

operators (H.Z.Z. & S.L.), while intra-observer variability was

assessed twice, with an interval of one month, by the first

operator (H.Z.Z.). Correlation and Bland-Altman analyses were

conducted to investigate intra- and inter-observer agreement.
2.4 RV function and global longitudinal
strain

RV function was assessed by cardiologists blinded to other

CMR measurements. The endocardium of the RV was

automatically tracked on short-axis cine images at end-systole

and end-diastole to obtain RV end-diastolic volume (EDV)

and end-systolic volume (ESV), and to calculate stroke volume

(SV) and ejection fraction (EF). Using cine 4-chamber CMR

images, the RV endocardium was tracked by one reader

(X.D.Z.), who was blinded to all participant characteristics.

RV GLS was automatically obtained using dedicated,

validated QStrain software (Version 2.0, Medis BV, Leiden,

The Netherlands).
(GLS). (A) Landmark tracking on the PA bifurcation (a, red star), right
(RVOT) (c, blue squares), and RVOT (d, red dots) views. (B) Schematic
d from six pulmonary annular points was calculated. The distance [L(t),
ghout the cardiac cycle in 3D space. (C) Longitudinal strain (LS) curve.
was calculated as 100 × (Lt– L0)/L0, and the PA GLS was defined as the
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2.5 Metabolomic profiling

2.5.1 Blood collection and serum processing
Antecubital venous blood samples (20–30 ml) were collected in

the morning from consenting participants; fasting was not

required. After collection, the blood samples were immediately

placed on ice for transportation and processed within 6 h to

obtain serum samples. The serum metabolomic profiling analysis

was conducted at the Duke-NUS Metabolomics Facility.
TABLE 1 Demographics and clinical characteristics of the study
population.

Parameters Overall (n = 170)
Age (year) 71 ± 6.3

Female, n (%) 79 (46.5)

Weight (kg) 60 ± 9.6

Height (cm) 159 ± 7.6

Body surface area (m2) 1.6 ± 0.2

Body mass index (kg/m2) 24 ± 3.2

SBP (mmHg) 147 ± 15.7
2.5.2 Targeted metabolomics profiling
Serum samples (50 μl) were spiked with a 10 μl deuterium

labelled amino acid mixture and diluted with 400 μl methanol.

After centrifugation of the mixture at 17,000 g for 5 min at 4°C,

the supernatant fraction (10 μl) was collected for amino acid

analysis. A pooled quality control sample was prepared by

mixing equal amounts (10 μl) of each extracted serum sample.

Extraction and measurement of amino acid panels (quantified in

units of μM) were performed as previously described (24).

Analysis was done on the MultiQuantTM 3.0.3 software (AB

Sciex, DC, USA). For acylcarnitines, serum samples (100 μl) were

similarly prepared as the amino acid analysis, but were instead

spiked with 20 μl deuterium-labelled acyl-carnitine mixture and

diluted with 800 µl methanol. Extraction and measurement of

acyl-carnitine were performed as previously described (25). Data

acquisition and analysis were conducted on an Agilent

MassHunter Workstation B.06.00 Software.

During initial data analysis, standard analytical chemistry

procedures were employed to assess data quality, including

accuracy and precision. Accuracy was determined through low

and high concentration quality control runs against the standard

calibration curve. A sample of the pooled biologic quality

control sample was measured repeatedly during the sample

run to detect drift in the signal and assess precision.

Additionally, the coefficient of variation was evaluated for each

analyte in the pooled biologic quality control runs. Analytes with

a coefficient of variation greater than 20% were excluded from

further interpretation.

DBP (mmHg) 75 ± 10.9

Heart rate (beats/min) 74 ± 12.7

Hypertension, n (%) 88 (51.8)

Dyslipidemia, n (%) 34 (20)

Diabetes mellitus, n (%) 82 (48.2)

Smoking, n (%) 31 (18.2)

CVRF2, n (%) 43 (25.3)

VO2 (ml/kg/min) 34 ± 5.9

PA GLS (%) 16.2 ± 4.4

RV function

RV EDV index (ml/m2) 68 ± 14.4

RV ESV index (ml/m2) 27 ± 8.9

RV SV index (ml/m2) 42 ± 7.7

RV EF (%) 62 ± 6.9

RV GLS (%) −31 ± 5.5

Values are presented as mean ± SD or n (%).

SBP, systolic blood pressure; DBP, diastolic blood pressure; CVRF2, cardiovascular

risk factor ≥2 (hypertension, dyslipidemia, ever smoked); VO2, oxygen uptake; PA,

pulmonary artery; GLS, global longitudinal strain; RV, right ventricular; EDV, end-

diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, ejection fraction.
2.6 Statistical analysis

Clinical characteristics are presented as mean and standard

deviation (SD) for continuous data and frequency and percentage

for categorical data. Cardiovascular risk factor 2 (CVRF2) was

defined as the presence of any two or more cardiovascular risk

factors (hypertension, dyslipidemia, ever smoked).

The association between PA GLS and clinical risk factors was

assessed using linear regression. All clinical risk factors that

showed an association with PA GLS at P < 0.05 in univariate

analysis were entered into a multiple linear regression analysis

that related PA GLS to significant clinical risk factors,

adjusting for metabolite effects.

The identification of metabolites associated with PA GLS

occurred in two steps. First, simple linear regression with PA
Frontiers in Cardiovascular Medicine 04
GLS was conducted to identify significant metabolites (P < 0.05).

Second, multiple linear regression was performed on each

metabolite associated with PA GLS (P < 0.05 in univariate

analysis), adjusting for the effects of identified significant clinical

risk factors.

Subjects were assigned to groups with higher or lower than

average PA GLS—i.e., “high PA GLS” and “low PA GLS”,

respectively—based on sex-specific mean values (16.3% for

females and 16.1% for males). A heatmap, visualizing the

normalized intensities of metabolites, was generated using Mass

Profiler Professional software (Agilent, USA).

All statistical analyses were conducted using STATA 15

(College Station, Texas, USA). For all analyses, a two-tailed

P-value of <0.05 was considered significant.
3 Results

We analyzed 170 participants (mean ± SD age 71 ± 6.3 years;

79 women) to obtain PA GLS (mean ± SD 16.2 ± 4.4%). The

most common associated comorbidities of participants were

hypertension (51.8%), diabetes mellitus (48.2%), dyslipidemia

(20%), and smoking (18.2%). Additionally, 25.3% of participants

had two or more risk factors (hypertension, dyslipidemia, ever

smoked) (Table 1). All participants were in New York Heart

Association Class I and were in sinus rhythm. Mean VO2 levels

were 34 ± 5.9 ml/kg/min for the whole cohort, 37.7 ml/kg/min for

men, and 29.9 ml/kg/min for women.
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PA GLS analysis was successfully performed in all subjects. The

intra- and inter-observer correlation coefficients were r = 0.94 and

r = 0.91, respectively, while the intra- and inter-observer

coefficients of variation were 4.4% and 5.0%, respectively

(Supplementary Figure S1).

Univariate linear regression was performed on PA GLS with

clinical parameters as dependent variables (Table 2). Age, heart
TABLE 2 Summary of univariate linear regression coefficients for PA GLS
regressed on demographic and clinical variables.

β (95% CI) P-value
Age −0.13 (−0.23, −0.02) 0.017

Female 0.22 (−1.12,1.56) 0.75

Weight 0.04 (−0.03, 0.11) 0.28

Height 0.03 (−0.06, 0.12) 0.52

Body surface area 2.46 (−1.90, 6.82) 0.27

Body mass index 0.10 (−0.11, 0.31) 0.34

SBP −0.03 (−0.07, 0.01) 0.17

DBP −0.03 (−0.09, 0.03) 0.33

Heart rate −0.08 (−0.14, −0.03) 0.001

Hypertension 0.02 (−1.31, 1.36) 0.98

Dyslipidemia −2.37 (−4.0, −0.75) 0.005

Diabetes mellitus −0.22 (−1.56, 1.11) 0.75

Smoking −2.04 (−3.74, −0.34) 0.019

CVRF2 −2.49 (−3.98, −1.003) 0.001

VO2 0.07 (−0.04, 0.19) 0.20

RV EDV index 0.10 (0.06, 0.15) 0.001

RV ESV index 0.12 (0.06, 0.19) 0.002

RV SV index 0.20 (0.12, 0.28) <0.001

RV EF −0.05 (−0.14, 0.05) 0.35

RV GLS 0.07 (−0.06, 0.19) 0.30

SBP, systolic blood pressure; DBP, diastolic blood pressure; CI, confidence interval;

CVRF2, cardiovascular risk factor ≥2 (hypertension, dyslipidemia, ever smoked);

VO2, oxygen uptake; PA, pulmonary artery; GLS, global longitudinal strain; RV,

right ventricular; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke

volume; EF, ejection fraction.

P values less than 0.05 are highlighted in bold.

TABLE 3 Summary of regression coefficients for PA GLS regressed on amino

Amino acids Unadjusted (Univariate linear regressio

β (95% CI) P-valu
Alanine −0.009 (−0.014, −0.004) 0.001

Arginine 0.02 (−0.008, 0.04) 0.19

Aspartate 0.04 (−0.07, 0.15) 0.47

Citrulline 0.04 (−0.008, 0.09) 0.10

Glutamate −0.02 (−0.05, 0.007) 0.14

Glycine 0.0003 (−0.013, 0.014) 0.96

Histidine −0.03 (−0.06, 0.004) 0.09

Leucine 0.002 (−0.02, 0.02) 0.88

Ileleucine −0.006 (−0.02, 0.006) 0.34

Methionine 0.06 (−0.01, 0.1) 0.11

Ornithine −0.02 (−0.04, 0.007) 0.17

Phenylalanine 0.02 (−0.03, 0.06) 0.47

Proline −0.01 (−0.02, −0.003) 0.008

Serine −0.0008 (−0.03, 0.03) 0.96

Tryptophan 0.03 (−0.02, 0.07) 0.28

Tyrosine 0.02 (−0.02, 0.05) 0.28

Valine 0.008 (−0.003, 0.019) 0.13

CI, confidence interval; PA, pulmonary artery; GLS, global longitudinal strain.

P values less than 0.05 are highlighted in bold.
aMultiple regression analysis on variables significant in univariate linear regression with a
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rate, dyslipidemia, smoking, and CVRF2 were negatively

associated with PA GLS. Additionally, RV EDV index (β = 0.10,

P = 0.001) and RV ESV index (β = 0.12, P = 0.002) showed

positive associations with PA GLS. However, there was no

significant correlation between RVEF or RV GLS and PA GLS.

PA GLS correlated with aerobic capacity among women (r = 0.31,

P = 0.0049), but not among men (r = 0.038, P = 0.723).

We analyzed 86 metabolites, including 69 acylcarnitines and 17

amino acid metabolites. The list of measured metabolites is

presented in Supplementary Table S1.

Linear regression analysis revealed associations between amino

acids and PA GLS (Table 3). In univariate analysis, PA GLS was

associated with alanine (β =−0.009, P = 0.001) and proline

(β =−0.01, P = 0.008). Other amino acids showed no association

with PA GLS. In multiple regression analysis between individual

amino acids and PA GLS, adjusting for prior clinical covariates,

both alanine and proline remained significantly associated with

PA GLS.

We then conducted linear regression analysis between PA GLS

and acylcarnitines (Table 4). Negative correlations were observed

between C2, C4-OH, C12:1, C12, C12-OH/C10-DC, C14:3,

C14:2, C14:1, C14, C14-OH/C12-DC, C16:3, C16:2, C16:1,

C16:3-OH/C14:3-DC, C16:2-OH, C16:1-OH/C14:1-DC, C18:1-

OH/C16:1-DC, C18-OH/C16-DC, C20:1-OH/C18:1-DC, C20-

OH/C18-DC, and PA GLS. Multiple linear regression, adjusting

for clinical covariates, was performed on PA GLS with significant

acylcarnitines as predictor variables (Table 4). Medium and long-

chain acylcarnitines remained significantly associated with PA

GLS (C12, P = 0.027; C12-OH/C10-DC, P = 0.018; C14:2,

P = 0.036; C14:1, P = 0.006; C14, P = 0.006; C14-OH/C12-DC,

P = 0.027; C16:3, P = 0.019; C16:2, P = 0.006; C16:1, P = 0.001;

C16:2-OH, P = 0.016; C16:1-OH/C14:1-DC, P = 0.028; C18:1-OH/

C16:1-DC, P = 0.032).
acids.

n) Adjusted (Multiple linear regression)a

e β (95% CI) P-value
−0.007 (−0.012, −0.002) 0.010

−0.009 (−0.02, −0.0003) 0.042

djustment for age, heart rate, and CVRF2 (hypertension, dyslipidemia, ever smoked).
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TABLE 4 Summary of regression coefficients for PA GLS regressed on acylcarnitines.

Acylcarnitines Unadjusted (Univariate linear regression) Adjusted (Multiple linear regression)a

β (95% CI) P-value β (95% CI) P-value
C2 −0.0003(−0.0006, −8*10−6) 0.044 −0.0003 (−0.0006, 7*10−6) 0.057

C4-OH −0.07 (−0.13, −0.009) 0.025 −0.03 (−0.10, 0.03) 0.28

C12:1 −0.02 (−0.04, −0.001) 0.038 −0.02 (−0.04, 0.0001) 0.051

C12 −0.03 (−0.05, −0.007) 0.010 −0.02 (−0.04, −0.003) 0.027

C12-OH/C10-DC −0.8 (−1.3, −0.3) 0.002 −0.6 (−1.05, −0.1) 0.018

C14:3 −0.3 (−0.5, −0.05) 0.017 −0.2 (−0.4, 0.03) 0.087

C14:2 −0.06 (−0.1, −0.01) 0.010 −0.05 (−0.09, −0.003) 0.036

C14:1 −0.04 (−0.06, −0.01) 0.002 −0.03 (−0.05, −0.009) 0.006

C14 −0.1 (−0.2, −0.05) 0.002 −0.1 (−0.2, −0.03) 0.006

C14-OH/C12-DC −0.3 (−0.5, −0.1) 0.002 −0.2 (−0.4, −0.02) 0.027

C16:3 −0.4 (−0.7, −0.1) 0.004 −0.3 (−0.6, −0.05) 0.019

C16:2 −0.4 (−0.6, −0.2) 0.001 −0.3 (−0.5, −0.09) 0.006

C16:1 −0.1 (−0.2, −0.05) 0.001 −0.1 (−0.2, −0.05) 0.001

C16:3-OH/C14:3-DC −0.8 (−1.5, −0.09) 0.026 −0.5 (−1.2, 0.1) 0.10

C16:2-OH −0.5 (−0.9, −0.1) 0.007 −0.4 (−0.8, −0.08) 0.016

C16:1-OH/C14:1-DC −0.5 (−0.8, −0.1) 0.005 −0.4 (−0.7, −0.04) 0.028

C18:1-OH/C16:1-DC −0.4 (−0.7, −0.1) 0.004 −0.3 (−0.6, −0.03) 0.032

C18-OH/C16-DC −0.2 (−0.4, −0.008) 0.041 −0.1 (−0.3, 0.08) 0.24

C20:1-OH/C18:1-DC −0.2 (−0.4, −0.06) 0.008 −0.1 (−0.3, 0.03) 0.10

C20-OH/C18-DC −0.2(−0.3, −0.02) 0.031 −0.1 (−0.2, 0.05) 0.18

PA, pulmonary artery; GLS, global longitudinal strain.

P values less than 0.05 in multiple linear regression are highlighted in bold.
aMultiple regression analysis on variables significant in univariate linear regression with adjustment for age, heart rate, and CVRF2 (hypertension, dyslipidemia, ever smoked).
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A heatmap was generated to examine metabolite patterns in

subjects with high vs. low PA GLS (Figure 2). Subjects with low

PA GLS (indicative of high PA stiffness) exhibited higher levels

of long-chain acylcarnitines, as evident from the increased

prevalence of red for this class of metabolites on the heat map.

We quantified levels of key metabolites that differed between

participants with high vs. low PA strain (Figure 3). Participants

with low PA GLS had higher levels of C12, C12-OH/C10-DC,

C14, C14:1, C14:2, C14-OH/C12-DC, C16:2, C16:3, C16:1-OH/

C14:1-DC, and C18:1-OH/C16:1-DC compared to participants

with high PA GLS (P < 0.05 for all).
4 Discussion

PA GLS was evaluated as a novel method for assessing PA

stiffness using conventional cine CMR images. Decreased PA

GLS was characterized by specific clinical factors and metabolites

among older adults. PA GLS was independently associated with

aging, elevated heart rate, dyslipidemia, smoking, long-chain

acylcarnitines, and amino acid metabolites.
4.1 PA GLS and clinical risk factors

This study lays the groundwork for future clinical applications

of PA GLS in assessing PA stiffness. The correlation between PA

GLS and clinical cardiovascular risk factors aligns with previous

studies on PA stiffness (11, 26).

Age has been positively associated with PA PWV (11) and

PA pressures (2, 5) in healthy subjects. Similarly, our
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study demonstrated that, like PWV and pressure, PA GLS

decreased with age in a community cohort of older adults,

indicating that aging is associated with longitudinal length

changes in the PA.

Elevated heart rate is another risk factor associated with

adverse cardiovascular events (27). In a porcine model, PA

pressure was found to increase with heart rate, which was

attributed to increase in flow and/or downstream flow resistance

(28). A study of patients with pulmonary hypertension showed

positive linear relationship between mean PA pressure and heart

rate (29). Similar effects of heart rate on atrial distensibility were

observed in earlier studies (30–32). PA distensibility was lower

among patients with left heart disease and pulmonary

hypertension vs. no pulmonary hypertension, and negatively

correlated with heart rate (33). PA stiffness, assessed by the pulse

pressure to stroke volume index ratio, has been shown to

increase with heart rate (r2 = 0.15), resulting in an increased risk

of incident idiopathic PAH (26). Our study demonstrated an

inverse association between PA GLS and heart rate (r =−0.24),
which is consistent with the literature.

Smoking and dyslipidemia are crucial atherogenic risk

factors. Smokers with chronic obstructive pulmonary disease

often exhibit extensive atherosclerosis, leading to arterial

stiffness (34, 35). Studies have shown that cigarette smoke

induces increased wall stiffness in the PA of rats (36).

Additionally, arterial stiffness has been directly associated with

a 7-year increase in high-density lipoprotein, low-density

lipoprotein, and triglycerides (37). Our study found that

smoking and dyslipidemia were negatively associated with PA

GLS, despite a small number of participants being at risk for

dyslipidemia due to smoking.
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FIGURE 2

Heatmap illustrating metabolomics results in plot illustrating mean levels of key acylcarnitine.
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4.2 PA GLS and metabolites

We integrated advanced CMR imaging with serum

metabolomic signals to evaluate clinical features of PA
Frontiers in Cardiovascular Medicine 07
stiffness and metabolite patterns among this aging

cohort. GLS assessed stiffness representing the PA trunk,

while serum metabolomics distinguished older adults with

high vs. low PA stiffness. In our study, we observed an
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FIGURE 3

Box plot illustrating mean levels of key acylcarnitine metabolites that
differentiate between high PA strain and low PA strain (P < 0.05 for
all). PA, pulmonary artery.
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association between PA GLS and circulating amino acids

and acylcarnitines.

Both alanine and proline were negatively associated with PA

GLS in both univariate analysis and multivariable analysis

adjusted for clinical CVRF2. Alanine, a non-essential amino acid,

is strongly linked to glucose metabolism. It plays a prominent

role in the glucose-alanine shuttle between muscle and liver. A

small percentage of individuals older than 85 years and the

overall population have reported echocardiographic signs

suggestive of pulmonary hypertension, indicating elevated PA

stiffness (38, 39). Studies have shown that alanine is positively

correlated with the pulmonary arterial medial thickness index—a

histologic marker of PAH (16), with higher levels in blood

samples from the PA of systemic sclerosis patients with PAH

(17). Increased alanine levels in these studies were attributed to

reduced tissue alanine aminotransferase levels (17). Proline

contributes to pulmonary arterial remodeling in PAH rats (40).

Rafikova et al. found high circulating levels of alanine and

proline in early-stage PAH patients (41).

Long-chain acylcarnitines increase with age in healthy

individuals (42). Our previous study showed that medium- and

long-chain acylcarnitines were independently associated with

arterial stiffness (20), similar to left atrial strain patterns obtained

via CMR (23). This aligns with other studies in patients with

pulmonary vascular disorders that observed higher levels of

circulating long-chain acylcarnitines in patients with PAH,

including idiopathic PAH, chronic thromboembolic pulmonary

hypertension, and pulmonary hypertension associated with left

heart disease (43, 44). By demonstrating an association between

long-chain acylcarnitines and PA strain in otherwise healthy

adults, our observations suggest that such a metabolic

underpinning may be present upstream in the absence of disease.

These findings may support broader validation in other non-

disease cohorts, providing strategies for screening or charting

pulmonary vascular diseases.
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Overall, our integrated data provide a fresh approach to

phenotyping human cohorts with omics (45), allowing more

in-depth characterization of pulmonary arterial function. In

addition to omics data, other strengths of our study include

the prospective nature of participant recruitment, reducing

biases related to recall while facilitating the simultaneous

acquisition of clinical, CMR, and metabolomics data. Our study

was prespecified to characterize older adults without clinical

cardiovascular disease; therefore, circulating biomarkers

represent the aging process rather than disease processes.
4.3 Limitations

This study has limitations. Firstly, we did not acquire velocity-

encoded flow measurements at the pulmonary trunk in this study,

and are thus neither able to determine pulmonary vascular

resistance noninvasively nor perform computational

hemodynamic modeling for estimation of PA pressure.

Secondly, compared to the current targeted approach, an

untargeted metabolomics approach employing more metabolites

may broaden the metabolic maps associated with PA GLS.

While our targeted approach allowed precise quantification of

identified metabolites, untargeted approaches could uncover

pathways represented by these metabolites. Thirdly, all

measurements and clinical variables originated from a single

cross-sectional evaluation. Future studies may find it interesting

to associate metabolomic findings at baseline with prospective

changes in PA GLS and outcome data. Fourthly, while we did

not explicitly exclude participants with preexisting respiratory

disease, the calculated VO2 measurements of participants

enrolled into our current study were generally within normal

ranges, which suggests that the impact of clinically significant

respiratory disease is likely to be low in this community cohort.

Fifthly, the effect of physical activity on cardiorespiratory

status impacting PA GLS measurements is uncertain in the

studied subjects, although aerobic capacity was generally

satisfactory among the subjects. Lastly, non-fasting serum

samples (used in our study) may introduce analytic differences

compared to other cohorts that use fasting samples. However,

our practice aligns with other cohort studies that found

fasting did not contribute to variability in most metabolite

measurements (46).
5 Conclusions

Using conventional CMR, PA GLS was associated with

aging and vascular risk factors among a contemporary cohort of

older adults. Metabolic pathways involved in PA stiffness may

include glucogenesis, collagen synthesis, and fatty acid oxidation.

Among asymptomatic older adults, PA GLS may serve as a novel

risk stratification tool to identify early metabolic perturbations

associated with pulmonary dysfunction.
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