
TYPE Review
PUBLISHED 19 February 2024| DOI 10.3389/fcvm.2024.1349548
EDITED BY

Daniel Greif,

Yale University, United States

REVIEWED BY

Lingfeng Luo,

Stanford University, United States

Yanming Li,

Baylor College of Medicine, United States

*CORRESPONDENCE

Sanjay Sinha

ss661@cam.ac.uk

RECEIVED 04 December 2023

ACCEPTED 31 January 2024

PUBLISHED 19 February 2024

CITATION

Singh AA, Shetty DK, Jacob AG, Bayraktar S

and Sinha S (2024) Understanding genomic

medicine for thoracic aortic disease through

the lens of induced pluripotent stem cells.

Front. Cardiovasc. Med. 11:1349548.

doi: 10.3389/fcvm.2024.1349548

COPYRIGHT

© 2024 Singh, Shetty, Jacob, Bayraktar and
Sinha. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Cardiovascular Medicine
Understanding genomic
medicine for thoracic aortic
disease through the lens of
induced pluripotent stem cells
Aminder A. Singh, Deeti K. Shetty, Aishwarya G. Jacob,
Semih Bayraktar and Sanjay Sinha*

Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United
Kingdom
Thoracic aortic disease (TAD) is often silent until a life-threatening complication
occurs. However, genetic information can inform both identification and
treatment at an early stage. Indeed, a diagnosis is important for personalised
surveillance and intervention plans, as well as cascade screening of family
members. Currently, only 20% of heritable TAD patients have a causative
mutation identified and, consequently, further advances in genetic coverage
are required to define the remaining molecular landscape. The rapid
expansion of next generation sequencing technologies is providing a huge
resource of genetic data, but a critical issue remains in functionally validating
these findings. Induced pluripotent stem cells (iPSCs) are patient-derived,
reprogrammed cell lines which allow mechanistic insights, complex modelling
of genetic disease and a platform to study aortic genetic variants. This review
will address the need for iPSCs as a frontline diagnostic tool to evaluate
variants identified by genomic discovery studies and explore their evolving role
in biological insight through to drug discovery.
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1 Introduction

Aortic wall structure reflects its unique function to provide vascular capacitance for

every cardiac cycle and predisposes to thoracic aortic disease (TAD) which includes

classical pathologies of aneurysm and dissection. These diseases are the end points of

molecular failures within the wall, and occur when wall stress exceeds strength resulting

in life threatening complications (1). Acute aortic dissection confers high mortality with

an estimated incidence of 6 events per 100,000 population (2). Despite the devastating

clinical presentation, clinical outcomes for this cohort have seen little improvement over

the last 15 years (3). Diagnosis without cross sectional imaging is challenging and is

compounded by the lack of a TAD specific biomarker (4). Importantly, there are no

pharmaceutical treatments which prevent aneurysm formation or progression effectively,

with current focus on reducing biomechanical loading of the aorta through

antihypertensives. Patients require regular surveillance imaging and often surgical

intervention. Presently, aortic diameter is the main indication for surgical intervention

however an acute event can occur with a normal sized aorta. As such, there is need for

additional molecular information that can be used in multimodal risk scoring to predict

disease severity and determine the need, and timeframe, for intervention.
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Rapid development of next generation sequencing

technologies has led to genetic testing being increasingly used

for Mendelian disease (5) but it remains difficult to functionally

validate the huge wealth of data generated. Challenges in

assigning causality to genetic variants and studying TAD

include high inter- and intra-genic variability in risk and/or

type of first aortic event (6), incomplete penetrance, private

mutations, and lack of aortic tissue available for mechanistic

study. The overarching rationale for genetic testing is critical

because individuals can be identified as at-risk for TAD and

associated mortality and morbidity are preventable, including

for potentially at-risk family. Despite extensive genomic

coverage in patients recruited through large databases, such as

The 100,000 Genomes Project, many individuals are

undiagnosed and uncertainty around assigning causality to

variants remains (7), limiting clinical utility.

Induced pluripotent stem cells (iPSCs) are patient-derived,

reprogrammed cell lines which allow mechanistic insights and

the ability to create complex models of genetic disease. This

review will begin by defining the genetic basis of TAD, key

signalling pathways implicated in pathogenesis and discuss

unifying theories to aid targeting of therapeutics. Particular

focus is given to the latest advances in the use of iPSCs and

genetic engineering which can be applied to studying aortic

disease variants identified by next generation sequencing

(Figure 1). These recent strategies allow for increased

mechanistic exploration with a view to expanding personalised

management in TAD.
FIGURE 1

Graphical summary demonstrating the utility of induced pluripotent stem
unknown significance (VUS). iPSCs can be generated from a TAD patient o
be differentiated in to vascular smooth muscle cell (VSMC) or endothelial
(3D) culture system including vascular organoids (VO), vessel on a chip
evaluation, be used for drug or CRISPR screening, and then followed b
approach allows for personalised management of the TAD patient and al
Figure created with BioRender.com. Publication licence granted by BioRend
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2 Vascular abnormalities in thoracic
aortic disease

The aortic wall consists of three layers—tunica intima, tunica

media and tunica adventitia. The intimal layer, on the luminal

surface, is composed of endothelial cells and the basement

membrane, separated from the tunica media with an elastic

lamina. The tunica media is composed predominantly of

concentrically arranged vascular smooth muscle cells (VSMCs),

elastin and collagen. The adventitial layer is comprised of

fibroblasts, pericytes, immune cells, nerves and lymphatics (8).

Key to normal function is the high level of compliance within

the aortic wall (9). Increased stiffness results in wall weakness

and elevated cardiac afterload resulting in higher cardiovascular

events (10) as well as increasing risk for type A aortic dissection

when combined with high wall stress (11).
2.1 Vascular smooth muscle cell
contractility required for vessel wall
homeostasis

VSMCs are the most abundant cell type within the aortic wall

with a substantial body of evidence, particularly from human

genetic data, implicating them in pathogenesis of TAD (12–14).

Similar abnormalities in their function and surrounding

extracellular matrix (ECM) are observed in both syndromic and
cells (iPSC) in understanding thoracic aortic disease (TAD) variants of
r an established iPSC line genetically edited to carry a VUS. These can
cell (EC) in the form of a 2-dimensional (2D) culture or 3-dimensional
(VoC) and vascular ring. These models can proceed to multiomic

y assessment of drug response in high throughput manner. Such an
low determination for need of cascade screening of family members.
er. Agreement number UH266AGKA0.
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non-syndromic TAD, making them a strong candidate for

mechanistic research and therapeutic strategy building.

Specifically, loss of VSMC contractility is a common feature

observed in many hereditary TADs (15, 16). Mutations in VSMC

contractile genes are predicted to decrease the cells ability to

generate the force needed to regulate the mechanical state of the

wall (1). Altered force generation is one of the causes of TADs

(17) with mutations in VSMC contractile protein coding genes

ACTA2, MYH11 and MYLK responsible (18–20). Gain of

function mutations in PRKG1 result in reduction of VSMC

relaxation and predisposes to TAD, further implicating VSMC

specific genes in pathogenesis (21). As such, contractility loss

serves as a good readout in phenotypic assays (22).
2.2 Maladaptive extracellular matrix
remodelling at the core of aortic tissue
failure

Most major vessel groups have a characteristic ECM

composition based on function and the aorta is typically is

composed of elastin, glycoproteins, collagen and proteoglycans

(23). The combination of elastic fibres and fibrillar collagens

provides mechanical integrity as well as compliance. Indeed,

pathogenic variants in ECM related genes such as LOX, encoding

for an enzyme which crosslinks collagen and elastin, are causal in

heritable TAD (24). There is constant remodelling of ECM in

normal physiology through interplay between degrading proteins

and their tissue inhibitors, in which VSMCs have a central role

through a mechanotransductive feedback loop in response to

mechanical load. VSMCs attach to the ECM through focal

adhesions and integrins forming the elastin-contractile unit which

is involved in force generation and mechanotransduction (25). A

more plastic matrix would encourage the VSMCs to secrete

fibrillar ECM components, such as collagens and fibrilins, to

enable fibre formation. Mechano-adaptive remodelling is a well-

orchestrated process entailing transcriptional, translational, and

secretory pathway modulation required for normal functioning of

the vessel wall (26–30). However, derangement of these processes

results in maladaptive remodelling and an abnormal ECM

predisposes to TAD. Ultimately, these changes impact cellular

processes such as proliferation, cell migration, and contractility.

Given this, understanding the VSMC-mediated ECM remodelling

and turnover is critical in uncovering of TAD pathogenesis.

VSMC contractile machinery, ECM and TGF-β pathways

together are thought to regulate mechanosensing (mechanical

stress and strain sensing) by VSMCs and control overall aortic

wall health (31). The central hypothesis is that if the sensing of

these mechanical cues is abnormal then inappropriate

remodelling predisposes to wall failure. Recent mouse studies

have highlighted the need for having a mechanoprotective role of

YAP and TAZ for homeostatic functioning of aorta whereby their

depletion leads to aortic aneurysm (32). Having fewer

functioning elastin-contractile units precludes appropriate

mechanosensation and application of VSMC contractility,

rendering the aortic wall susceptible to damage at high pressures
Frontiers in Cardiovascular Medicine 03
(1, 33). Aside from contractile unit loss, failure of the structure

leads to abnormal focal adhesion complexes and inappropriate

sensing of the ECM by the VSMC (34–36).

While diseased human and mouse aortic tissue provides an

endpoint view of compromised mechanical integrity, there is limited

scope to study matrix dynamics in detail. Use of decellularized

ECM for label-free quantification of ECM proteins and

glycoproteins using MaxQuant mass spectrometry has been used to

study iPSC derived VSMCs in arterial diseases (37). Individual

proteins such as elastin and collagen deposition have been evaluated

using human VSMCs (38, 39). Secretome forms a huge part of

VSMC matrix modulatory phenotypic responses and number of

studies have explored this using ELISA-based MMP assays and

zymography for MMPs and tissue inhibitors of metalloproteinases

(40, 41). The potential of quantifying nascent ECM secretion

through BONCAT mass spectroscopy has been shown with other

disease models but could be also applied to TAD (42). When it

comes to studying the mechanics of VSMCs, measuring both the

stiffness of cells and its secreted ECM is key, particularly in 3D

models. By using tools such as Atomic force microscopy, uniaxial

stress and strain measurements, temporal insights to how elasticity

of substrates can influence VSMC cell migration and proliferation

can be gained (43, 44). Evidence of ECM stiffness and strain

influencing the phenotypic switching of VSMCs was obtained by

culturing primary VSMCs in vitro (33, 45). As such, TAD patient

iPSC VSMCs can also be evaluated for the tendency or potential for

phenotypic switching and calcification (46–48).
2.3 Controversial role of TGF-β signalling in
aortopathies

In VSMC homeostasis regulation, transforming growth factor-

β (TGF-β) signalling has a key role in cellular processes of

proliferation, differentiation, and ECM remodelling (6). However,

there remains considerable debate around whether TGF-β

signalling is implicated in TAD or if it confers a protective effect.

TGF-β is a VSMC differentiating factor and increases expression

of smooth muscle actin, smooth muscle myosin, calponin and

myocardin. Contributions of both canonical and non-canonical

signalling are integral to embryonic VSMC lineage specification

during development and VSMC cell fate (49).

Impaired TGF-β signalling can lead to a loss of VSMC

contractility markers and gain of proliferative markers indicating a

synthetic phenotype switch. As a result, degradation of ECM and

abnormal aortic wall remodelling is seen (50). In Marfan

Syndrome (MFS), increased activation of TGF-β is related in part

to abnormal Fibrillin-1, which normally sequesters latent TGF-β

within the ECM (51). In MFS mouse models, increased TGF-β

signalling has been demonstrated (52) with a TGF-β neutralising

antibody or an angiotensin II type 1 receptor blocker reversing the

disease phenotype (53). However, the exact role of TGF-β is not

fully understood with several studies demonstrating a protective

role (54–56). Use of TGF-β neutralising antibody conversely

resulted in a severe manifestation of aortic disease (57) although

the timing of this appears important with a protective benefit
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demonstrated at a later stage (54). Loeys-Dietz Syndrome (LDS) is

defined by mutations in the TGF-β receptor or SMAD2/3 where

patients exhibit aortopathy and cardiovascular events are the

leading cause of death. In LDS, despite predominantly loss of

function mutations in the TGF-β pathway, a paradoxical increase

in phosphorylated Smad2/Smad3 complex has been shown in the

aortic wall (58, 59) suggesting that even with an abnormal TGF-β

receptor, overactivity of TGF-β is implicated in disease. Subsequent

studies have identified lineage-specific TGF-β events in distinct

VSMC subsets as an explanation for this paradox (60, 61).

Nevertheless, it appears the exact role of TGF-β in TAD

pathogenesis remains controversial, compounded by its temporal

role in multiple cellular processes and crosstalk with other

implicated signalling pathways. As such, this is an area where

future scientific endeavours should continue to focus.
2.4 Intersection of “unifying theories” lead
to convergence of key druggable
candidates from shared pathways

Given the pathological and morphological similarities between

many distinct genetic and polygenic types of TAD, is there a

unifying theory for a “final common pathway” leading to

aneurysm or dissection? This argues that regardless of the

underlying signalling pathway that is perturbed, the changes that

result are common across TAD. This includes phenotypic

switching of a subset of VSMCs to form fibroblast-like,

macrophage-like or adipocyte-like cells, marked by progressive loss

in contractility, increased apoptosis, abnormal ECM remodelling

alongside inflammation and endothelial cell related oxidative stress

(62). These changes are aligned with dysfunctional VSMC

mechanosensing which further exacerbates loss of ECM

homeostasis through abnormal remodelling (63). Such a theory is

attractive as it suggests that regardless of the initiator, therapeutic

development could focus on the shared pathways.
2.5 Other cell types important in vessel wall
functioning and integrity

Although VSMCs appear the dominant cell type in disease,

there is evidence of the role of other cell types in the aortic wall.

Endothelial cells sense shear stress and crosstalk with VSMCs

(64) and endothelial dysfunction has been demonstrated to

contribute to aortic wall pathology (13, 65, 66). Endothelial cell

function is impacted by dysfunctional ECM through altered

distribution of junctional proteins, like occludin and claudins,

which has consequence on blood vessel integrity (67). The

adventitial layer has a role in remodelling the aortic wall in

response to mechanical stress (68). In such conditions, fibroblasts

undergo phenotype switching to myofibroblasts which deposit

collagen and invoke an inflammatory response (69). Abnormal

activation of this pathway contributes to abnormal ECM

remodelling and can lead to reduced integrity. Endothelial cells,

and particularly adventitial cells, are relatively understudied in
Frontiers in Cardiovascular Medicine 04
comparison to VSMCs in TAD pathogenesis and an approach

which encompasses all these cell types is preferable.
2.6 Regional aortic heterogeneity

The thoracic aorta can be classified based on embryological

origin with the aortic root derived from lateral plate mesoderm,

the ascending and aortic arch from neural crest and the

descending and abdominal aorta from paraxial mesoderm (70).

Abdominal aortic aneurysms (AAA) are associated with

hypertension, smoking, and atherosclerosis and are rarely seen as

part of a multisystem connective tissue disorder. Aneurysm in the

abdominal segment is more common than in the thoracic but the

underlying aetiology of these are divergent despite sharing some

common abnormalities in VSMC apoptosis, ECM degradation and

immune infiltration. Evolving evidence from single cell RNA

sequencing demonstrates both molecular similarities and

differences between abdominal and thoracic aortic aneurysm (71).

Despite this, genetic abnormalities play a significantly less

important role in aneurysmal degeneration of the abdominal vs.

the thoracic segment, in particular there is no clear inheritance

pattern in AAA. Recent endeavours have focussed on collating

AAA implicated genes, such as in the AAAKB, to aid genetic

study (72). No published iPSC models focus on AAA but VSMCs

of paraxial mesoderm lineage (73) could be generated with view to

establishing it. As such, this review will retain focus on TAD.

Regional heterogeneity within the thoracic aorta is thought to be

due to differential lineage specific response due to diverse

embryological origin on the constituent cells. A recent study of

single cell sequencing of lineage traced secondary heart field (SHF)

derived VSMCs from the aortic root of Marfan mice (C1039G)

revealed a distinct transcriptomic profile from the neural crest

derived aortic SMCs and the activation of specific pathways such

as integrin α5 signalling (74). That combined with the

preponderance of MFS aneurysms in the aortic root, imply that

secondary heart field derived VSMCs are a critical cell type to be

examined. Gong et al. (61) demonstrated abnormal SMC

contractility and ECM deposition in lateral mesoderm derived

VSMCs suggesting a lineage specific response to a SMAD3 variant.

This differential response can be evaluated using specific iPSC

differentiation protocols producing VSMCs from lateral

mesoderm, neural crest, and paraxial mesoderm (73, 75, 76). Such

an approach can provide mechanistic insight into disease

distribution in the aorta given that LDS has higher propensity of

aortic root aneurysm, where there is predominantly lateral

mesoderm derived VSMCs (60), and can aid clinicians in

assigning region-based size thresholds for intervention.
3 Disease modelling of TAD

The difficulty in obtaining early-stage tissues from patients

with TAD and the challenges of clinical trials mean that we need

to use suitable model systems to understand pathogenicity and

identify and test novel therapies. The complexity of the aortic
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environment, with multiple cell types featuring complex inter- and

intra-cellular signalling, extensive vessel wall and vascular niche

remodelling along with varying haemodynamic loads in a three-

dimensional space makes this a challenging endeavour.

Nevertheless, we would do well to remember the observation by

George Box that “All models are wrong but some are useful”

(77). Consequently, we will briefly review common in vivo

models of TAD before describing iPSC based in vitro systems in

some depth and discuss their advantages and disadvantages.
3.1 In vivo models offer a window into
studying spatial interactions but are
restrictive in mimicking human disease
complexity

While in vivo modelling using genetically engineered rodents

offers an important solution for the spatial and systemic

complexity of vascular diseases, they remain somewhat limited in

their scope. The pathways affected in these models are not

necessarily conserved with human disease. In monogenic

aneurysmal disorders such as MFS and LDS, some mutant

mouse models have captured aneurysm formation and

dissections and have been useful in delineating the impact of

these mutations in disease progression. However, these models

are low throughput and capture only a small proportion of the

mutational landscape seen in humans. For example, MFS has

been reported to be associated with >1,500 mutations in FBN1

featuring missense mutations and splicing errors that lead to

truncations (78). The two most widely used mouse models of

MFS are the C1039G (79) and the MgR (80) which contain a

missense and hypomorphic mutation in the FBN1 gene

respectively. Further, these inbred models do not capture the

heterogeneity arising from the genetic background of the affected

human population and are not fully effective at predicting drug

responses, a classic example being that of losartan that proved

remarkably effective in vivo in the C1039G/+ model MFS (53)

but did not perform as well in clinical trials (81).

Therefore, to accurately model human genetic diseases it

appears that a humanised model may have some advantages

based around the conserved genetic background. In vitro models

also have a wider scope than in vivo models for high throughput

studies and allow detailed molecular characterisation, phenotype

assessment, mechanistic exploration, and drug testing. In vitro

models using primary vascular cells—smooth muscle or pericyte

and endothelial—can be highly technically challenging. For example,

VSMCs are phenotypically plastic and tend to lose their contractile

properties and alter their molecular profiles once dissociated

from tissue and cultured. Moreover, primary cultures display

considerable variability making reproducibility a major challenge.
3.2 iPSCs based modelling addresses
genetic diversity of the mutation landscape

The advent of iPSCs has been a game changer for disease

modelling using direct patient-derived culture systems. They
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provide an ethical source of cells and disease models compared to

in vivo systems, and even embryonic stem cell-based platforms.

Typically, skin fibroblasts or peripheral blood mononuclear cells

are collected from the patient and re-programmed directly to

produce pluripotent stem cells that retain the genetics of the

somatic cells they were derived from (82–86). iPSCs can then be

efficiently differentiated into a variety of cell types, and in the

context of disease these iPSC-derived cells can be used as effective

patient-specific models (Table 1). This makes them an incredibly

versatile and high-throughput platform for modelling disease states

and capturing the heterogeneity between patients. Attempts to use

iPSCs to model vascular cell types began in the late 2000s (93, 94)

resulting in a mix of several cells including VSMCs and

endothelial cells (ECs), in a form of co-culture. Since then, a large

number of protocols have been described using highly defined

media with small molecules or cytokine cocktails to drive

differentiation [several of which are well summarised in these

reviews (95–97)] that claim to have successfully produced VSMCs

or ECs of high purities, organ-specific, developmentally pertinent

lineages (73, 76) and fine-tuned phenotypic states including the

contractile one (37, 98, 99).
3.3 Single cell transcriptomic studies have
hailed the in-depth study and comparison
of in vitro iPSC-derived cell types and in vivo
counterparts

The rapid expansion of single cell transcriptomics has facilitated

nuanced descriptions of individual vascular cells in different tissues

and their developmental trajectories which, in turn, will pave the way

for further advancements toward highly precise and effective

differentiation protocols to achieve the exact cell state needed to

model a specific condition. The ability of these protocols to

produce vascular bed or niche-specific cells is important because

some vascular diseases often show region-specific susceptibility to

aneurysm formation e.g., aortic root aneurysms in LDS. Our own

studies on MFS have provided huge insights into how patient

iPSC-derived VSMCs are capable of clearly reflecting disease

severity in vitro while uncovering the differential response to drugs

between patients (22, 40) and hence are an invaluable platform for

the development of personalised, tailored therapeutics.

Despite these advances in iPSC-based modelling of patient-

specific disease, there are several problems associated with these

systems. Personal insights on technical aspects and limitations of

iPSC models of aortic disease have been extensively discussed

previously (22). Heterogeneity can be a major issue when trying to

decipher pathways commonly perturbed in patients. While this can

be a strength in modelling varying genetic backgrounds, particularly

for disease susceptibility and drug responses, it can pose several

technical challenges that might undermine the findings from such

models. Another problem is modelling the correct cell type i.e., the

appropriate source—vascular bed, lineage and/or regional

specification on the vessel with respect to hydrodynamic forces.

Directed differentiation protocols now allow for specification of

several of these features in VSMCs and ECs. The incorporation of
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TABLE 1 iPSC models of thoracic aortic disease that have been phenotypically characterized and reported.

Disease Mutation within iPSC Phenotypic characterisation Rescue of phenotypic defect
Marfan Syndrome (87) FBN1 exon 30 (c.3725G > A)

FBN1 exon 21 (c.2638G > A)
Comparison of mutant and isogenic VSMCs
FBN1 deposition, MMP expression,
Cell contractility and death. Cell stretching
aggravates the phenotype.

Yes. Inhibition of p38-MAPK or KLF4
knockdown

Marfan Syndrome (40) FBN1 exon 30 (c.3725G > A)
FBN1 exon 14 (c.1837 + 5G > C)
FBN1 exon 10 (c.1051C > T)

Comparison of mutant and isogenic VSMCs
MMP expression by DQ gelatin and activity
through Zymography,
Cell death and cell proliferation

Yes. GSK3b inhibition reduces proteolysis by
MMP secretion and apoptosis

Loeys-Dietz Syndrome
(88)

TGFBR1 c.688G > A VSMC lineage-specific effects. CPC derived
VSMCs have disrupted canonical TGF-β signalling
and decreased gene expression of VSMC markers
and contractility markers. Abnormal ECM
formation.

Yes. Combination treatment with activin A and
rapamycin that could rescue the SMC defects
caused by the TGFBR1 variant

Loeys-Dietz Syndrome
(61)

SMAD3 c.652delA SMAD3 mutant VSMC 3D-vascular ring model
had increased stiffness

Inhibition of mir-29 partially rescued ELN
expression in SMAD3 variant

Loeys-Dietz Syndrome
(89)

TGFB3 p.Asp263His Reduced contractility of neural crest VSMC upon
thromboxane A2 stimulation. Variability between
clones observed

No

Bicuspid aortic valve-
(BAV-) related thoracic
aortic aneurysm (90)

Notch1 mutation not found but no other
mutation was specified

Lineage specific effect of neural crest-derived
VSMC showing reduction in VSMC marker and
contractility marker expression. TGF-β signalling
was decreased. Paraxial mesoderm derived VSMCs
were not affected in these aspects

Yes. Inhibition of mTOR pathway using
rapamycin rescued defects

Williams-Beuren
syndrome (WBS) and
Supra Valvular Aortic
Stenosis (91)

Hemizygous microdeletion of a 1.5–1.8 Mb
region on 7q11.23 involving 26–28 genes,
including ELN

Immature VSMC phenotype having reduced levels
of elastin and differentiated SMC markers
Functional immaturity due to lack of response to
Carbachol stimulation for calcium transient
generation

Yes. EBPL2 is a synthetic peptide that contains
a sequence, which is homologous to the human
elastin domain. EBPL2 binds to elastin-binding
protein (EBP) to stimulate activity and induces
elastin receptor complex-dependent signaling

Supra Valvular Aortic
Stenosis (92)

4-bp nucleotide (GTAT) insertion in exon 9
of ELN that was predicted to result in a
frameshift and a premature termination
codon in exon 10; 2 clones were characterized

VSMCs have defective actin filament bundle
formation
Hyperproliferation and migration of VSMCs is
observed
Increased ERK1/2 activity is implicated in
hyperproliferation of SVAS iPSC-SMCs

Yes. Elastin and Small GTPase RhoA rescue
phenotype defects

Singh et al. 10.3389/fcvm.2024.1349548
specific chemical cues, mechanical strain and flow-induced shear

stress have helped to further fine-tune cell phenotypic state e.g.,

contractile or synthetic or phenotypically switched. Work to increase

the maturity of iPSC derived cells is ongoing with modification of

differentiation protocols based on sequencing data. However, these

disadvantages are far outweighed by the benefits of iPSC-based

disease modelling and therapeutic targeting.
4 Genetic modulation for mechanistic
insight

Utilising tools to manipulate cellular behaviour has advanced

mechanistic understanding of disease. Particularly, DNA-level

modulation offers stable and inheritable alterations, a vital tool in

foundational research and therapeutic development, and has been

useful in investigating cardiovascular disease. Progress in genome

editing has augmented our toolkit, providing the ability to enact

DNA modifications through numerous strategies across diverse

frameworks, enabling either site-specific or random edits, and

classifications based on modification nature (e.g., knock-ins, knock-

outs) or timeliness (e.g., temporal, constitutive). Site specific edits

allow manipulation of genetic information at endogenous genes

despite presenting considerable challenges, such as hard-to-identify

off-target effects. Moreover, technologies such as the Tet ON/Tet
Frontiers in Cardiovascular Medicine 06
OFF systems allow temporal control over genetic modifications and

their subsequent cellular impacts, thus widening the scope and

potential applications of genome editing technologies (100, 101).
4.1 CRISPR systems for gene editing

The conventional CRISPR approach hinges on the Cas protein

inducing a double-stranded break (DSB) in the DNA, where the

guide RNA finds complementarity in the genome. Subsequent

repair of this intentional DSB is executed via the cell’s intrinsic

replication machinery, chiefly through two primary pathways:

Non-Homologous End Joining (NHEJ) and Homology-Directed

Repair (HDR) (102, 103). The evolution of CRISPR-Cas

technology also brought the emergence of diverse Cas proteins,

base editors, and prime editors which contribute to enhanced

specificity and versatility of genome editing techniques.

Engineered variants of Cas proteins have been pivotal in

reducing off-target editing (104, 105) and enabling access to a

broader genomic region, thereby expanding the scope of

potentially editable regions (106). Moreover, the development of

base editors, which use catalytically repressed or inactive Cas9

fused to a DNA deaminase enzyme, provide a means to edit

single base pairs without generating a double-stranded break
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(DSB) (107). Using base editing, a recent study investigated the

causal variants implicated in blood pressure through VSMCs (108).

A more recent approach, prime editing, utilizes a Cas9 nickase

fused to a reverse transcriptase, alongside pegRNA which is

produced through the fusion of the repair template with the guide

RNA (109). pegRNA therefore serves as a template for the reverse

transcriptase to synthesize the edited strand, which then integrates

directly into the genomic DNA, while guiding the Cas9 to the target

site, collectively minimizing indel formation and off-target effects.

While these newer technologies hold their own limitations, such as

the inability to generate transversion mutations and potential

inadvertent RNA edits with base editing, as well as the restriction on

sizable insertions with prime editing, continuous improvements in

methodologies have expanded the efficiency and toolkit of prime

editing, propelling forward the evolution of CRISPR technology.

Modulating cellular behaviour extends beyond manipulations

at the DNA level, encompassing various regulatory layers,

including the epigenome and RNA. The CRISPR domain has

been adeptly utilized for such purposes, especially through

innovative strategies involving engineered proteins. For example,

by coupling CRISPR with a catalytically deactivated Cas protein

and subsequently fusing it with specific domain allows

modulating epigenetic behaviour (110), adding a nuanced level of

genetic control without altering the underlying DNA sequence.

Additionally, different Cas proteins can be employed to

orchestrate edits at the RNA level, providing a mechanism to

regulate gene expression post-transcriptionally (111).
4.2 Genetic modifications in iPSCs for
disease modelling

iPSCs themselves are amenable to genetic modulations including

via CRISPR-Cas9, making them a powerful tool to characterise the

mechanisms underlying disease aetiology. For instance, “CRISPR-

correction” of patient iPSCs at mutated loci into wildtype sequences,

allows for the generation of isogenic iPSC lines that preserve the

genetic background of the patient while establishing causality of the

mutation in question (87). What this also means is that patient-

specific differences in disease susceptibility due to genetic

background, for example the effect of accompanying SNPs, can be

modelled in the absence of the confounding “main” mutation.

Several studies have used iPSCs and derived vascular cells—VSMCs,

pericytes and ECs—to model a variety of vascular diseases including,

pulmonary arterial hypertension (112–119), Hutchison-Gilford

progeria (120–124), atherosclerosis (47, 125, 126), neurodegenerative

cerebro-vascular conditions like Moyamoya disease (127–131),

CADASIL (132–135), diabetes and its associated conditions (136–138).

Coupling CRISPR gene editing technology with iPSCs has

allowed for significant enhancement of aortic disease models

such as syndromic aortopathies (22, 40, 87, 88) and aortopathy

genetic variants (61, 139). Correction of a FBN1 mutation

demonstrated rescue of in vitro MFS disease phenotype (87).

iPSCs can determine causality of a disease variant of interest

(61, 140) and provide information for precision medicine and

need for cascade screening. Further, researchers have generated
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reporter lines of ACTA2 and MYH11, which are used in

improving stem cell derived VSMC differentiations (99).

Despite challenges, each advancement in the CRISPR

technology has gradually improved the specificity and

applicability of these vital tools, enabling unprecedented insights

into genetic mechanisms. This has facilitated innovative

developments across diverse biological domains, with potential

applications in many more non-syndromic aortic diseases.
5 Genetic abnormalities in thoracic
aortic disease

In heritable TAD, irrespective of penetrance, 25% of patients have

at least one first degree member affected (141, 142). Patients with a

family history of TAD demonstrate more rapid aneurysmal growth

than sporadic TAD or MFS aneurysm (31). Interestingly, there is

significant variation in aortic event risk, even within functionally

related genes, such as those regulating VSMC contraction (6). Such

genetic information has been used to predict those at risk of severe,

early onset TADand thosewith late onset low penetrant TAD (6, 143).

Initially highly penetrant monogenic variants were identified

with a candidate gene approach and linkage analysis. More

recently, next generation sequencing has accelerated novel variant

identification but poses some challenges. Firstly, it can be unclear

whether the variant is causal, particularly if it is within a gene

not previously associated with the condition. Judging causality of

a genetic variant based on its presence within a known disease

related gene is an inherently biased approach and could hinder

discovery of new pathways. Identifying variants of unknown

significance (VUS) poses a challenge to clinicians (144) and can

make genetic counselling challenging and raise uncertainty in

need for cascade screening. Additionally, penetrance classification

and determining pathogenesis are critical in design of

pharmacological therapy or determining prophylactic treatment.

Despite this, the correlation between genotype and phenotype in

most TAD cases remains poor and additional techniques to

predict clinical course in patients are urgently required.
5.1 Novel variants with lower penetrance
identified by next generation sequencing
can be assessed for causality using iPSC-
based disease modelling

iPSCs were first used to model genetic variants which result in

substantial modification of a protein product, but this technology

can be used in more advanced models where complex traits are

investigated. Many genetic variants identified are within intronic

or intergenic regions and can regulate gene function (145).

Variable expressivity of monogenic disorders may be due to

modulation by additional genetic variants and incomplete

penetrance. A genome-wide association study (GWAS) of TAD in

the Million Veteran Program revealed 21 risk loci with suggestion

that TAD is a distinct vascular disease with complex traits.

Importantly, this work argues that TAD is not inherited
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exclusively through protein altering variants of large effect size but

are due to a combination of multiple at-risk genetic variants (146).

Similarly, GWAS of the UK Biobank revealed 14 overlapping loci

in ascending and descending thoracic aortic aneurysm (147),

adding to findings from earlier GWAS (148–150). Given these

interesting findings, the need for functional validation and

exploration of biology underpinning disease is clear. Diseases

which encompass a combination of numerous low effect risk loci,

often identified by GWAS, pose a challenge in an iPSC model.

Each individual variant may be too subtle to demonstrate a

phenotype in vitro, which is in part due to gene-gene interactions

not present outside of the patient’s genetic context (151).

However, patient derived iPSCs, which carry all potential risk

variants, can be used to demonstrate which regions are more

relevant in phenotypic manifestation. Multiple patient derived

iPSCs can used in a pooled culture creating a “cell village” where

the impact of variation can be studied at a population scale,

providing in depth information of the effect of expression

quantitative trait loci (eQLT) (152). The impact of eQLT on

phenotypic manifestation of a genetic variant can be addressed

using patient specific iPSCs and then CRISPR correcting these

regions to create isogenic controls (153). As such, risk loci can be

evaluated to assess their functional impact on common genetic

variants which in turn can feed into individualised risk scoring.
5.2 Use of iPSCs for determining the
pathogenicity of novel genetic variants

Heritable TAD is non syndromic and typically associated with a

single mutation in a gene related to ECM, TGF-β signalling or VSMC

contraction (154). Over time an increasing number of variants are

being reported and genes classified as pathogenic (155). Substantial

evidence exists for ACTA2, MYH11, MYLK, LOX and PRKG1 but

other genes are implicated with varying levels of certainty (155). Most

of the VUS are not causal but may be low penetrant risk variants

contributing to TAD (143). Even in large, national whole genome

sequencing studies the diagnosis rate in heritable TAD remains low

(7). There is consequently great potential for using iPSC models from

heritable TAD patients or by generating CRISPR knock ins in the

hope of determining causality and providing clinicians with more

biological information to inform future management plans.

Mutations in FBN1 are associated with MFS which is the

commonest single gene aortopathy. Currently there are over

3,000 FBN1 pathogenic variants identified with most unique to a

family (156). Genetic studies have demonstrated that

cardiovascular risk is determined by the genetic variant

possessed. Those with haploinsufficiency FBN1 variants have

increased risk of major cardiovascular events than dominant

negative mutations (157). Within the dominant negative group,

variants which effect or create Cysteine residues and in frame

deletions in exons 25–36 and 43–49 have over a 6-fold increase

aortic event risk (156). Despite this, delineating the genotype-

phenotype relationship, particularly in MFS, remains a major

challenge. Genetic background is important as presence of

another TAD associated variant can predispose to a more severe
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aortic disease phenotype (158). Genetic background can also

partly explain the difference in phenotype severity within a

family who carry the same FBN1 mutation (22) but there are

other factors at play which remain uncovered. An iPSC model

could be used to provide an in vitro prediction of severity once

appropriate parameters of assays have been defined. Such an

approach would be particularly useful in a young patient with a

novel FBN1 variant where the impact of intensive lifelong

surveillance is significant. Similarly, each LDS subtype carries

different severity and therefore the relationship between genotype

and phenotype is important. iPSC models of LDS have

demonstrated abnormal contraction and enhanced proliferation

of VSMCs (88) and can be utilised to explore genotype-

phenotype correlation. As new variants are discovered in LDS

related genes, there is an emerging need for gene-based

classification and personalised risk scoring for each patient (159).
6 Complex three-dimensional disease
models

The vasculature is a complex organ that involves crosstalk

between the cells of the various layers and their extra-cellular

micro-environment. In 2D systems, even in co-cultures of

multiple cell types, the organisation of a vessel wall or

physiological cell-cell contact cannot be recapitulated. In 2D

systems, cells are cultured on hard plastic surfaces whose stiffness

far surpasses that of a physiological matrix which can promote a

more synthetic VSMC phenotype. Further, iPSC derived VSMCs

are not as mature as those derived from tissue which is partly

due to a lack of pulsatile flow and mechanical force in a

monolayer culture. Hence, it is necessary to model the three-

dimensional, multicellular vessel wall anatomy using cells

embedded in an appropriate extra-cellular scaffold to capture the

full phenotypic manifestation of a healthy or a diseased vessel.

When comparing uniaxial stretch in 2D culture to a 3D

construct, there is significantly higher increase in VSMC specific

markers ACTA2 and calponin (160) suggesting that a 3D

environment allows for more robust cell-cell and cell-matrix

interactions. For this purpose, several 3D models (161) have been

in development over the last several years that incorporate

multiple cell types in a bio-degradable matrix. Some key formats

include vascular organoids (VOs) (138), vessel on a chip

microfluidic device (VoC) and bioink-based extrusion or

bioprinting. Use of these 3D models is on the rise in conjunction

with iPSC-derived vascular cells to understand how disease

affects vasculature including formation or structure or integrity.
6.1 Vascular organoids mimic tissue niches
with functional cell-cell and cell-ECM
interactions

VOs can be made as simple, self-assembling structures with cells

cultured in a hanging drop or in low adherence culture substrata.

These are often spherical and in co-cultures of VSMCs and ECs,
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there is a level of self-organisation between the cell types. Co-

culturing VSMCs and endothelial cells has been shown to improve

SMC differentiation (162). However, these models tend to have

high variability. To obtain a more controlled structure, scaffolds

using extra-cellular matrix like collagen, Matrigel or other

biomaterials are used and depending on the design, these can

result in self-assembly of intricate branched vessel networks with a

perfusable lumen lined by ECs and VSMCs or mural cells. VOs

can be transplanted and engraft with host tissue to form vascular

trees (163). A recent study used human iPSC-derived VOs to study

basement membrane thickening seen in the skin microvasculature

of diabetic patients which demonstrated vasculopathy. With

exposure to high-glucose media, the VOs showed increased

collagen IV production and captured the basement membrane

phenotype (137). However, similar treatments of 2D iPSC-derived

ECs did not show a similar result suggesting the usefulness of 3D

models in capturing disease specific phenotypes.
6.2 Vessel on a chip enables shear stress,
flow and associated mechanotransduction
responses

VoCs on the other hand are specifically designed microfluidic

devices that can then be lined with ECs, VSMCs and other cells to

induce network and vessel formation (164). This model has been

well characterised recently with robust vascular network

formation comparing primary and iPSC-derived vascular cells,

namely ECs, VSMCs and mural cells. The group also

established the functionality of these vascular networks—

agonist mediated stimulation of VSMCs—and crosstalk between

VSMCs and ECs mimicking the environment in a vessel wall

(165, 166) validating the usefulness of this system to model

vascular diseases where such architecture and cell-cell

interactions might be disrupted. Adding flow into a 3D culture

system allows endothelial cells to detect shear stress and with

this cue they can modulate SMC differentiation through

signalling pathways such as nitric oxide (167).

Bio-printing uses cells mixed into collagen or other matrix

materials as a bio-ink to be extruded into moulds where vessel

formation would be observed (168–170). Numerous assays can be

performed including transcriptomic and proteomic analysis,

alongside classical ELISA, immunostaining, and Western blotting

(164). Multiple chips can be connected in parallel to create

complex models more reminiscent of human physiology (171).

iPSC derived VSMCs from a patient with Hutchinson-Gilford

Progeria syndrome in a chip system showed elevated DNA

damage and inflammation, exacerbated by mechanical strain (124).

An “aorta on a chip” approach in congenital aortic valve disease

demonstrated impaired mitochondrial function due to suppression

of NOTCH1, reducing VSMC contractility which was partially

rescued with drug treatment (172). Liu et al. (173) developed a

VoC model with VSMCs of all three aortic lineages in series and

determined the differential response to Ciprofloxacin and

identified the PI3K-Akt signalling pathway as key in response to

stretch (173). It should be noted that these “aorta on a chip”
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models do not reflect the structure, scale and stress in the aortic

wall and so their predictive power over simpler systems is

debatable. Nevertheless, VoCs will continue to evolve, and are

increasingly useful for their strength of potential downstream

processing of cells for further investigation of mechanistic details

especially with a systemic-like drug dosage procedure.
6.3 Larger vessel-like structures for
assessment of structural integrity and tissue
failure

Another interesting approach is to use 3D self-assembling

tissue engineered vascular rings to provide a readout of aortic

wall integrity. Dash et al. (174) fabricated vascular rings using

iPSC derived VSMCs and were able to model supravalvular

aortic stenosis with uniaxial mechanical testing. This approach is

advantageous as it is relatively quick to fabricate the rings once

VSMCs have been differentiated. Vascular rings can assess the

effect of both mutant VSMCs and ECs in combination, or in

isolation, and determine the impact on a clinically relevant

readout of burst pressure. However, mechanical loading and

integrity in the ring are dependent on the homogenous

compaction of cells and deposition of collagen which can

frequently be non-uniform leading to point weakness of the ring

due to a technical issue (Sinha lab, unpublished). An engineered

vascular tissue approach using murine VSMCs to study ECM

remodelling allowed for tensile strength testing and assessment of

responsive to contraction agonists (175). Here, both protein and

proteoglycan accumulation changes over time with vascular

calcification changes were demonstrated. While this model is still

under development to be used for tensile strength testing of

human iPSC VSMCs and its derivative ECM, it does provide a

good basis for establishing the same. Use of TAD patient-derived

iPSCs VSMCs or fibroblasts can help massively to study transient

as well as long-term changes in ECM using 2D and 3D models.

Recently, a tissue engineered blood vessel model of Hutchinson-

Gilford Progeria Syndrome containing patient iPSC-derived

VSMCs and ECs, was shown to serve as a useful drug testing

platform where key disease-specific phenotypes such as vascular

calcification, VSMC loss and extracellular matrix deposition were

clearly captured (120–122).
7 Translational potential of iPSCs

Crucially, no drug treatment can halt aneurysmal

degeneration of the aorta hence there is urgent need for new

therapeutics. Promising animal data for Losartan, an

angiotensin receptor blocker, in MFS were not replicated in

human trials (176, 177). The AIMS trial with Irbesartan was

successful but only showed a very small benefit (0.22 mm/year)

in slowing of aortic wall aneurysmal dilatation (178). This was

certainly less than seen in the dramatic mouse studies and

may reflect differences between mouse and human disease as

well as heterogeneity of human populations.
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7.1 Use of functional genomics to model
disease associated with predicted risk loci
and severity in iPSC-based screens

Over the years, a multitude of screening methods have emerged

as methodologies in functional genomics to offer profound insights

into gene functionality and regulatory networks, through both

loss-of-function and gain-of-function screens. These range from

CRISPR based methods to RNA by employing siRNAs or shRNAs

to post-transcriptionally mitigate gene expression. CRISPR

activation (CRISPRa) and CRISPR interference (CRISPRi) screens,

characterized by systematic overexpression and repression of target

genes respectively, offer a platform for identifying genes

fundamental to varied cellular activities, such as proliferation and

drug resistance (179, 180). Moreover, coupling CRISPR screening

with single-cell RNA sequencing delves into the cellular

transcriptional outcomes consequent to genomic perturbations,

providing an insight into cellular heterogeneity and the varying

strategies cells deploy to manage therapeutic interventions (181).

These methods have been instrumental in delineating genetic

networks, understanding the heterogeneity in cellular responses to

genetic perturbations, and unmasking the differential

susceptibilities among individual cells within a population.

Functional genomics also allows for modelling stroke and other

cerebral small vessel diseases where predicted risk loci are validated

using iPSC-derived vascular smooth muscle cells and testing for

classes of drugs such as HDAC inhibitors and MMP inhibitors

(182–184). Recent studies have highlighted the ability to employ

iPSCs-derived cells, genomics, and machine learning-based

analysis for predicting risk of occurrences of conditions like

arrhythmia and heart failure susceptibility in cardiomyocytes (185,

186). Risk loci of coronary artery disease (CAD) (125) and

schizophrenia severity (187) were also determined using iPSC-

derived VSMCs and neurons respectively. In a recent move, single

cell multi-omics that combines transcriptomic and epigenetic data

has been used to determine the genetic determinants of arrhythmia

(188). Large patient sample collection biobanks are being built

across various countries thereby providing ample opportunity to

apply functional genomics and build accurate severity prediction

models employing the latest tools mentioned above.
7.2 Phenotypic screening and drug
discovery and in iPSC models offers
potential for disease severity prediction

iPSCs can be used to identify deregulated signalling pathways

in vitro and assess response to compounds hypothesised to

improve relevant readouts (113). As such, they serve as excellent

drug testing platforms for development of disease-specific

therapeutics. For example, pharmacological inhibition of PDGF

signalling in iPSC-derived cardiomyocytes in LMNA-related

dilated cardiomyopathy, ameliorated the arrhythmic phenotypes

(189). Further, even disease severity modelling and prediction

both have been successful in (a) Brugada syndrome where

cardiomyocytes are affected by arrhythmogenesis of different
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severity (190) (b) Marfan syndrome where proteolytic

degradation by vascular smooth muscle cells was used to scored

disease severity and response to drugs inhibiting Gsk3β activity

to restore proliferation, curtail apoptosis and MMP secretion (40)

and (c) Alport syndrome where kidney organoids modelled

severity based on extent of accumulation of Collagens and a

marked reduction in the same was demonstrated by the use of

chemical chaperones (191). Atherosclerotic plaque stability was

demonstrated by KLF4 attenuation by ANGPTL4 treatment of

iPSC-derived vascular smooth muscle cells and in mouse models

(192). Currently, with very large drug and compound libraries

being readily available through pharmaceutical companies, we are

only limited by not having widespread use of robotic drug

screening platforms and automated phenotype assessment

modules (whether imaging or spectrophotometry based) to

identify and validate disease modifying therapies.
7.3 Drug repurposing and use of omics
approaches shorten therapeutics
identification time and enhance efficiency

Current technologies of phenotypic drug screening have come far

from relying on low throughput 2Dcell culture assays alongwith time-

consuming analysis, to high throughput or high content screening

assisted by automated analysis (193). In high throughput drug

screening, iPSCs can be used to find novel treatments, repurpose

drugs or to predict effect (194). Pre-existing drugs for different

pathologies are being repurposed for cardiovascular disease based on

the phenotypic screening which assays for reducing disease-

modifying effects. This kind of approach significantly reduces costs

and time incurred in bringing a drug from benchside to clearing

clinical trials. Re-engineering existing drugs to enhance efficacy

using knowledge of medicinal chemistry, rational drug design to

optimize design, delivery and pharmacokinetics in animal models is

being done. Such re-engineered drugs are being screened and

validated with iPSC models (195, 196). Going an extra mile to

determine the complete extent of impact a given drug on modifying

global gene expression in a diseased cell has been done in the latest

studies by employing single cell transcriptomic profiling of drug

response singularly or in combinations using Combi-seq (197).

With such advancement we are no longer dependant on gene

expression of 1–2 downstream targets to know the efficacy of drug

treatment, rather an unbiased and wholistic assessment of direct and

indirect target gene changes can be done.
7.4 “Clinical trials in a dish” and precision
medicine

Drug screening with iPSC-derived cells can enable a precision

medicine approach with individualised therapeutic plans based on

response in iPSC models and with the knowledge about patient’s

lifestyle, genetic background, and environment (198). This platform

can identify non-responders to drug therapy and in parallel be used

to determine the molecular basis for this. Given that iPSCs can
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identify drug targets, predict response levels, screen novel compounds,

and repurpose licensed therapeutics, they provide an excellent

resource to bridge the gap between preclinical investigation and

clinical trials. “Clinical trials in a dish” can fulfil the requirement of

testing various drug therapy parameters in a high throughput

fashion. Identifying those at higher risk of experiencing drug related

complications can uncover the mechanisms leading to this and

tailor therapy to mitigate the risk, such as reduced dosing regimens

(199). Another important consideration is the vast resource and

human impact of participating in a clinical trial. Using iPSC based

“clinical trials in a dish” would complement animal studies and

provide important biological information which could confirm the

need for, or advise against, human trials. “Clinical trials in a dish”

using iPSCs have been used for different cardiovascular cells such as

endothelial cell function and crosstalk with cardiomyocytes

improvement by Lovastatin in LMNA cardiomyopathy (200). Two

hERG-blocking drugs, Dofetilide and Moxifloxacin, were also tested

on iPSC derived cardiomyocytes for QT prolongation (201). With

continued improvement in iPSC differentiations, assay development

and 3D modelling, the utility of this approach will only increase.
7.5 Cell therapy in aortic disease

A stem cell therapy-based approach has been on keen interest

within the cardiovascular field. In aortic context, work has focussed

predominantly on AAA with use of mesenchymal stem cells

(MSCs) (202), umbilical cord stem cells (203), and iPSC derived

smooth muscle cell progenitors (IPSC-SMP) (204) with delivery

methods including intravenous injection, direct injection and

through collagen scaffolds.

Perivascular delivery of iPSC-SMP, integrated into a collagen

scaffold, demonstrated feasibility, VSMC retention and reduced

macrophage invasion in a murine model of AAA (204). However,

in contrast to the primary VSMC collagen scaffolds, iPSC-SMP

scaffolds did not result in reduced aneurysmal expansion. This

could in part be due to using smooth muscle cell progenitors as the

chosen cell type for delivery instead of more mature VSMCs which

would be less likely to dedifferentiate and phenotype switch. An

MSC intravenous infusion based clinical trial in patients with small

AAA is underway with results awaited (205).

Cell based therapies for aortic disease have shown promise in

animal models, but selection and optimisation of the delivered

cell type is key. Further work is needed to elucidate whether

injection or scaffold-based approaches are more efficacious.
8 Conclusion

Coupling the wealth of data from genomic discovery studies with

functional validation tools such as iPSCs is key in uncovering further

genetic landscape in TAD to aid diagnosis, personalised

management and rationalise cascade screening. The versatility of

iPSCs and the capability for genetic editing allows for a powerful

humanised model for mechanistic insight and risk determination
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alongside evolving roles in drug discovery and validation. The

increasing accuracy of genetic editing and advancement in 3D

aortic disease modelling paves the way for patient and mutation

specific management approaches and an exciting era of precision

medicine in aortic and other cardiovascular diseases.
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