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Fast reconstruction of SMS bSSFP
myocardial perfusion images
using noise map estimation
network (NoiseMapNet):
a head-to-head comparison
with parallel imaging and
iterative reconstruction
Naledi Lenah Adam1, Grzegorz Kowalik1, Andrew Tyler1,
Ronald Mooiweer1,2, Alexander Paul Neofytou1, Sarah McElroy1,2,
Karl Kunze1,2, Peter Speier3, Daniel Stäb4, Radhouene Neji1,2,
Muhummad Sohaib Nazir1,5, Reza Razavi1, Amedeo Chiribiri1

and Sébastien Roujol1*
1School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s
College London, London, United Kingdom, 2MR Research Collaborations, Siemens Healthcare Limited,
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Brompton Hospital, Guy’s and St Thomas NHS Foundation Trust, London, United Kingdom
Background: Simultaneous multi-slice (SMS) bSSFP imaging enables stress
myocardial perfusion imaging with high spatial resolution and increased spatial
coverage. Standard parallel imaging techniques (e.g., TGRAPPA) can be used
for image reconstruction but result in high noise level. Alternatively, iterative
reconstruction techniques based on temporal regularization (ITER) improve
image quality but are associated with reduced temporal signal fidelity and long
computation time limiting their online use. The aim is to develop an image
reconstruction technique for SMS-bSSFP myocardial perfusion imaging
combining parallel imaging and image-based denoising using a novel noise
map estimation network (NoiseMapNet), which preserves both sharpness and
temporal signal profiles and that has low computational cost.
Methods: The proposed reconstruction of SMS images consists of a standard
temporal parallel imaging reconstruction (TGRAPPA) with motion correction
(MOCO) followed by image denoising using NoiseMapNet. NoiseMapNet is a
deep learning network based on a 2D Unet architecture and aims to predict a
noise map from an input noisy image, which is then subtracted from the noisy
image to generate the denoised image. This approach was evaluated in
17 patients who underwent stress perfusion imaging using a SMS-bSSFP
sequence. Images were reconstructed with (a) TGRAPPA with MOCO
(thereafter referred to as TGRAPPA), (b) iterative reconstruction with integrated
motion compensation (ITER), and (c) proposed NoiseMapNet-based
reconstruction. Normalized mean squared error (NMSE) with respect to
TGRAPPA, myocardial sharpness, image quality, perceived SNR (pSNR), and
number of diagnostic segments were evaluated.
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Results: NMSE of NoiseMapNet was lower than using ITER for both myocardium
(0.045 ± 0.021 vs. 0.172 ± 0.041, p < 0.001) and left ventricular blood
pool (0.025 ± 0.014 vs. 0.069 ± 0.020, p < 0.001). There were no significant
differences between all methods for myocardial sharpness (p= 0.77) and
number of diagnostic segments (p= 0.36). ITER led to higher image quality than
NoiseMapNet/TGRAPPA (2.7 ± 0.4 vs. 1.8 ± 0.4/1.3 ± 0.6, p < 0.001) and higher
pSNR than NoiseMapNet/TGRAPPA (3.0 ± 0.0 vs. 2.0 ± 0.0/1.3 ± 0.6, p < 0.001).
Importantly, NoiseMapNet yielded higher pSNR (p < 0.001) and image quality
(p < 0.008) than TGRAPPA. Computation time of NoiseMapNet was only 20s for
one entire dataset.
Conclusion: NoiseMapNet-based reconstruction enables fast SMS image
reconstruction for stress myocardial perfusion imaging while preserving
sharpness and temporal signal profiles.

KEYWORDS

magnetic resonance imaging, myocardial perfusion, simultaneous multi-slice, image

reconstruction, deep learning
1 Introduction

First-pass cardiac magnetic resonance (CMR) perfusion

imaging is recommended by international guidelines for the

assessment of patients with known or suspected coronary artery

diseases (CAD) (1, 2). The standard and clinically recommended

cardiac perfusion MRI sequence uses an electrocardiogram

(ECG) triggered, saturation recovery, dynamic contrast enhanced

acquisition of at least 3 short axis slices with in-spatial resolution

of 2–3 mm performed under stress conditions (3). Hybrid echo

planar imaging, fast low angle shot (FLASH), and balanced

Steady State Free Precession (bSSFP) readouts have been

employed in this context (4). Of these, bSSFP offers an

intrinsically higher SNR, and contrast to noise ratio, making it

desirable for this application (4).

Improving the spatial coverage and resolution of CMR

perfusion imaging has the potential to result in higher diagnostic

confidence and accuracy. Higher spatial coverage may facilitate

sampling of all myocardial perfusion territories. It could also

improve the quantification of total ischemic burden which has

been shown to have high prognostic value in studies based on

inherently three-dimensional nuclear imaging techniques (5).

Higher in-plane spatial resolution, is also desirable as it reduces

dark rim artifacts (6), a confounding factor for perfusion defects,

and improves quantification of transmural perfusion gradients, a

strong predictor of haemodynamically significant CAD (7, 8).

Three dimensional (3D) MR perfusion imaging techniques offer

increased spatial coverage, but commonly have prolonged

acquisition times leading to increased susceptibility to breathing

motion (9) and limited in-plane spatial resolution (10).

Furthermore, 2D high resolution images were shown to be more

sensitive than 3D images with lower resolution to ischemia (11).

Simultaneous multi-slice (SMS) imaging is an alternative

acceleration technique which provides increased spatial coverage

in the slice direction without compromising in-plane spatial

resolution (12). SMS uses multiband radiofrequency pulses to

excite multiple separate anatomical slices at the same time, which
02
are then acquired using a shared read-out. To facilitate their

separation during the reconstruction process, the simultaneously

excited slices are shifted with respect to each other in the field of

view which can be achieved by means of Controlled Aliasing in

Parallel Imaging Results in Higher Acceleration (CAIPIRINHA)

encoding (12). The application of SMS with a FLASH readout

has been successfully demonstrated for CMR perfusion (13–16).

The combination of CAIPIRINHA and bSSFP is more complex

as bSSFP conformant phase cycling and magnetization steady

state need to be maintained. This was addressed using a

modified RF phase cycling scheme (17) and the gradient-

controlled local Larmor adjustment (GC-LOLA) approach (18).

This SMS bSSFP approach was successfully demonstrated for

CMR perfusion (19–22) which enabled high spatial resolution,

increased spatial coverage, improved image quality, and high

diagnostic value (21, 23).

SMS images can be reconstructed using standard parallel

imaging approaches such as adapted SENSE, SMASH and

GRAPPA algorithms (12). However, such reconstructions result

in a significant noise enhancement at higher acceleration factors

required to achieve high spatial resolution (14). Alternatively,

iterative reconstruction techniques using regularization terms can

be employed to reconstruct higher SNR images and improve

image quality (21). However, iterative techniques are often

associated with signal infidelity due to the employed

regularization terms and can sometimes introduce some spatio-

temporal artifacts (14, 21, 24). Furthermore, iterative

reconstructions can be computationally intensive, limiting their

integration into clinical routine.

Deep learning-based reconstructions have been proposed to

accelerate iterative reconstruction techniques by mapping aliased

SMS images to reconstructed images (25, 26). However, these

networks were trained using images reconstructed from iterative

reconstructions thus limiting their performance. A physics-

guided, signal intensity informed and dependent deep learning

approach was recently proposed and provided improved image

quality over the aforementioned techniques in a small-cohort
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study of four healthy subjects (24). Signal discrepancies with

respect to standard parallel imaging reconstruction were reduced,

although not eliminated. The performance of this technique in

patients and during stress CMR perfusion where motion is more

pronounced has not been evaluated.

Alternatively, image-denoising algorithms may represent a

suitable avenue to address the noise enhancement of SMS

perfusion images reconstructed using standard parallel imaging

reconstruction techniques. A variety of techniques has been

proposed for image denoising in the field of computer vision

(27, 28). Traditional techniques that do not involve deep learning

were successfully employed for image denoising but were often

associated with additional blurring artifacts, loss of effective

spatial resolution and long computation time. Recently, deep

learning techniques have been proposed for image denoising,

including in the context of MRI, which have low computational

cost upon deployment. Different network architectures have been

investigated including the convolutional neural network (CNN)

(27) and U-Net architectures. In these techniques, the measured

noisy image is directly mapped to a denoised image.

Alternatively, a deep learning network can be trained to map a

noisy image to its corresponding predicted noise map, which is

then subtracted from the original noisy image to generate the

denoised image. This reduces the network dependence on image

features, potentially improving its generalization and minimizing

loss of image sharpness (29). In this study, a U-Net inspired by

the denoising CNN (DnCNN) (30) was chosen for the denoising

task. Previous studies have shown that the U-Net can offer better

results at high noise levels compared to the DnCNN whilst

offering a highly reduced training time (31). The potential of

deep learning-based image denoising of SMS perfusion images

has not specifically been studied.

In this study, a noise map estimation network (NoiseMapNet)

was developed for fast, sharpness-preserving, noise-filtered

reconstruction of SMS-bSSFP myocardial perfusion images. The

proposed reconstruction consists of standard parallel imaging

reconstruction followed by non-rigid registration, and deep

learning-based image denoising using NoiseMapNet. This

technique was retrospectively evaluated in 17 patients who

underwent stress CMR perfusion using SMS-bSSFP and was

compared to (1) a standard temporal parallel imaging

reconstruction based on TGRAPPA with retrospective motion

compensation and (2) an iterative reconstruction approach

with integrated motion compensation (ITER). A subset of the

data presented in this manuscript was presented at the 2023

ISMRM conference.
2 Methods

The study was approved by the National Research Ethics

Service (15/NS/0030), and written informed consent was

obtained from all patients. All imaging was performed on a 1.5 T

MRI scanner (MAGNETOM Aera, Siemens Healthcare,

Erlangen, Germany) using a 32-element spine array RF coil and

an 18-element body array coil during the acquisition.
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2.1 Proposed myocardial perfusion
MRI approach

Dynamic contrast enhanced CMR perfusion measurements

were based on an ECG-triggered, saturation recovery, SMS-bSSFP

research sequence (21). SMS-bSSFP was implemented with a

multiband factor of 2 using RF phase based CAIPIRINHA

encoding as proposed by Stäb et al., where the first and second

SMS slices were subject to a k-space phase modulation of π/2

and 3π/2, respectively (17). This phase cycling scheme results in

a half-FOV shift between the two SMS slices in the phase

encoding direction. It also generates a slice-specific shift of the

frequency response, which was corrected for using GC-LOLA

(18). A lean SMS implementation as previously described (18)

was employed and k-space undersampling and image

reconstruction were carried out using the system’s built-in

TGRAPPA reconstruction framework using sum of squares for

multicoil data combination. This lean implementation facilitates

a one-dimensional joint un-aliasing of simultaneously excited

slices and additional in-plane undersampling artifacts and

reconstructs the simultaneously excited slices next to each other

into an increased/oversampled phase FOV.

The TGRAPPA reconstruction was followed by inline non-rigid

image registration (commercially available from the manufacturer)

and deep learning-based image denoising. TGRAPPA and non-

rigid image registration used the standard inline implementation

provided by the vendor. Deep learning-based image denoising was

performed offline using a proposed 2D noise map estimating

U-Net (NoiseMapNet), as described in the next section.
2.2 NoiseMapNet

Figure 1 shows the proposed 2D NoiseMapNet developed for

image denoising. NoiseMapNet is based on the U-Net

architecture (32) from Medical Open Network for AI (33), taking

as an input a magnitude image and outputting its predicted

corresponding noise map. The denoised image is generated by

subtraction of the predicted noise map from the input noisy image.

As demonstrated in Figure 1, the network is symmetrical,

consisting of an encoder and decoder paths with skip

connections to copy and propagate high frequency details

between the paths. The encoder has a depth of 4 and 64 initial

convolutional filters (size 3 × 3, stride = 1) as it has been shown

to result in a good-performing U-Net (32). The filters are

followed by a rectified linear unit activation function

(ReLU), batch normalization to reduce overfitting and improve

performance, and a downsampling 2 × 2 maximum pooling

(stride 2). The decoder performs upsampling using deconvolutions

and outputs the predicted noise map.
2.3 Training data

Since it is difficult to generate noise-free images, training was

based on high SNR cine images (SNR of 113 ± 32 in the left
frontiersin.org
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FIGURE 1

Proposed image denoising approach using NoiseMapNet. NoiseMapNet takes a noisy image as input and outputs a predicted noise map, which is then
subtracted from the input image to generate a denoised image.
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ventricular blood pool) acquired at different cardiac phases which

were considered as an approximation of noise-free data. Four-

chamber single-slice cine images acquired from 50 patients

referred for clinical CMR were used during the training. All cine

images were acquired using a standard cine bSSFP sequence

and the following parameters: TR/TE/α = 2.3 ms/1.16 ms/53°,

FOV = 300 × 250 mm2, GRAPPA acceleration factor 2, in-plane

resolution = 1.2 × 1.2 mm2, and slice thickness = 6 mm. All

cardiac phases were used for the training. Gaussian noise was

added to the magnitude cine images to simulate an SNR of ∼10
in the left ventricular (LV) blood pool. Image pre-processing

steps were resizing using zero-padding for a consistent image size

across all datasets, patch selection, and standardization for image

scaling. Overall, 1,298 cine images were used for the training

procedure and were split into training (80%) and validation

(20%) sets with no data leak between the two sets ensured by

separating the patient datasets into training and validation datasets.

The impact of image orientation, spatial resolution and

simulated SNR on the training and denoising performance of

NoiseMapNet is presented in Supplementary Material.
2.4 Training procedure

Training of NoiseMapNet was performed by minimizing the

standard L2 loss (34) between the predicted noise map and

ground truth noise map (30). The ADAM optimizer was used

with β1 = 0.9, β2 = 0.99 (26) and a learning rate initially optimized

to 1 × 10−5. A dropout with rate of 0.5 was employed to reduce

overfitting. Patch-based learning was employed for its potential

to relatively faster training (35, 36) and improved handling of
Frontiers in Cardiovascular Medicine 04
spatially varying noise levels (37). A batch size of 1 and a patch

size of 64 × 64 were used. Note that the simulated noise was

generated independently for each patch and at each epoch.

Training was conducted for 500 epochs. The model was

trained to convergence and early stopping was implemented.

Early-stopping was achieved by monitoring the validation loss

at the end of every epoch and training was stopped when

no improvement was observed in the past 20 epochs.

Implementation of the network training was done with the

Pytorch framework using Python (version 3.10.7) on a Linux

(Ubuntu 16.04) computer with a GPU (Titan V, NVIDIA).

Training of the model required approximately 4 h.
2.5 In vivo evaluation

Seventeen patients (12 males and 5 females with mean age of

60 ± 11 years) with suspected coronary artery disease and

referred for stress cardiac MRI were retrospectively recruited for

this study. None of these patients were part of the cohort used

for the training of NoiseMapNet. Stress was induced

pharmacologically using intravenous adenosine administration at

140 µg/kg/min for at least 3 min. At peak stress, 0.075 mmol/kg

of Gadobutrol (Gadovist, Bayer) followed by 25 ml of normal

saline flush were injected using a power injector. First-pass CMR

perfusion was performed using a dynamic, ECG-triggered,

saturation recovery SMS bSSFP research sequence described

above. Images were acquired in the short-axis orientation with

the following imaging parameters: TE/TR = 1.24 ms/1.9 ms,

flip angle = 50°, field of view (FOV) = 360 × 360 mm2,

6 slices, resolution = 1.9 × 1.9 mm2, slice thickness = 10 mm, 80
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dynamics, saturation time = 94 s, bandwidth = 1,302 Hz/px, in-

plane acceleration factor = 3.5, multiband factor = 2 (overall

acceleration factor = 7). A 32-channel spine coil and an 18-channel

body array coil were used. All data were acquired under breath-

hold conditions, initiated immediately before contrast arrival in

the left chamber. Images were reconstructed with: (a) standard

reconstruction using TGRAPPA followed by non-rigid image

registration (thereafter referred to as TGRAPPA), (b) iterative

reconstruction with integrated motion correction and temporal

regularization (ITER) (38), and (c) the proposed NoiseMapNet-

based reconstruction [which corresponds to reconstruction (a)

followed by NoiseMapNet-based image denoising].

Briefly, ITER combines a preliminary non-rigid motion

estimation step with an iterative reconstruction using temporal

regularization, which was successfully validated for the

reconstruction of SMS bSSFP perfusion images (38). For motion

estimation, data are first resampled to a lower resolution,

reconstructed using a Conjugate-Gradient SENSE algorithm

without any temporal constraint to preserve motion fidelity, and

undergo histogram equalization to limit the impact of high

intensity signals. Non-rigid motion fields are then estimated and

integrated in the final reconstruction as part of the temporal

regularization. Further details of ITER can be found in (38).
2.6 Quantitative analysis

Myocardial sharpness was quantified at the septal blood-

myocardium boundary in the dynamic image corresponding to

maximum signal enhancement in the LV blood pool. The

myocardial sharpness index was calculated from a single mid-

ventricular slice as previously described (20, 39). Briefly, a curve

was manually drawn on both sides of the septal endocardium

from which tightly spaced profiles across the myocardium-blood

interface were generated. A sharpness index was calculated for

each profile as 1/d, where d represents the distance over which

the signal intensity increases from 20% to 80% of the signal

range. An average sharpness index is finally calculated over all

profiles for increased robustness.

Additionally, the signal intensity profiles measured with

NoiseMapNet and ITER were compared to reference TGRAPPA

profiles. The normalized mean squared error (NMSE) was

computed across all patients for NoiseMapNet and ITER during

the first-pass for both the myocardium (septum) and LV blood

pool in one mid-ventricular slice. Since the signal intensities

from ITER and TGRAPPA had different scaling, ITER was first

scaled to TGRAPPA using the scaling factor minimizing NMSE

of ITER (over the first-pass) for each profile. No scaling between

TGRAPPA and NoiseMapNet was performed to demonstrate

that NoiseMapNet does not introduce any bias.
2.7 Qualitative analysis

Subjective assessment of image quality, perceived SNR and

number of diagnostic segments was performed by consensus of
Frontiers in Cardiovascular Medicine 05
two expert clinicians (AC and MSN, with over 15 and 7 years’

experience respectively) blinded from the patient information

and reconstruction technique. The images were visualized with

Radiant image viewer. Image quality was scored using a 4-point

scale (0 = poor, 1 =major artifact, 2 =minor artifact, 3 = excellent).

Perceived SNR (pSNR) was scored using also a 4-point scale

(0 = very poor, 1 =major noise, 2 =minor noise, 3 = high SNR).

Lastly, the number of diagnostic myocardial segments, as

defined by the 16-American Heart Association segments mode

(40), was evaluated.
2.8 Statistical analysis

Statistical analysis was performed using MATLAB version

R2022b (The MathWorks, Natick, MA). Kruskal-Wallis test and

one-way ANOVA test were used to compare the three

reconstruction techniques in terms of qualitative metrics (image

quality, perceived SNR, and number of diagnostic segments)

and quantitative metrics (myocardial sharpness), respectively.

Statistical significance was defined as a p-value <0.05. When

Kruskal-Wallis test and One-way ANOVA test demonstrated

statistical significance, Wilcoxon signed rank test and paired t-test

were applied, respectively, using Bonferroni correction, which

resulted in a statistical significance threshold of 0.05/3 = 0.017.

NMSE obtained using ITER and NoiseMapNet were compared

using a paired t-test, with statistical significance defined as a

p-value <0.05.
3 Results

Images from two patients, reconstructed with the three

approaches, are shown in Figures 2, 3. Videos showing the entire

first-pass of the contrast bolus, for both patients and all

reconstruction techniques, are included as Supporting

Information (Supplementary Videos S1, S2). A high noise level

can be observed in the standard TGRAPPA reconstruction which

was substantially lower in images reconstructed using

NoiseMapNet and ITER.

Figure 3 and Supplementary Video S2 also show the presence of

artifacts using ITER (see the most basal slices) which are minimal in

both TGRAPPA and NoiseMapNet. The corresponding noise maps

estimated with NoiseMapNet from the same two patients are

shown in Figure 4 and in the Supplementary Videos S3, S4 for all

dynamic frames. Minimal anatomical structures are visible in the

noise maps indicating the ability of NoiseMapNet to conserve

image sharpness and features in the denoised images. Figure 5

illustrates the performance of NoiseMapNet across the entire field

of view in the patient from Figure 2. NoiseMapNet provided

consistent image denoising across the entire field of view, despite

spatially varying noise levels, as previously observed with other

patch-based learning approach (37).

Figure 6 shows the temporal signal profiles measured in the LV

blood pool for each reconstruction from four patients. ITER

resulted in some alterations of the temporal profiles of the signal
frontiersin.org
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FIGURE 2

SMS perfusion images acquired in a 67 years old female patient. Images were reconstructed using ITER, TGRAPPA and NoiseMapNet. While high noise
level can be observed in TGRAPPA images, image quality and SNR visually improved using the NoiseMapNet.
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FIGURE 3

SMS perfusion images acquired in a 44 years old male patient. Images were reconstructed using ITER, TGRAPPA and NoiseMapNet. While high noise
level can be observed in TGRAPPA images, image quality and SNR visually improved using the NoiseMapNet. Note the presence of artifacts using ITER
(see the most basal slices) which are minimal in both TGRAPPA and NoiseMapNet.
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FIGURE 4

Noisemapnet reconstructed images, corresponding estimated noise maps, and noise distributions in the same example patients and anatomical areas
as Figures 2, 3. Minimal anatomical structures are visible in the noise maps, suggesting that the proposed method conserves image sharpness and
features in the denoised images. Noise distribution plots follow a Gaussian distribution as expected from the model.
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FIGURE 5

TGRAPPA images, NoiseMapNet (NMNet) images and predicted noise maps are shown for the patient shown in Figure 2 and all 6 SMS slices acquired
at maximum signal enhancement in the left ventricular blood pool. Significant spatial noise variations are observed in the noise maps. NoiseMapNet
provided consistent image denoising across the entire field of view, despite spatially varying noise levels.
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FIGURE 6

Signal intensity profiles measured in the LV blood pool over all dynamics in four patients. ITER resulted in some alteration of the temporal signal profile
with respect to reference TGRAPPA. The temporal profiles measured with NoiseMapNet and TGRAPPA were visually consistent.

Adam et al. 10.3389/fcvm.2024.1350345
with respect to the reference TGRAPPA signal profiles. Specifically,

temporal smoothing can be observed in ITER as earlier contrast

uptake and delayed/reduced signal peak as expected from the

temporal regularization employed in this reconstruction.

Conversely, NoiseMapNet and TGRAPPA signal profiles appears

similar, suggesting the absence of bias when using NoiseMapNet.

This was confirmed over all patients where the NMSE over

the first-pass of NoiseMapNet was lower compared to that of

ITER for both myocardium (0.045 ± 0.021 vs. 0.172 ± 0.041,

p < 0.001) and left ventricular blood pool (0.025 ± 0.014 vs.

0.069 ± 0.020, p < 0.001).

Figure 7 shows the qualitative and quantitative analysis

performed over all patients. There were no significant differences

between all reconstructions in terms of myocardial sharpness:

0.63 ± 0.1 mm−1 (ITER) vs. 0.65 ± 0.1 mm−1 (NoiseMapNet) vs.

0.65 ± 0.1 mm−1 (TGRAPPA), p = 0.77. ITER led to higher

pSNR (3.0 ± 0.0) than NoiseMapNet (2.0 ± 0.0, p < 0.001) and

TGRAPPA (1.3 ± 0.6, p < 0.001). ITER also resulted in higher
Frontiers in Cardiovascular Medicine 10
image quality (2.7 ± 0.4) than NoiseMapNet (1.8 ± 0.4, p < 0.001)

and TGRAPPA (1.3 ± 0.6, p < 0.001). Importantly, NoiseMapNet

yielded higher pSNR and image quality than TGRAPPA (p < 0.001

and p = 0.008, respectively). Finally, both ITER and NoiseMapNet

led to 100% of the AHA segments being diagnostic, compared to

94% using TGRAPPA.

The reconstruction time of one entire dataset (6 slices,

80 dynamics) was 30 s for TGRAPPA with inline motion

correction and 5 min for ITER, using a CPU. The computational

cost of NoiseMapNet alone was 6 s using a GPU (2 min using a

CPU) for one entire dataset. Therefore, the proposed

NoiseMapNet-based reconstruction is feasible within 36 s.
4 Discussion

In this study, a fast and sharpness-preserving deep learning-

based image denoising algorithm (NoiseMapNet) was developed
frontiersin.org
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FIGURE 7

Quantitative and qualitative analysis of the three reconstruction techniques. (A) Image sharpness, (B) image quality, (C) perceived SNR, and (D) fraction
of diagnostic myocardial segments are shown for all reconstruction techniques. Image quality was scored using a 4-point scale (0 = poor, 1 =major
artifact, 2 =minor artifact, 3 = excellent). Perceived SNR (pSNR) was scored using also a 4-point scale (0 = very poor, 1 =major noise, 2 =minor noise,
3 = high SNR). Segment-wise diagnostic value (Yes/No) was assessed for each of the 16 American Heart Association myocardial segments. In the plots,
** represents p < 0.001 while * is p < 0.008.
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and successfully combined with the standard TGRAPPA technique

and a non-rigid image registration for the reconstruction of SMS

bSSFP CMR perfusion images. NoiseMapNet provided higher

image quality and pSNR than TGRAPPA alone, while preserving

background signal and sharpness, and only requiring minimal

additional computational time. Although ITER resulted in higher

image quality and pSNR than the other two techniques, it was

also associated with signal bias caused by the temporal

regularization and longer reconstruction times.

In the scope of this work, the training of NoiseMapNet was

performed using four chambers cine images which were acquired

at different cardiac phases and had different contrast and geometry

with respect to short axis perfusion images employed in this study.

The rational of this choice was to demonstrate that the network is

not specific to the image orientation used during the training

process (as demonstrated in Supplementary Material) and can

work for unseen image orientations. This is an important finding

and suggests the strong potential of NoiseMapNet to be

generalized to other CMR sequences and other clinical

applications, which will be explored in future studies. However, the

performance of NoiseMapNet was found to be related to the

employed SNR and spatial resolution used during training (see

Supplementary Material), which will need to be taken into account

when applied to other applications. In this study, NoiseMapNet

was trained using a unique level of noise, which was defined to

approximate SNR found in typical images reconstructed using the
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employed SMS-bSSFP sequence with TGRAPPA. The simulated

noise was also uniform in space. Integration of G-factor maps, or

different noise levels during the training process may have the

potential to improve the performance of NoiseMapNet.

Gaussian noise was used for the training of NoiseMapNet and

this network was applied to magnitude images. Although noise

in MR images often has a Rician distribution, it can be well

approximated by a Gaussian distribution for moderate to high

SNR. Based on this, deep learning-based image denoising using

Gaussian noise has been previously used successfully in many MRI

studies (41–43). Furthermore, post-processing algorithms can be

used for the correction of the SNR-dependent intensity bias related

to Rician or Non-central Chi distributions (44). However, this

correction is expected to have minimal impact in the current

context of myocardial perfusion where images are assessed visually

for the presence of perfusion defect. Nevertheless, the extension of

NoiseMapNet to model Rician and Non-central Chi noise

distribution will be explored in the future, which may be relevant

in the context of quantitative perfusion (23), where the improved

temporal accuracy of NoiseMapNet with respect to ITER has

potential to improve perfusion quantification.

NoiseMapNet was developed in this study for fast and efficient

image-based denoising. Traditional techniques have been proposed

for image denoising such as block-matching and 3D filtering

(BM3D) (45), which has been used in a variety of applications.

BM3D requires accurate assessment of noise levels to produce an
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optimal denoising. However, this is difficult to achieve as noise

levels are patient-dependent (for example lower SNR are

commonly observed in patients with large BMI, therefore

requiring patient-specific tuning) and spatially varying due to

g-factor maps. An underestimation of the noise level would

result in imperfect noise removal, while an overestimated noise

level will lead to increased blurring (46, 47). Conversely,

NoiseMapNet was fully automated, did not require any user-

defined parameters, and provided a uniform denoising across the

entire field of view and across patients. Other deep learning

architectures have been also successfully employed for image

denoising, such as DnCNN (30). However, it was shown that

U-Net provides better results at high noise levels and reduced

training time compared to DnCNN (48). Nevertheless, the use of

alternative networks (27), could represent an opportunity to

improve upon the performance of NoiseMapNet, which will be

the focus of future work. Incorporating perfusion images in the

training with a semi-supervised or unsupervised deep learning

approach may also have value in this context. Finally, we used

the L2 norm as a loss function in NoiseMapNet. Although this

loss is known to sometime cause slight blurring but still remain

commonly used in image denoising (29, 30, 49), the use of

alternative losses such as VGG-loss (50) or a combination of

L2 norm with a VGG-loss (51) could be explored in the future.

NoiseMapNet was found to significantly improve image quality,

pSNR, and diagnostic value over TGRAPPA, with minimal addition

of reconstruction time (<6 s). These are very important findings as

TGRAPPA is currently the main commercially available solution

for the reconstruction of SMS images on the scanner. Therefore,

the proposed solution shows high promises as an alternative online

reconstruction of SMS perfusion images.

Regularization parameters for ITER were employed to trade-off

image quality and temporal blurring, as previously optimized in

(23, 38). Image reconstruction using ITER led to the highest image

quality and pSNR but at the cost of a significantly longer

reconstruction time than standard approaches and a loss of

temporal fidelity of the perfusion signal, likely caused by its

temporal regularization, as previously reported (21). ITER also has

the potential to introduce temporal smoothing of transient

artefacts, potentially leading to confounding factor of perfusion

defect. Deep-learning techniques aiming at reducing the

computation time of iteration reconstruction are usually trained on

data from iterative reconstruction techniques and may also suffer

from similar limitations. Conversely, the computational cost of

NoiseMapNet is small. NoiseMapNet also enabled the accurate

separation of background and noise signal, maintaining excellent

temporal signal fidelity in the reconstructed images. This is

particularly important as NoiseMapNet was shown to be superior

on all aspects to TGRAPPA alone. Finally, unlike other deep-

learning reconstruction or iterative reconstruction, the availability

of estimated noise maps which can be used to confirm the absence

of any anatomical structures, may play an important role to

provide high confidence in the reconstructed NoiseMapNet images.

Therefore, ITER and NoiseMapNet have distinct benefits and

assessment of their individual diagnostic accuracy, which cannot be

inferred from current image-based metric, is now needed to
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determine the value of each approach. Assessment of diagnostic

accuracy will require a larger study in patients with coronary artery

disease, ideally combined with FFR measurement for references.

Small temporal fluctuations were observed during the baseline

and tail of the temporal profiles for both TGRAPPA and

NoiseMapNet. Noise is not expected to be the cause of these

fluctuations since the temporal profiles were measured as an

average over a large region of interest. Instead, this may be

caused by the presence of through-plane motion, which may be

reduced for ITER due to the employed temporal regularization.

Integration of prospective through-plane motion correction

(52, 53) may help to reduce this effect.

NoiseMapNet may also have broader benefits. In MRI, the

noise level is directly related to acquisition time and spatial

resolution. Therefore, a robust image denoising approach has the

potential to relax the current trade-off limits in MRI which may

enable the acquisition of images with higher spatial resolution

within the same scan time, similar spatial resolution with a

shorter scan time, or a combination of both. NoiseMapNet could

enable the use of higher acceleration factors which could be

exploited to increase spatial coverage, spatial resolution or reduce

the scan time of various MRI protocols.

This study has some limitations. First, a relatively small number

of patients were included in this study. Second, SNR was not

quantified in this study as it is challenging to measure in ITER

images due to the iterative reconstruction which inherently

thresholds and reduces noise inhomogeneously across the field of

view (54). This is consistent with prior studies using compressed

sensing, which have avoided reporting absolute SNR measurements

but instead reported perceived SNR as performed in this study (54).

Third, TGRAPPA was used as a reference for the temporal signal

analysis. Although TGRAPPA has low SNR, the analysis was

restrained to the first-pass of the contrast agent, thereby discarding

low SNR baselines images. Furthermore, the signal was measured

for each dynamic over a large ROI further minimizing the impact

of noise. TGRAPPA does not use any temporal regularization and

is therefore not expected to alter the temporal signal profile.

Therefore, potential bias related to the use of TGRAPPA as

reference signal for this analysis should have been kept to the

minimum. Finally, although NoiseMapNet was shown to provide

important benefits in terms of image quality, SNR, signal fidelity

and computation time, its impact on diagnostic accuracy was not

demonstrated. Therefore, a diagnostic accuracy study in a larger

CAD patient cohort is now warranted to compare these techniques.
5 Conclusion

The proposed NoiseMapNet-based reconstruction enables fast,

noise-filtered reconstruction of SMS perfusion images while

preserving both sharpness and temporal signal profiles. This

technique had superior performance than standard online

TGRAPPA reconstruction. In comparison to ITER, NoiseMapNet

resulted in lower image quality and pSNR but significantly

shorter computation time suitable for inline use and no loss of

temporal signal fidelity.
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