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Automatic and interpretable
prediction of the site of origin in
outflow tract ventricular
arrhythmias: machine learning
integrating electrocardiograms
and clinical data
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Guillermo Jimenez-Perez1, Giulio Falasconi3, Andrea Saglietto4,
David Soto-Iglesias3, Antonio Berruezo3, Diego Penela5 and
Oscar Camara1

1Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat
Pompeu Fabra, Barcelona, Spain, 2Computational Multiscale Simulation Lab (CoMMLab), Department of
Computer Science, Universitat de Valencia, Valencia, Spain, 3Cardiology Department, Heart Institute,
Teknon Medical Center, Barcelona, Spain, 4Division of Cardiology, Department of Medical Sciences,
University of Turin, Turin, Italy, 5Department of Arrhythmology, Humanitas Research Hospital,
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The treatment of outflow tract ventricular arrhythmias (OTVA) through
radiofrequency ablation requires the precise identification of the site of origin
(SOO). Pinpointing the SOO enhances the likelihood of a successful
procedure, reducing intervention times and recurrence rates. Current clinical
methods to identify the SOO are based on qualitative analysis of pre-operative
electrocardiograms (ECG), heavily relying on physician’s expertise. Although
computational models and machine learning (ML) approaches have been
proposed to assist OTVA procedures, they either consume substantial time,
lack interpretability or do not use clinical information. Here, we propose an
alternative strategy for automatically predicting the ventricular origin of OTVA
patients using ML. Our objective was to classify ventricular (left/right) origin in
the outflow tracts (LVOT and RVOT, respectively), integrating ECG and clinical
data from each patient. Extending beyond differentiating ventricle origin, we
explored specific SOO characterization. Utilizing four databases, we also
trained supervised learning models on the QRS complexes of the ECGs,
clinical data, and their combinations. The best model achieved an accuracy of
89%, highlighting the significance of precordial leads V1-V4, especially in the
R/S transition and initiation of the QRS complex in V2. Unsupervised analysis
revealed that some origins tended to group closer than others, e.g., right
coronary cusp (RCC) with a less sparse group than the aortic cusp origins,
suggesting identifiable patterns for specific SOOs.
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1 Introduction

Ventricular tachycardia (VT) is a serious heart rhythm

disorder that can lead to sudden cardiac death (SCD). VT is

responsible for an estimated 80% of SCD cases worldwide,

highlighting the critical need for accurate diagnosis and

treatment (1). Idiopathic ventricular arrhythmias (IVAs) pose a

particular challenge in the VT spectrum, as the underlying

mechanisms triggering these arrhythmias remain elusive. Among

IVAs, outflow tract ventricular arrhythmias (OTVAs) are the

most common type, originating from the outflow tracts of the

ventricles, the regions connecting the ventricles to the major

arteries. The structural and functional complexity of these

structures makes diagnosis and planning treatment for OTVAs

particularly difficult.

Current treatment options for OTVAs include antiarrhythmic

drugs and radiofrequency ablation (RFA) (2). However, the

effectiveness of RFA has been suboptimal, with excessively high

recurrence rates reported (3). To improve the efficacy of RFA,

accurate pre-operative planning is essential. This involves

identifying the optimal ablation site, known as the ectopic foci or

the site of origin (SOO) of the OTVA, prior the procedure.

The electrocardiogram (ECG) stands as a pivotal diagnostic

instrument for identifying the SOO in OTVAs, where its

morphological changes are discernible in affected patients (2).

Initial estimates of the SOO, distinguishing between right

(RVOT) and left (LVOT) ventricle origins, are often derived

through visual inspection of the ECG.

Several methods for exploring ECG characteristics have been

developed to identify LVOT and RVOT origins, which have been

summarized in comprehensive reviews (4–6). For instance,

some algorithms consider the proximity of the origin to specific

ECG lead patterns, associating left bundle branch block (LBBB)

patterns with origins near V1 and right bundle branch block

(RBBB) patterns with origins further from the anterior chest.

However, the intricacy arises as LVOT origins may exhibit either

LBBB or RBBB patterns, contingent on the specific SOO. A

critical element in these algorithms is the precordial transition

(defined as the first precordial lead with a dominant R wave),

which establishes criteria for determining the transition zone or

analyzing the R/S wave ratio (the amplitude of the R wave

divided by the amplitude of the S wave in the QRS complex) in

specific leads. Despite their reported high accuracies, often

surpassing 85%, many of these methods are tailored to data from

a single center, they rely on visually estimated ECG

characteristics and incorporate highly specific thresholds, limiting

their generalizability. Other methods focus on analyzing the

precordial transition of both sinus rhythm and premature

ventricular contractions (PVCs), which are frequently present in

OTVA cases (7, 8).

Nonetheless, the reliance on clinician expertise for visually

interpreting these features introduces potential inconsistencies in

the analysis. Moreover, precordial lead analysis is subject to

variability based on electrode placement and heart rotation,

complicating standardization of diagnostic criteria. Relying solely

on visual ECG inspection may result in misdiagnosis and
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suboptimal intervention approaches, potentially prolonging

procedural time and increasing recurrence risks.

Recently, advanced methods have been developed to enhance

the accuracy of SOO prediction beyond visual inspection. These

methods combine ECG visual morphology analysis with patient

data to improve SOO classification. For instance, Penela et al. (9)

proposed a hybrid algorithm that incorporates clinical features,

such as sex, hypertension, and age, along with ECG analysis

based on the precordial R/S transition and the amplitude in lead

V3. However, this approach relies on manual thresholds for age

and V3 amplitude, and it is partially dependent on clinician

expertise in determining the R/S transition.

While these methods offer improvements over visual

inspection alone, they still face limitations in terms of accuracy

and interpretability. Doste et al. (10) proposed a machine

learning (ML) approach using both real and simulated signals

to classify OTVA origin. However, this approach does not

consider patient-specific information, potentially limiting its

generalizability to real-world clinical scenarios.

To address these limitations, our work proposes a comprehensive

ML methodology that integrates signal analysis for both simulated

and real data, patient-specific information, and a systematic

exploration of the most relevant features. This integrated approach

not only enhances classification accuracy but also provides valuable

interpretability, offering clinicians insights into critical factors

influencing treatment decisions. Furthermore, our proposal extends

beyond classification to identify specific source sites through

unsupervised algorithms, enabling a cluster analysis of different

origins based on ECG similarities and patient characteristics. This

holistic approach aims to significantly advance the precision and

understanding of OTVA treatment planning.
2 Materials and methods

The study employed a comprehensive methodology to investigate

the identification of OTVAs SOO, encompassing diverse databases

and advanced analytical techniques. The main goal was to

differentiate LVOT and RVOT origins with a supervised ML

approach. Additionally, the specific SOO identification was

explored with an unsupervised ML approach. Four distinct

databases were utilized, comprising two with QRS complexes, one

featuring simulated QRS complexes, and another incorporating

QRS complexes along with clinical data from the patients.

In the supervised training phase, models were developed using

QRS complexes and patient data independently. The training

involved various combinations of QRS and patient data from the

databases, exploring their impact on model performance.

Additionally, an innovative approach was used, training models

independently and using the inference from one as input for the

other, with the goal of enhancing the predictive capabilities.

Furthermore, an algorithm was designed to automate the

identification of the R/S transition from PVC and sinus rhythm

beats, thereby improving the precision of the models.

Additionally, all thresholds were removed from the original

approach proposed by Penela et al. (9).
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Feature relevance analysis was conducted using SHAP

(SHapley Additive exPlanations) analysis (11) and Gini’s

coefficient metric (12) on the QRS complexes models. This

analysis informed the inclusion of additional features to the

patient data models, refining the predictive accuracy.

Finally, the study employed an unsupervised hierarchical

clustering model for exploring the structure within the data.

Unlike other models focusing on distinguishing between right

(RVOT) and left (LVOT) ventricular origins, the developed

model was tailored to identify the specific SOO within the

ventricular structure. This unique approach adds depth to the

understanding of OTVA and refines the targeting of treatment

strategies. The subsequent sections delve into the details of the

databases used, the supervised trained models, the analysis of

features and models, the unsupervised training methodology for

identifying the specific SOO, and the different experiments

performed. The overall pipeline is shown in Figure 1.
2.1 Databases

We employed four multi-centric ECG databases for our study,

each serving a complementary purpose:

• DS-2496: Comprising 2469 (RVOT: 1040, LVOT: 1456)

simulated 12-lead ECG signals, it was generated to replicate

OTVA patients using Doste et al. (14) pipeline.

• DS-31: Featuring 31 (RVOT: 17, LVOT: 14) 12-lead ECG cases

from Hospital Clínic, Barcelona.
FIGURE 1

General diagram of the pipeline. On the left, a picture of the outflow tracts a
marked in the picture. The red points correspond to the RVOT origins, the g
which are subgroup from the LVOT origins. On the right, a legend for the orig
scheme with the models obtained from the different experiments. Model A
features listed in the figure, model C uses the best QRS segments obtai
configuration obtained from model B and the prediction done by the m
natural distribution of the specific sites of origin using the best set of featur
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• DS-334: Containing an open-source database with 334 RVOT: 234,

LVOT: 100) 12-lead ECG signals published by Zheng et al. (15).

• DS-114: Consisting 114 (RVOT: 79, LVOT: 35) cases retrieved

from Hospital Teknon, Barcelona; these cases were partially

used in Penela et al. (9) and included the 12-lead ECG

signals, multiple beats from each patient, including the PVC,

and clinical data of the patient.

Ethical guidelines were followed, with written informed consent

obtained from every patient. To address the lack of

standardization in the databases, we developed two distinct

models. The first model utilized all four datasets to train models

based on QRS complex morphology. The second model leveraged

clinical data from DS-114 to train a separate model. Additionally,

a third approach combining both models was explored.

The dataset was divided into training (80%) and test (20%) sets

using stratified splitting to maintain the proportion of RVOT and

LVOT origins (4). Each database was split individually, and the

subsets were merged according to the model being trained. A

5-fold cross-validation was performed with a grid search for

hyperparameter optimization in both models using the training

subset. This meticulous approach ensured robust training and

testing procedures for the subsequent analyses.
2.2 Supervised models

The model utilizing QRS complexes was trained following the

guidelines outlined in Doste et al. (10). For each lead, the QRS
dapted from Sánchez-Quintana et al. (13). The specific sites of origin are
reen points to the LVOT, and the yellow to the aortic cusp (AoC) origins,
ins, two signal examples for RVOT (blue) and LVOT (orange) origins and a
uses the 12 lead QRS complexes, model B patient data and basic ECG
ned from the feature relevance analysis of model A, the best feature
odel A. Finally, unsupervised clustering was performed to explore the
es.
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TABLE 1 Hyperparameters tuned per model.

Model Parameter Range Step
SVM Nu value [0.4, 0.6] 0.1

Kernel [rbf, linear, poly] -

Degree* [1,5] 1

Gamma [scale, auto] –

Coef0* [0,1] 0.5

MLP Solver [lbfgs, adam] –

Alpha [1e�4, 1e�5 ,1e�6] –

Hidden layers size [10, 50, 100] –

Activation function [identity, logistic, tanh, relu] –

RF Estimators [100, 500] 100

Minimum samples to split [0.1, 1] 0.1

Minimum samples per leaf [0.1, 1] 0.1

ET Estimators [100, 500] 100

Minimum samples to split [0.1, 1] 0.1

Minimum samples per leaf [0.1, 1] 0.1

XGBoost Maximum depth [1, 10] 1

Minimum child weight [1, 6] 0.5

Gamma [0, 0.5] 0.1

Subsample [0.6, 1] 0.01

Column sample by tree [0.6, 1] 0.01

Regulation alpha [1e�5, 1e�2, 0.1, 1, 100] –

*Only for ’poly’ kernel.
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complexes were resampled to 10 samples and concatenated into a

vector: thus, each sample represented a 10% segment of the QRS

complex of a lead. In the morphological analysis, we opted to

include all 12 leads instead of solely relying on the most relevant

leads reported in previous studies. This decision was made to

ensure a comprehensive assessment of the relevance of the QRS

complex across all leads.

The model utilizing clinical information was designed based on

the weighted hybrid algorithm proposed by Penela et al. (9). In that

study, researchers employed age and amplitude in V3, binarized

with thresholds of 50 years old and 1 mV. To enhance

generalizability and mitigate overfitting, we normalized age

dividing it by 100, ensuring its range matched that of the other

features. Additionally, we included the raw amplitude, rather

than the binarized version. Furthermore, we formulated an

algorithm for the automatic determination of the precordial

transition. The R/S ratio was calculated for each lead to identify

the precordial lead where the R wave began to dominate.

Given that the precordial transition lead is dependent on the

cardiac electrical axis in the horizontal plane and patient clinical

features (6), we standardized the R/S transition using sinus

rhythm information. We calculated the R/S transition for both

beats and combined them into a single feature by subtracting

both values.

The delineation of the ECG signal for each patient was

accomplished using the convolutional neural network designed

by Jimenez-Perez et al. (16, 17). Subsequently, cardiac cycles

were isolated, extracting the PVC beat and its immediately

preceding one. QRS complexes were segmented, and R/S ratios

on the precordial leads were calculated for both beats.

A battery of algorithms were tested for both models: the

support vector machines (SVM) implementation from scikit-

learn (18) called NuSVC, which is a SVM classifier that uses the

Nu parameter to control the number of support vectors;

multilayer perceptron (MLP); extra trees (ET); random forest

(RF) from scikit-learn (18); and XGBoost solution for Python by

Chen and Guestrin (19), were tested for both models. The

hyperparameters tuned for each model are listed in Table 1.

The model’s performance was evaluated using two metrics:

accuracy and, considering the imbalanced nature of the classes,

the macro-average sensitivity. The macro-average sensitivity

assigns equal weight to both classes, as shown in Equation 1,

ensuring that the contribution made by the LVOT classification

(the less frequent category) is not underestimated in the final result:

MA ¼ 1
2

TP
TP þ FN

þ TN
TN þ FP

� �
, (1)

beingMA the Macro-Average sensitivity, TP the True Positives, TN

the True Negatives, FN the False Negatives and FP the False

Positives. This can also be interpreted as the weighted sum of the

individual sensitivity of each class.

The presented results were obtained using DS-114 as test set.

This choice was made to ensure comparability among the results,

given that DS-114 is the only database containing both QRS

complexes and patient clinical information.
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To improve the classification process, we analyzed the feature

relevance in the best model of the approach based on QRS

complex analysis, using the SHAP tool (11) and Gini’s coefficient

(12). The most significant features, identified through this

analysis, were retained for their clinical significance. These

features were then incorporated into the model based on clinical

features. The same methodology was applied to the third

approach to identify and retain the most critical features.
2.3 Unsupervised models

We aimed to examine how different origins are clustered based

on the labels of the specific SOO provided by clinicians. We used

hierarchical clustering because of its ability to dynamically organize

samples into clusters based on similarity, offering flexibility in

accommodating the inherent complexity of ventricular SOOs.

The initial step involved the reduction and consolidation of

various labels provided by clinicians. The original 56 labels were

condensed into a more manageable set of 7 labels, following the

labelling of Penela et al. (9), since some of the cases from DS-

114 were used in that study as well. The final labelling includes:

right coronary cusp (RCC), left coronary cusp (LCC), RCC/LCC

commissure, LVOT sub valvular, LV summit, RVOT septum and

RVOT free wall.

Utilizing the meticulously curated dataset, we employed

hierarchical clustering to reveal patterns and relationships among

distinct ventricular SOOs. We used the Ward’s variance

minimization method from scipy to determine how clusters are

formed (20, 21), allowing us to group samples without the need to

predefine the number of clusters—a crucial advantage in situations

where the optimal number of clusters is not predetermined.
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2.4 Experiments

We devised a comprehensive set of experiments, each

providing complementary insights into the challenging task of

accurately classifying the SOO as either right ventricular outflow

tract (RVOT) or left ventricular outflow tract (LVOT). The

experiments focused on supervised approaches, labelled A, B, and

C, were designed to harness the power of diverse data sources

and methodologies. Experiment D was designed for the

unsupervised approach, focusing on exploring different ways to

cluster the specific SOO. A summary of the experiments is

shown in Table 2.

2.4.1 Experiment A: training on QRS morphology
This experiment aimed to train the models exclusively with

QRS complexes. Two distinct scenarios were considered. In

Scenario 1 (A.1), the model was trained and tested only with

dataset DS-114. In the second Scenario (A.2), all other databases

were also incorporated, all the test subsets were included in the

hyperparameters grid search, but the results were reported using

the DS-114 test subset.

2.4.2 Experiment B: training on clinical variables
and features from the ECG

First, labels assigned by clinicians were compared with those

predicted by our model, considering uncertainties in clinically-

defined transitions. Subsequently, the precordial transition

vectors were defined for each patient. These vectors, each with a
TABLE 2 Summary of experiments with supervised approaches.

Experiment Scenario Input
A 1 QRS complexes from DS-114

2 QRS complexes from all databases

B 1 BinAge, sex, HTA, BinV3 and PTR

2 BinAge, sex, HTA, BinV3 and PTC

3 NormAge, sex, HTA, AmpV3 and PTR

4 NormAge, sex, HTA, AmpV3 and vPTC

5 NormAge, sex, HTA, AmpV3 and vPTCps

6 NormAge, sex, HTA, AmpV3 and vPTCVal

7 NormAge, sex, HTA, AmpV3 and vPTCpsVal

C 1 Binary prediction of best model in Experiment A
Best features from best model in Experiment B

2 Probability per class of best model in Experiment A
Best features from best model in Experiment B

3 Best features from best model in Experiment A
Best features from best model in Experiment B

4 Binary prediction of best model in Experiment A
Best features from best model in Experiment A
Best features from best model in Experiment B

5 Probability per class of best model in Experiment A
Best features from best model in Experiment A
Best features from best model in Experiment B

BinAge, Binarized age with threshold >50; NormAge, Normalized age; HTA,

Hypertension; BinV3, Binarized amplitude in V3 with threshold >1 mV; NormV3,

Amplitude in V3; PTR, Precordial transition reported by clinicians; PTC,

Precordial transition calculated; vPTC, Precordial transition calculated in vector

form; vPTCVal, R/S values of the precordial transition calculated in vector form;

vPTCps, Precordial transition calculated considering sinus rhythm and PVC beats

in vector form; vPTCpsVal, R/S values of the precordial transition calculated

considering sinus rhythm and PVC beats in vector form.
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length of six, were created with all elements set to zero, except

for the transition point, which was assigned a value of 1. Vectors

were built for both calculated and clinically estimated transitions.

The dissimilarity between automatic and clinically reported

transitions was then assessed using vector shifting, a measure

that quantifies positional distance. Diverse models were

subsequently trained using both calculated and provided

precordial transitions, along with patient-specific clinical

information. This comprehensive approach aimed to evaluate the

accuracy and alignment between automatically obtained

precordial transitions and clinically annotated transitions,

considering the broader context of patient-specific clinical data.

A first model was trained with the same information as utilized

by Penela et al. (9), serving as the reference (B.1). In the second

Scenario (B.2), the calculated precordial lead was employed

instead of the clinical annotations. In the third Scenario (B.3),

clinical annotations were utilized, but thresholds were removed.

In Scenario four (B.4), the calculated PVC transition without

thresholds was incorporated. The fifth Scenario (B.5) involved a

combined version of the PVC and sinus rhythm transitions

without thresholds. In Scenario six (B.6), no thresholds were

applied, and the PVC transition utilized the R/S transition rather

than the lead name alone. Finally, in the seventh Scenario (B.7),

the approach mirrored that of scenario six, but sinus rhythm

values were also included.

2.4.3 Experiment C: training on combined QRS
morphology and clinical data

In this experiment, we leveraged the optimal model from

Experiment A to identify the most relevant QRS features. We

conducted inference on the training set and combined these

results with the clinical features employed by the best model

from Experiment B. Furthermore, the amplitudes identified as

the most relevant in Experiment A were integrated. This process

resulted in the creation of five new training scenarios. Scenario

C.1 included the binary prediction of the best model from

Experiment A. Scenario C.2 replaced the binary prediction with

the probability per class, accommodating instances where the

model’s prediction was less clear. In Scenario C.3, the most

relevant amplitudes were introduced as additional features.

Finally, Scenarios C.4 and C.5 represent combinations of C.1 and

C.2, respectively, with the inclusion of the relevant amplitudes,

ensuring a comprehensive exploration of all possible combinations.

2.4.4 Experiment D: unsupervised clustering of
the SOO

After identifying the best set of features, we explored the

distribution of specific SOO using hierarchical clustering to

examine how the origins were dispersed. To determine the

optimal threshold at which clusters are not merged, we used grid

search while assessing the clustering through the silhouette score.

For better visualization, a heatmap was used to summarize the

clustering information. Additionally, the labels were grouped in 3

major structures: aortic cusp (AoC), RVOT and LVOT. Note that

although AoC is part of the LVOT, it comprises various distinct

labels. Anatomically, these labels are in closer proximity to each
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other compared to other LVOT structures. Furthermore, due to

their proximity to lead V1, they are more likely to manifest a

LBBB pattern (6). Interestingly, LBBB patterns are typically

associated with an origin in the RVOT. Given the intricate

nature of the aortic cusp and its unique characteristics, it justifies

a dedicated and focused study.
3 Results

3.1 Experiment A: training on QRS
morphology

The results of Experiment A (Figure 2) show that Scenario A.1

achieved the highest accuracy in the RF, MLP, and ET models.

However, the macro-average sensitivity is comparatively lower. In

examining individual class performances, Scenario A.1

demonstrated a 68% accuracy and 41% macro-average sensitivity,

aligning with perfect classification for RVOT, but 0% for LVOT.

Conversely, in Scenario A.2, the XGB model yielded similar
FIGURE 2

Models score comparison. RF, Random Forest; SVM, Support Vector Machin
accuracy. � shows the highest scores at 68% in RF, MLP and ET for Experim
� shows the highest score at 54% for XGB in Experiment A, Scenario 2 (A.2).
only DS-114 (Scenario 1).
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accuracy results (66%) and a higher macro-average sensitivity,

indicating that the use of multiple databases for training

decreases the risk of overfitting, this can be evidenced in Figure 3

which shows the confusion matrix for the XGB model with a

higher performance for LVOT cases.

This XGB model proved to be the optimal in Experiment

A. Upon evaluating the Gini’s coefficient of the model, the

analysis revealed that the most influential leads were V3, V4, and

V2, accounting for approximately 51% of the total cumulative

score. This was followed by aVR (9.7%) and V1 (8%). Further

examination of the signal indicated that the most critical sections

of the QRS complex were V3 between 60%-70% of the cardiac

cycle, which corresponds to the transition between the R and the

S waves, followed by V4 in the same section of the QRS

complex, and V2 in the 10%-20% section, which corresponds to

the beginning of the Q wave. The distribution of relevance per

section in the most influential leads is depicted in Figure 4.

These relevant segments identified by the Gini’s coefficient

closely align with those identified in the SHAP analysis, as

depicted in Figure 5. The beeswarm plot visually represents the
e; MLP, Multilayer Perceptron; ET, Extra Trees; XGB, XGBoost. (A) Models
ent A, Scenario 1 (A.1). (B) Models macro-average sensitivity comparison.
Achieving better results when using all databases (Scenario 2) than using
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FIGURE 3

Confusion matrix of the model of Experiment A.2 with XGBoost.

Bocanegra-Pérez et al. 10.3389/fcvm.2024.1353096
salient features and indicates the impact of each feature along the

X-axis. The amplitude of the SHAP value reflects the feature’s

relevance, with the sign denoting its contribution direction—

negative values correspond to LVOT, and positive values to

RVOT. Furthermore, warm colors signify higher voltages, while

cold colors indicate lower voltages.

Leads V2, V3, and V4 consistently stand out as the most

influential, closely followed by V1 and aVR. The beeswarm

plot highlights the correlation between low voltage values

(blue in Figure 5) in the R/S section of the QRS complexes in

V1, V2, V3, and V4 (50%-80% of QRS complex), along with

the initial part of the QRS complex in V2, with an association

to RVOT origin. Conversely, elevated voltages (orange in

Figure 4) in these segments are linked to LVOT. This can
FIGURE 4

Signal comparison between the average QRS complex of right ventricular ou
cases, in orange, in the precordial leads. The distribution of relevance per se
per lead. Dashed lines in red mark segments of 10% of the original signal.
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equally be observed in Figure 4, in which the differences

between LVOT and RVOT origin signals are shown. In the

R/S transition segment of V1, V2, V3 and V4, the average

normalized voltage of LVOT is higher. The same happens in

the initial segment of V2, just before the R wave slope

becomes discernible.
3.2 Experiment B: training on clinical
variables and features from the ECG

When compared with clinician annotations, the automatic ones

coincided with the same precordial lead only in 23.5% of instances.

However, the average shifting was 1.37, with an interquartile range

of 1.5 and a median of 1. This suggests a typical shift of around one

lead (e.g., transition between V2 and V3 vs between V3 and V4),

with some cases displaying more substantial deviations.

The impact of these differences is reflected in the results of the

model training.

In contrast to the results presented in Figure 2, the

outcomes of the models trained with clinical variables

(Figure 6) reveal that the top-performing scenario remains

consistent for both accuracy and macro-average sensitivity

metrics. Scenario B.4, encompassing automatic precordial

transition in vector form, sex, hypertension, amplitude of

V3 lead, and normalized age, achieved an impressive 89%

accuracy and 86% macro-average sensitivity (see Figure 6).

Using Scenario B.1 as a baseline, which only employs the

clinical features from Penela et al. (9), we observe a

performance decrease with the inclusion of the computed

transition (Scenario B.2). Additionally, normalizing age and

incorporating V3 lead amplitude (Scenario B.3) did not

enhance the performance. Introducing R/S ratio values per

lead (Scenarios B.6 and B.7) failed to yield an improvement.

Notably, only Scenarios B.4 (89% accuracy and 86% macro-
tflow tract (RVOT) cases, in blue, vs. left ventricular outflow tract (LVOT)
ction; in blue scaled in the background, the amplitudes were normalized
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FIGURE 5

Beeswarm graph from the SHAP values. The SHAP values (horizontal axis) show how each feature (left column) contributes to the negative (LVOT) or
positive (RVOT) outputs. Color is employed to represent the original value of a feature, in this case, mean voltage per QRS complex section (each
feature corresponds to 10% sections of the QRS complex in each lead). Each dot corresponds to one patient.

FIGURE 6

Models score comparison. RF, Random Forest; SVM, Support Vector Machine; MLP, Multilayer Perceptron; ET, Extra Trees; XGB, XGBoost; RF, Random
Forest; SVM, Support Vector Machine; MLP, Multilayer Perceptron; ET, Extra Trees; XGB, XGBoost. (A) Models accuracy. � shows the highest scores at
89% in XGB for Experiment B, Scenario 4 (B.4). (B) Models macro-average sensitivity comparison. � shows the highest score at 86% for XGB in
Experiment B, Scenario 4 (B.4).

Bocanegra-Pérez et al. 10.3389/fcvm.2024.1353096
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FIGURE 7

Models score comparison. RF, Random Forest; SVM, Support Vector Machine; MLP, Multilayer Perceptron; ET, Extra Trees; XGB, XGBoost. (A) Models
accuracy. � shows the highest scores at 89% in XGB for Experiment C, Scenario 1 (C.1). (B) Models macro-average sensitivity comparison. � shows the
highest score at 86% for XGB in Experiment C, Scenario 1 (C.1).

Bocanegra-Pérez et al. 10.3389/fcvm.2024.1353096
average sensitivity) and B.5 (87% accuracy and 82% macro-

average sensitivity) surpassed the scores of B.1 (86%

accuracy and 81% macro-average sensitivity). The key

distinction between these scenarios is the inclusion of the

sinus rhythm transition in B.5. While features from B.1

consistently outperform others across all models, alternatives

using the calculated precordial transition for both sinus

rhythm and PVC, and PVC alone, outperform Scenario B.1.
3.3 Experiment C: training on a combination
of QRS morphology and clinical data

The outcomes for the third set of experiments are illustrated in

Figure 7. Notably, the best results align with the optimal outcomes of

the Experiment B, 89% of accuracy and 86% of macro-average

sensitivity. Upon scrutinizing the feature relevance of best model

in Experiment C (C.1, with the prediction of SOO done by the

best model in Experiment A.2 and the features of the best model

of Experiment B.4: normalized age, sex, hypertension, amplitude

in V3 and calculated precordial transition in vector form) using
Frontiers in Cardiovascular Medicine 09
the Gini’s coefficient, we identified age and amplitude in V3 as the

two most crucial features. These were closely followed by the

prediction of the best model in Experiment A.2, with sex trailing

further behind. Interestingly, this differs from the findings of the

SHAP analysis depicted in Figure 8. In this analysis, SHAP values

reveal that age and sex emerge as the most relevant features,

followed by the prediction of the QRS model and amplitude in V3.

The similarity in results between Experiment C and

Experiment B suggests a potential case of redundancy in the

features used by the model. Specifically, there appears to be

overlap between the prediction generated by the best model in

Experiment A.2 and the precordial transition vector. To

investigate this further, we conducted a test comparing the

performance of a model that excludes both the model prediction

from Experiment A.2 and the precordial transition vector, with

two other models incorporating each feature separately.

We observed that adding both features separately led to the

same increase in model performance, approximately 4.5

percentage points. This finding suggests that both the model

prediction from Experiment A.2 and the precordial transition

vector may have a comparable impact on the model’s performance.
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FIGURE 8

SHAP values for the best model in Experiment C (C.1 with XGBoost). The SHAP values (horizontal axis) show how each feature (left column)
contributes to the negative (LVOT) or positive (RVOT) outputs. Color is employed to represent the original value of a feature. Each dot
corresponds to one patient. Age: age of the patient, red indicates an older patient. Sex: sex of the patient, red indicates male patients,
PredictionQRS: Binary prediction done by the best model of Experiment A.2, red indicates a LVOT prediction. V3_Amp: Amplitude in lead V3, red
indicates a higher peak voltage in V3.
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Furthermore, when comparing the model performance without

the precordial transition and model prediction from Experiment

A.2 with the model obtained during Experiment C, we noted a

decrease in classification performance of 4.5 percentage points.

This further supports the notion that both features exert a

similar effect on the model.

These findings underscore the importance of considering

feature redundancy in model development and suggest potential

avenues for optimization in future iterations of the model.
FIGURE 9

Clustering results using specific SOO as label. Y-axis show the
clusters, X-axis show the specific SOO, being: LVOTSUBVALVULAR,
left ventricular outflow tract in the sub-valvular area; SUMMIT,
summit of the left ventricle; RCC, right coronary cusp; LCC, left
coronary cusp; COMMISSURE, RCC/LCC commissure;
RVOTSEPTUM, the septum in the right ventricular outflow tract
and RVOTFREEWALL, the free wall in the right ventricular outflow
tract. Green zone groups the LVOT origins, excluding the AoC
origins, the red zone groups the RVOT origins and the yellow zone
shows the AoC origins. The grayscale shows the frequency of each
origin per cluster.
3.4 Experiment D: unsupervised clustering
of the site of origin

The silhouette score identified 25 clusters as optimal, thereby

shedding light on the inherent data distribution of DS-114.

Figure 9 illustrates the clustering results using refined labels,

with colors indicating their major region classification (AoC,

LVOT, and RVOT). Notably, clusters with similar numbers are

closely situated in the dendrogram, implying that the origins

in cluster 20, for instance, are closer to those in cluster 25

than to those in cluster 1. To simplify the labels, they were

categorized as top (1-8), mid (9-17), and bottom (18-25). In

the top category, LVOT cases exhibited a low occurrence,

while the majority of RVOT cases originated from the free

wall. Within the mid-category, RVOT originating from the

septum and free wall were evenly distributed, with an

increased presence of aortic cusp cases in clusters featuring

more RVOT septum origins. Finally, the bottom section of the

heatmap indicates a higher prevalence of RVOT septum cases

accompanied by a simultaneous decrease in RCC cases. This

suggests that RCC origins tend to cluster more than other

AoC origins, and sites associated with the AoC cluster more
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closely with septal origins. Comparing the density distribution

of the RVOT free wall and septum origins, these origins tend

to cluster more than others, with notable peak densities in

certain clusters (1 and 8 for the free wall and 9 and 21 for

the septum).
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4 Discussion

Radiofrequency ablation procedures have become a prevalent

method for treating OTVAs, yet the efficacy of the procedure

leaves room for improvement, often marked by a high number of

recurrence cases. An integral aspect of refining this process

involves meticulous planning, particularly in the identification of

the SOO before the procedure commences. Numerous

methodologies exist for determining the SOO, encompassing

morphological analysis of the ECG, examination of patient

clinical data, and signal analysis through ML.

In the context of daily medical practice, the efficiency gains

offered by streamlined SOO identification cannot be overstated.

By reducing the time required for clinicians to pinpoint the

SOO, the proposed approach holds promise for expediting

patient care pathways and minimizing procedural risks.

Moreover, by integrating data from multiple hospitals and

incorporating patient-specific variables such as age and sex, your

methodology aims to mitigate biases inherent in existing criteria

and deliver more personalized treatment strategies. This holistic

approach not only empowers clinicians with actionable insights

but also serves as a pivotal step towards standardizing OTVA

diagnosis and treatment across diverse patient populations.

The work presented herein introduces a decision system

designed to differentiate origins in RVOT and LVOT, building

upon the groundwork laid by Penela et al. (9) and Doste et al.

(10). Their earlier works involved the utilization of clinical data

with visual ECG analysis and multi-center, simulated ECG

signals, respectively. In our proposal, three approaches using

different input features were designed.

The first approach (Experiment A), inspired by the

methodology of Doste et al. (10), exclusively employs QRS

complexes. This initial strategy not only facilitated origin

classification, but also provided valuable insights into the

significance of each segment of the QRS complex, contributing to

a deeper understanding of the decision-making process employed

by the model. The results of the first approach in Experiment A

revealed a peak accuracy of approximately 68%. However, a more

comprehensive analysis, including macro-average sensitivity,

exposed a significant limitation: the model consistently classified

all samples as RVOT origin. This outcome, while yielding a high

accuracy percentage owing to the higher prevalence of RVOT

origins, poses a risk associated to the inherent class imbalance.

In pursuit of a more balanced assessment, the macro-average

sensitivity emerged as a pivotal metric, revealing that the most

effective result was achieved by the XGBoost model trained with

all databases, attaining 61% accuracy and 41% macro-average

sensitivity. The importance of macro-average sensitivity is

evident when comparing the results of Scenario 1 and 2 in

Experiment A. Despite higher accuracy in models like RF, ET,

SVM, and MLP, they showed lower macro-average sensitivity

compared to the best-performing model. Notably, the top

model achieved similar accuracy but higher macro-average

sensitivity. Although models from Experiment A.1 aren’t directly

applicable, this comparison highlights the significance of macro-

average sensitivity.
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Although falling short of the 84%–86% range reported by Doste

et al. (10), potential discrepancies in preprocessing, particularly in

the signal alignment stage, could contribute to this variation in

performane. Another important source of discrepancies arises

from the differences in the acquisition of various databases,

making standardization challenging. Uniformization techniques

applied to datasets should enhance the accuracy.

SHAP analysis results revealed that leads V1, V2, V3, and V4

play crucial roles in the R/S transition segment. Elevated voltages

in these regions were associated with the origins in the LVOT.

This correlation may be attributed to an early R/S transition,

where higher voltages signify a less negative peak in the S-wave.

According to Anderson et al. (4), an early precordial transition is

indicative of LVOT origin. Notably, the early high amplitude

observed in V2 may be linked to the ascending slope of the

R-wave, as depicted in Figure 4. This specific aspect of the QRS

complex highlights the differences in the R-wave between the

LVOT and RVOT origins.

The second approach (Experiment B) is focused on a

combination of clinical variables and some features from the ECG,

as proposed by Penela et al. (9). To enhance generalization and

mitigate overfitting, this approach eliminated thresholds and labels

that were dependent on clinician criteria. In addition, it

introduced an innovative algorithm for determining the precordial

transition based on the R/S amplitude in the precordial leads,

assigning a unique value to each lead that encapsulates the

transition point. Optimal performance (accuracy 89%, macro-

average sensitivity 86%) was observed when binarizing these values

and converting them into a zero vector, with one at the calculated

transition point (precordial transition calculated in vector form;

see Table 2 for other forms to report the precordial transition).

When comparing these algorithm-generated transitions with those

determined by clinicians, alignment was achieved in only 23.5% of

the cases. However, an in-depth analysis of the discrepancies

revealed notable consistency: the majority of differences were

confined to a single lead, often with atypical values. These

deviations may be attributed to the variability in signal selection.

The uncertainty about whether the signals retrieved from the

number of available ECG accurately corresponded to those

employed by clinicians for the initial diagnosis introduces another

potential source of discrepancy. This underscores the importance

of signal consistency when aligning algorithmic results with

clinical annotations.

Although our accuracy results fall below those obtained by

Penela et al. (9) (89% vs. 94%), their approach involved manually

setting thresholds and selecting precordial transitions,

introducing subjectivity into the process. In contrast, our

approach eliminates dependence on thresholds or manual

decision systems, making it more resilient to variations in clinical

judgments and databases from different hospitals.

The third approach (Experiment C) introduced a novel strategy

by leveraging the inference of the first model along with the most

influential features identified in the best model of the second

approach. This iterative process is crucial in refining the

combination of the QRS complex and clinical data, leading to a

comprehensive and robust decision system.
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Metrics obtained in models for Experiment C did not surpass

those obtained in Experiment B, indicating that the addition of

raw QRS complexes to the clinical data and most relevant ECG

features did not significantly enhance the overall performance of

the system. This finding underscores the complexity inherent in

the XGBoost model, particularly in the tuning of hyperparameters,

which may inadvertently increase the complexity of individual

trees. Consequently, the impact of introducing new features from

Experiment A may be attenuated by the existing relationships

captured by the features in Experiment B. Furthermore, upon

analysis of the SHAP values in Figure 8, the prediction of the

model from Experiment A is consistently ranked among the top 3

features, underscoring its influence on the decisions of the model

from Experiment C. Despite the comparable performance of

Models B and C, it is essential to acknowledge that they may

employ distinct intrinsic pathways to achieve their respective results.

Alternatively, the precordial transition and the amplitude in V3

may be enough to capture the main differences in the ECG between

LVOT and RVOT origins. Nevertheless, feature analysis provided

valuable insights. Age, sex, and the binary prediction of the best

model in Experiment A.2 emerged as the most crucial features,

followed by the amplitude in V3. Interestingly, the precordial

transition vector has diminished importance in this approach,

possibly due to redundancy with the best model in Experiment

A.2. This was tested through an experiment in which the

performance of the model was compared by removing both

features, revealing that the impact on the final model is similar.

Similarly, the most relevant amplitudes contributed to the

decrease in the performance of the model.

When comparing these results with the weighted hybrid score

designed by Penela et al. (9), the expected behavior was similar:

older male patients with a high voltage amplitude in V3 were

more likely to have an LVOT origin. However, the SHAP analysis

in Figure 8 indicates that the impact of the precordial transition

is minimal. Additionally, the Gini coefficient showed that age and

amplitude in V3 were the most relevant features. When

comparing the SHAP and Gini rankings, the top features remain

unchanged; however, the order is different. This could be because

of the number of samples used for each method; while the Gini

coefficient is based on the samples used to train the system,

SHAP uses the complete dataset. Overall, the performance of this

approach is comparable with other solutions (9, 10), with the

addition of clinical data and the elimination of thresholds and

visual analysis, which powers its generalization capabilities.

An unsupervised approach was chosen for the analysis of specific

SOOs. This decision was made because of the challenges associated

with directly addressing this problem through a supervised

approach. The limited number of cases for certain source sites,

such as the summit in LVOT (only two cases), and the uneven

distribution of cases among classes, could lead to challenges in

hyperparameter optimization, potentially resulting in overfitting.

Instead, our approach aims to understand how data are naturally

distributed. By employing an unsupervised methodology, we sought

to identify the sites that clustered together most effectively. This

analysis helps us discern the optimal strategy for decomposing the
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problem and developing a specific SOO classification system that

performs as effectively as binary classification.

The results of the unsupervised analyses suggest that sites

associated with the AoC tend to cluster more closely with

septum origins. Moreover, there is a tendency for RCC origins to

cluster more consistently than LCC and LCC/RCC commissure

origins, which exhibit a more scattered distribution across

clusters. This clustering pattern might be influenced by certain

RCC origins being closer to the posterior region of the RVOT

than to the septum or summit.

Furthermore, there is a clear distinction between origins from

free wall and septum, often being grouped in some clusters,

which suggest that these origins are easier to classify. While

LVOT origins, excluding AoC, do not display a clear pattern due

to their limited occurrences, this preliminary exploration of

specific SOO classifications provides valuable insights, suggesting

a tiered classification approach, starting with the identification of

AoC and RVOT and then proceeding accordingly.

While the developed system shows promise, it is not without

limitations. Firstly, the preprocessing applied to the model using

QRS complexes results in the elimination of high-frequency

features within the signal. This limitation hampers the

identification of certain patterns, both in the model itself and in

subsequent analyses. Additionally, there is a substantial

imbalance in the database, with a lower number of LVOT cases.

While signal simulations partially mitigate this issue, including

clinical information from patients remains a challenge for the

model. This imbalance is also evident in the unsupervised

analysis of specific SOO. Future efforts should focus on

incorporating tools capable of handling signals with

higher frequencies and implementing strategies to address the

scarcity of LVOT data.
5 Conclusions

The proposed method has demonstrated its effectiveness in

classifying LVOT and RVOT origins. By incorporating signal

analysis and clinical data, the approach eliminates thresholds and

manual analyses, reducing the potential for inconsistencies in

diagnosis while maintaining interpretability. However, to further

enhance the system, additional analyses with a broader set of

features are recommended. Collecting more cases is also essential

for improving the system’s generalization power. Preliminary

insights into identifying the specific SOO suggest the presence of

discernible patterns. Future developments could capitalize on

these patterns to create a robust system capable of accurately

identifying specific SOOs with varying levels of precision.
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