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Editorial on the Research Topic
Computational modelling of cardiovascular hemodynamics and
machine learning
Artificial Intelligence (A.I.) holds promises in many fields, especially in the health sector.

Here, pattern recognition of complex problems—a major strength of A.I. is what makes

A.I. so useful. Despite its promises, applying A.I. to the health sector comes with

specific challenges, of which the papers in the current issue aim to provide solutions

(1–3). This editorial will offer specific background theory on A.I. to better understand

the solutions offered in this issue.

The general requirements for high precision, generalizable A.I. models are the data set

on which the model is trained/validated is homogeneous, well-labelled (for supervised

learning), the data sets are of sufficient size, and the data set contains more

measurements repeats than features (−10:1) (4, 5). The size of the data set is dependent

on the complexity of the model. In general, the rule of thumb is to have 10 times as

much data as the number of parameters in your model. As a deep neural network

(NN) contains easily more than 100,000 parameters, data sets of 1M points (e.g., 1M

patients) are often required, which is quite an unrealistic assumption. Hence, several

engineering methods have been proposed to overcome this challenge, like data

augmentation, transfer learning or data synthesis. Some of these methods have been

proposed in the current issue.

The neural network predictions are best described by conditional Bayesian statistics,

which depend not only on the statistical distributions (variance, mean, outliers, missing

values) of the data sets (e.g., feature space), but also on the modelling complexity (e.g.,

weight distribution) (6–8). There is a well-known trade-off between variance and bias

which is determined by the modelling complexity and size of the feature space (6–8).

Increasing complexity of the model at constant input, reduces the variance and

improves training predictions but tend to increase the bias thereby reducing the

generalizability of the model to new data sets. A recent study shed light on how model

generalizability is affected. The two main factors are the curvature of the loss function,
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and the variability of the weights within each layer of the network

(9). Well-known procedures to improve generalizability (tuning

parameters, regularisation, drop out) affected these two

parameters as expected (10, 11). It is therefore essential to not

only validate the model by splitting the data set in training and

validation data, but also to test the model on new, independent

data. Prediction accuracies need to be high in both the validation

and testing studies.

This issue of Frontiers had as subject Computational

modelling, Cardiovascular Hemodynamic and Artificial

Intelligence and contained 9 papers. Two (2) papers in this issue

focussed on rapid flow modelling with A.I. In the first paper

(Pavlo Yevtushenko et al.), a RNN (1,100 nodes) was trained on

244 patients and was validated on 23 patients using stationary

flow data generated with Computational Fluid Dynamics (CFD)

applied on a systolic geometry of aortic valves and the proximal

aorta obtained with a combination of echocardiography and

computed tomography (CT) imaging. The NN predicted the

pressure and wall shear stress distribution over the centreline

geometry with >90% accuracy and within seconds. The

limitations of this approach are: (i) the simplicity of the ground

truth (stationary flow, stiff walls, absence of moving valves), (ii)

relatively small data set and (iii) the absence of testing on an

independent data set. The second study (Morgan et al.) used the

CFD derived ground truth but predicted the velocity field instead

of pressure and shear stress. This creates a higher flexibility to

predict more sophisticated biomechanical factors derived from

the velocity field. The training set was created using synthetic

data generation algorithm, a novel method to overcome the

“curse of dimensionality” of A.I. In addition, it was optimised for

speed, by using state-of-the art feature reduction methods

(t-SNE) and Proper Orthogonal Decomposition of the velocity

field (cPOD). This method could easily be extended to include

time-dependence, elastic walls, and moving boundaries, making

this method applicable to a variety of health problems.

Non-invasive technologies (Computer Tomography (CT),

magnetic resonance imaging (MRI)) have been increasingly used

for screening in Cardiology. These techniques are getting more

sophisticated in their speed, and analysis, but have a lower

spatial resolution (−200 micron) than invasive techniques (−10–
50 micron). In addition, the radiation dose of CT is high,

preventing the creation of time series. In two review papers, the

authors (Liao et al. and Baeßler et al.) describe A.I. studies aimed

at reducing imaging noise when radiation dose in CT is reduced.

It is in this application, that CNN models proved to be superior

to more classical methods (regression trees, support vector

machine, k-NN). The same studies indicated that A.I. methods

are useful for vessel segmentation, and stenosis detection. While

these studies indicate a high sensitivity of DNN classifiers, the

specificity of these Deep Neural Network models appeared rather

low. This is probably due to the effect of noise in the feature

space on classification, as indicated above. AI for calcification

classification and plaque composition detection with CT
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radiometry shows improvement over the more classical methods

but needs further development because of low accuracies. In their

review papers, Liao and Baessler discussed coronary artery

stenosis detection and fractional flow reserve (FFR). Their review

indicated that both can be detected with high accuracy.

Two studies investigated the origins of errors in parameters

derived from flow measurements in models of idealised coronary

stenosis (Nguyen Ho et al.), and cardiac output derived from CT

coronary aniography (Leiknes et al.). These studies indicate that

the major problem is in classification of the anatomical

parameters. In order to overcome this problem, Nguyen et al.

applied ensemble averaging. The principle is based on repeated

analysis of slightly different model parameters, thereby reducing

Bayesian error propagation in neural networks. Indeed, this

technique showed an improvement of classification accuracy over

classical backpropagation methods and feature averaging methods.

In summary, A.I. models are increasingly applied to problems

in Cardiology. These models show excellent results in detecting the

complicated patterns underlying cardiovascular disease. The

requirement to acquire a well-validated, generalizable predictor

are demanding and are briefly discussed in the introduction of

this paper. As most models presented here use rather small data

sets, their accuracy and generalizability may be improved. Besides

increasing the feature space (number of cases), several solutions

for working with small data sets have been introduced in this

journal, like ensemble averaging, and synthetic data generation.
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