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AI-based cluster analysis enables
outcomes prediction among
patients with increased LVM
Ranel Loutati, Yotam Kolben, David Luria, Offer Amir and
Yitschak Biton*

Heart Institute, Hadassah Medical Center and The Faculty of Medicine, Hebrew University of Jerusalem,
Jerusalem, Israel
Background: The traditional classification of left ventricular hypertrophy (LVH),
which relies on left ventricular geometry, fails to correlate with outcomes
among patients with increased LV mass (LVM).
Objectives: To identify unique clinical phenotypes of increased LVM patients
using unsupervised cluster analysis, and to explore their association with
clinical outcomes.
Methods: Among the UK Biobank participants, increased LVM was defined as
LVM index ≥72 g/m2 for men, and LVM index ≥55 g/m2 for women. Baseline
demographic, clinical, and laboratory data were collected from the database.
Using Ward’s minimum variance method, patients were clustered based on 27
variables. The primary outcome was a composite of all-cause mortality with
heart failure (HF) admissions, ventricular arrhythmia, and atrial fibrillation (AF).
Cox proportional hazard model and Kaplan-Meier survival analysis were applied.
Results: Increased LVM was found in 4,255 individuals, with an average age of
64± 7 years. Of these patients, 2,447 (58%) were women. Through cluster
analysis, four distinct subgroups were identified. Over a median follow-up
period of 5 years (IQR: 4-6), 100 patients (2%) died, 118 (2.8%) were
admissioned due to HF, 29 (0.7%) were admissioned due to VA, and 208 (5%)
were admissioned due to AF. Univariate Cox analysis demonstrated significantly
elevated risks of major events for patients in the 2nd (HR= 1.6; 95% CI 1.2–2.16;
p < .001), 3rd (HR= 2.04; 95% CI 1.49–2.78; p < .001), and 4th (HR= 2.64; 95%
CI 1.92–3.62; p < .001) clusters compared to the 1st cluster. Further exploration
of each cluster revealed unique clinical phenotypes: Cluster 2 comprised mostly
overweight women with a high prevalence of chronic lung disease; Cluster 3
consisted mostly of men with a heightened burden of comorbidities; and
Cluster 4, mostly men, exhibited the most abnormal cardiac measures.
Conclusions: Unsupervised cluster analysis identified four outcomes-correlated
clusters among patients with increased LVM. This phenotypic classification holds
promise in offering valuable insights regarding clinical course and outcomes of
patients with increased LVM.
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Introduction

Increased left ventricular mass (LVM), often termed in its more severe manifestations

as left ventricular hypertrophy (LVH), represents a maladaptive response to various

cardiovascular insults, arising from both cardiac and systemic etiologies (1, 2). This

morphological alteration is a well-established independent predictor of major
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cardiovascular events (3–6) and mortality (7, 8). Furthermore, it

was intriguingly recognised as a potential treatable target with

prognostic implications in clinical trials for hypertension

treatment (9). Cardiac magnetic resonance imaging (CMR) is an

accurate and reproducible tool for the assessment of LVM,

offering additional data regrading the shape, size, and possible

pathologies of the left ventricle (10, 11).

The conventional four-tiered classification of LVH patients was

initially purposed by Khouri et al., based on the CMR images of

patients from the Dallas Heart Study (DHS) (12). This

classification is founded on the geometry of the left ventricle, and

exhibits a strong link to the pathophysiological mechanisms of

pressure and volume overload, which act as the driving forces

behind LVH development (13). However, this classification has

not consistently shown correlations with clinical outcomes in

population-based studies (14, 15), possibly due to its limited

consideration of accompyning co-morbidities and clinical

features. Hence, there is a need for the identification of high-risk

patients among the group of individuals with increased LVM.

Unsupervised cluster analysis plays a pivotal role in the

identification of distinct disease phenotypes, proving particularly

advantageous when exploring cohorts characterized by

heterogeneity (16–18). Therfore, the objectives of this study were

to utilize cluster analysis to identify various disease phenotypes

among patients with increased LVM within the heterogenous, low-

risk population of the UK Biobank participants. Additionally, we

aimed to investigate potential correlations between the identified

phenotypes and significant clinical outcomes. We sought to

explain our findings through cluster exploration and shed light on

the characteristics of each cluster using explainability methods.
Methods

Study population

Our analysis was performed on a dataset consists of information

obtained from the UK Biobank, which is a population-based

prospective cohort comprising more than half a million participants

aged 37–73, who were recruited in the United Kingdom between

2006 and 2010 (19). During recruitment, extensive data were

collected through questionnaires, physical measurements, and

biological samples. Furthermore, ongoing data collection was

conducted in subsets of the cohort, including repeated assessments

and multimodal imaging. To monitor health outcomes, all

participants are followed up through linkage to national health-

related databases (updated through May 25, 2023). All UK Biobank

participants provided written informed consent, and the analysis of

the UK Biobank data was approved by the Hadassah Medical

Center institutional review board (application 96272).
Cardiac magnetic resonance acquisition

For this study, we incorporated participants who had

undergone cardiac magnetic resonance (CMR) imaging as part of
Frontiers in Cardiovascular Medicine 02
the UK Biobank imaging assessment, and for whom the

comprehensive CMR dataset was accessible for retrieval as of

January 1, 2023. A comprehensive description of the entire CMR

protocol employed by the UK Biobank has been previously

documented in meticulous detail (20). In summary, all CMR

examinations were conducted within the United Kingdom using

a clinical wide-bore 1.5 Tesla scanner (MAGNETOM Aera,

Syngo Platform VD13A; Siemens Healthineers, Erlangen,

Germany). The acquisition techniques employed a balanced

steady-state free precession with typical parameter settings.
LVM estimation and increased LVM
definition

The estimation of LVM using myocardium contours from the

InlineVF algorithm was previously described (21). Indexing for

body surface area was performed using the DuBois formula (22).

The definition of increased LVM is based on previously

established cutoffs within the UK Biobank (23): LVM index

≥72 g/m2 for men, and LVM index ≥55 g/m2 for women. These

values represent measurements outside the 95% prediction

interval for all age groups.
Co-morbidities definitions

Co-morbidities were defined using self-report on diseases and

drugs, and inpatient ICD-9/10 codes. Each diagnosis was

timestamped in order to distinguish between clinical data that

was known prior to the CMR and subsequent increased LVM

diagnosis, which was used for clustering purposes.
Outcomes

The primary outcome comprised a composite of all-cause

mortality along with admissions due to heart failure (HF),

ventricular arrhythmia (VA), and atrial fibrillation (AF).

Secondary outcomes included individual occurrences of all-cause

mortality, HF admissions, VA, and AF. These outcomes were

defined using self-reported data on diseases and drugs, as well as

inpatient ICD-9/10 codes. The baseline for outcome definition

was established at the time of the participant’s CMR study at the

UK Biobank assessment center. Participants were followed for

the incidence of HF/VA/AF events, death, or until the end of the

follow-up period (November 27, 2022), whichever came first.
Unsupervised clustering

In order to decide how many clusters we aim to find, we

utilized a few commonly used methods for deciding the cutoff

that dictates the number of clusters. First we use the singular

value decomposition (SVD) decomposition to observe the

singular values of the data matrix. Essentialy, the singular values
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represent the data matrix core and allow us to easily perform

calculations of needed indices that assist in choosing the number

of clusters. Based on these values 2 methods can be used. The

former is the Elbow-method, in which the singular values are

plotted as bars, and an “elbow” is visually identified as they

descent. The point where the reduction in distortion, that

represent and error calculation, starts to slow down creates an

“elbow” shape on the plot, and it’s often where the optimal

number of clusters lies. The latter is to observe how many

components of the singular values are needed in order to explain

at least 90% of the explained variance. In the domain of tabular

data, the common rule of thumb is trying to explain 90%, as

opposed to other applications like in visual or auditory data,

where higher percentages are pursued. In order to add more

certainty to our choosing, three commonly used algorithms that

inspect the wellness of the clustering were used. The first was

Silhouette Coefficient, that measures the quality of clustering by

considering both the compactness of clusters and the separation

between clusters. It ranges from −1 to 1, where higher values

indicate better clustering. A value close to 1 suggests that the

clusters are well-separated and compact, indicating a good

clustering solution. The second method was Calinski-Harabasz

Index. The index, also known as the variance ratio criterion,

quantifies the ratio of between-cluster dispersion to within-cluster

dispersion. Higher values of the index indicate better clustering

quality. A higher value suggests that the clusters are more

compact and well-separated from each other. The third

algorithm was Davies-Bouldin Index, which evaluates both the

compactness of clusters and the separation between clusters.

Lower values of the index indicate better clustering quality. A

lower value suggests that the clusters are more compact and well-

separated, indicating good clustering. For the unsupervised

clustering analysis, we employed a widely used algorithm,

agglomerative clustering. Agglomerative clustering is a

hierarchical method that begins with individual data points and

gradually merges them into clusters based on their similarity.

Initially, each data point is treated as a separate cluster, and then,

using a chosen distance metric, clusters are iteratively merged

based on their proximity until a desired number of clusters or a

specified stopping criterion is reached. Specifically, we applied

Ward’s minimum variance method that aims to minimize the

variance within each cluster as new data points are added. The

result of the hierarchical structuring is presented via a

dendrogram, and is then colored in a fixed number of colors,

according to the number of clusters chosen by the methods

aforementioned above. After specifying the number of clusters

and creating them, we proceed with creating a heat map of all

the features in the data, calculated per cluster. Since some of the

columns in the data are the results of bloodwork, their values

were converted to binary values, where 1 indicating an abnormal

value, and 0 is in the normal range. Continuous and discrete

columns in the data then were processed differently. For the

continuous features we calculated the aggregated means per

cluster. In order to provide the same scale as the binary data, we

reported for each mean its respective quantile from all the

observations, providing a value between 0 and 1. For the binary
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columns, we calculated for each cluster the ratio of number of

abnormalities in the cluster over all abnormalities, per feature.

Thus we guarantee these numbers sum up to 1, which means

that we can distinguish if any cluster has a more prominent

percentages of abnormal diagnoses compared to the others. The

values for both types of data were then presented in a

2-dimensional table, where the x-axis represents the clusters

(C1, . . .Cnclusters ), and the y-axis represents the features

(F1, F2, . . .). The range 0–1 was divided to 5 even segments

and a respective color, and each cell was colored according to its

respective segment color, in order to visually express the qualities

that identify each cluster uniquely.
Statistical analysis

Continuous variables were expressed as mean ± standard

deviation if normally distributed or median with interquartile

range if skewed. Categorical variables were presented as

frequency (%). Differences between the four clusters were

analyzed using one-way ANOVA for continuous variables that

were normally distributed, while the Kruskal–Wallis test was

used to compare continuous variables that did not adhere to a

normal distribution. Multiple comparisons for continuous and

categorical variables were tested using Bonferroni’s correction.

For survival analysis patients were censored only in the case of

death. The probability of outcome according to the study groups

was graphically displayed according to the method of Kaplan–

Meier, with a comparison of cumulative event across strata by

the log-rank test. Univariate and multivariate Cox proportional

hazards regression modeling were used to compare patients in

each of the four clusters, with adjustment made to the strongest

predictor of mortality in LVH patients which is LVM (as a

continuous variable). Evaluations of the associations between

certain features and the composite outcome was also performed

by using univariate Cox modeling. All needed assumptions for

the use of Cox modeling were checked before a model was fitted.

Unsupervised cluster analyses was performed using Python

software version 3.11. All statistical analyses were performed

using R software version 3.4.4 (R Foundation for Statistical

Computing). An association was considered statistically

significant for a two-sided P value of less than 0.05.
Results

Study population and baseline
characteristics

Among the 60,650 UK-Biobank participants who underwent

CMR, 4,255 individuals met the cutoff for increased LVM

diagnosis. The final study had an average age of 64 ± 7 years, of

whom 58% were women. The average body mass index (BMI)

was 28 (5) which indicated that as an average, the study

population was over-weight. The most common co-morbidity

was hypertension, that was present in 47% of patients. Other
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common co-morbidities included dyslipidemia (30%), peripheral

vascular disease (26%), and diabetes mellitus (8%). Cardiac

measures that were calculated based on the CMR images

included left ventricular ejection fraction (LVEF), left ventricle

end diastolic volume (LVEDV), left ventricular end systolic

volume (LVESV), and left ventricle mass (LVM). All of those

measures didn’t appear to be abnormal in average, as expected in

a relatively healthy population such as the UK-Biobank

participants. All baseline characteristics are summarized in Table 1.
Unsupervised clustering results

SVD based methods suggested that a total of three or four

clusters would be appropriate for this study population. We then

employed different algorithms including the Silhouette

Coefficient, the Calinski-Harabasz index, and the Davies-Bouldin

index. Those algorithms, together with expert opinion, had

directed us to make the final choice of 4 clusters (see Figures 1A,B

and Table 2). The agglomerative clustering identified 4 distinct

clusters, as depicted in the dendrogram (Figure 2). The 1st and

the 2nd clusters were larger compared to the later two.
TABLE 1 Clinical characteristics of LVH patients.

Increased LVM (N = 4,255)
Age 64.2 ± 7.4

Female (57.5)

BMI, kg/m2 28.2 ± 4.96

BSA, m2 1.9 ± 0.218

Diabetes mellitus (8.3)

Hypertension (47.3)

Dyslipidemia (30.3)

Prior MI (3.9)

CHF (1.4)

PVD (26)

Chronic lung disease (2.8)

CKD (0.9)

Aortic stenosis (0.8)

Mitral regurgitation (0.6)

Atrial fibrillation (3)

LVEF, % 55.4 ± 7.3

LVEDV, ml 148 [125–175]

LVESV, ml 64 [52–80]

LVM index, g/m2 70 [60–78]

AST, U/L 24.4 [21–29]

ALT, U/L 20.5 [15.5–27.7]

Urea, mmol/L 5.28 [4.53–6.12]

Creatinine, µmol/L 69 [60.6–78.7]

HbA1c, mmol/L 34.9 [32.5–37.4]

HDL, mmol/L 1.40 [1.17–1.69]

LDL, mmol/L 3.52 [2.99–4.11]

Urate, µmol/L 302 [251–360]

Values are mean ± SD, (%), or median [Interquartile range]. ALT, alanine

transaminase; AST, aspartate transaminase; BMI, body mass index; BSA, body

surface area; CHF, congestive heart failure; CKD, chronic kidney disease; HbA1c,

glycated haemoglobin; HDL, high density lipoprotein; LDL, low density

lipoprotein; LVEDV, left ventricular end diastolic volume; LVEF, left ventricular

ejection fraction; LVESV, left ventricular end systolic volume; LVM, left ventricle

mass; MI, myocardial infraction; PVD, peripheral vascular disease.
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Comparisons of baseline characteristics across clusters are

provided in Table 3.
Clusters exploration

Cluster 1 consisted on 1,578 patients, almost all were females

(93%). The average age was similar to the entire population, and

the BMI was lower—with an average of 26 (4). Patients in this

cluster had the lowest prevalence of co-morbidities, including co-

morbidities that are known to be cardiovascular risk factors such

as diabetes mellitus (6%), hypertension (39%), dyslipidemia (22%),

and chronic kidney disease (0.3%). The median of all cardiac

measures was the lowest, in comparison to all other clusters, and

none of the laboratory tests was abnormal. Therefore, this cluster

served as the baseline for all of our comparisons.

Cluster 2 (n = 1,296) also included mainly females (63%), with

a slightly higher age than the other clusters [average 65(7)].

Patients in this cluster had more co-morbidities compared to

cluster 1, with the highest prevalence of diabetes mellitus

(10.5%), and chronic lung disease (4%). In similar to the first

cluster, cardiac measures were low, pointing the lack of overt

structural heart disease among those patients. None of the

laboratory tests was abnormal.

Cluster 3 (n = 824) was the cluster with the most co-

morbidities and cardiovascular risk factors, including highest

portion of males (89%), obesity [average BMI 30 (5)], diabetes

mellitus (10.3%), hypertension (54.5%), dyslipidemia (41%),

peripheral vascular disease (29%), and chronic kidney disease

(1.8%). Not surprisingly, this was also the cluster with the most

abnormal laboratory tests including liver function tests (AST,

ALT), kidney function tests (Urea, Creatinine), Urate, and lipid

profile (lowest HDL and the highest LDL). In terms of cardiac

measures, this cluster showed lower values than the first two, but

much better measures compared to the 4th cluster.

Cluster 4 (n = 557) was the most interesting one. It was also

consisted mainly of males (86%), with an average age of 63 (8).

This cluster had higher prevalence of co-morbidities comparing

to the 1st cluster, but less than the 2nd and 3rd clusters. The

cardiac measures of this cluster were the most abnormal—

indicating pathological changes in the structure of the heart

which are expressed by the left ventricular volumes [LVEDV

median 209 (193–231), LVESV median 99 (86–117)], the left

ventricle mass [LVM index median 79 (74–86)], and function

[LVEF 51(10)]. In conjunction with those findings, this cluster

exhibited the highest prevalence of prior myocardial infraction

(8.3%), and prior diagnosis of congestive heart failure (3.4%).

A variable heatmap that underscores the differences between

clusters is presented in Figure 3.
The association between clusters and
outcomes during follow-up

During a median follow-up period of 5 years (IQR: 4-6), 100

patients (2%) died, 118 (2.8%) were admissioned due to heart
frontiersin.org
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FIGURE 1

(A) SVD and explained variance. This plot shows the number of singular values needed to explain the variance of data across our cohort, suggesting
that 4 values will be sufficient to explain more than 90% of variablity. SVD, Singular Value Decomposition. (B) Elbow plot. Elbow plot is a graphical
method for finding the optimal value of clusters in clustering algorithms. This demonstrates that the number of clusters our cohort can be divided
to is between 3 and 4, as there is only little added value of lowering the distortion beyond these number of clusters.

TABLE 2 Measures for quality of clustering.

# of
clusters

Silhouette
coefficient

Calinski
Harabasz

Davies
Bouldin

C = 3 0.235 1,983.25 1.37

C = 4 0.244 1,893.32 1.25

Bold values represent the better measure for quality of clustering. In Silhouette

coefficient and Clinski Harabasz it is the bigger value, whereas in Davies Bouldin

it is the smaller one.

Loutati et al. 10.3389/fcvm.2024.1357305
failure, 29 (0.7%) were admissioned due to ventricular arrhythmia,

and 208 (5%) were admissioned due to atrial fibrillation.

The crude number of events in each cluster is specified in

Tables 4A,B. Kaplan-Meier survival analysis revealed that the

cumulative probability of the composite endpoint at 5 years of

follow-up was 5.2%±0.6%, 8%±0.9%, 1.2%±1.3%, and 15.5%

±1.7% for each cluster, respectively (Figure 4; p Log rank <.001

for the overall difference during follow-up). Univariate Cox

analysis revealed that compared to the 1st cluster, patients in the
Frontiers in Cardiovascular Medicine 05
2nd, 3rd, and 4th clusters had 60%, 104%, and 164% increased risk

of a major event, respectively (95% CI 1.2–2.16, p < .001 for cluster

2; 95% CI 1.49–2.78, p < .001 for cluster 3; 95% CI 1.92–3.62, p

< .001 for cluster 4). Multivariate Cox analysis adjusted for LVM

index, which is the most contributing factor for mortality among

increased LVM patients, consistently demonstrated that compared

to the 1st cluster, patients in the 2nd, 3rd, and 4th clusters had

38%, 49%, and 94% increased risk of a major event, respectively

(95% CI 1.02–1.88, p = 0.039 for cluster 2; 95% CI 1.06–2.10, p =

0.022 for cluster 3; 95% CI 1.36–2.78, p < .001 for cluster 4). Every

10 g/m2 increase in LVM index was associated with 22% increased

risk of a major event (95% CI 1.12–1.33, p < .001).

Breaking down the composite outcome to each endpoint, the

most common outcomes were admissions due to heart failure

[n = 118 (2.8%)] and atrial fibrillation [n = 208 (5%)]. The

association of all clusters with each endpoint was consistent with

the composite endpoint as seen in Figure 5. However, because of

the relatively small rate of events, certain clusters were
frontiersin.org
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FIGURE 2

Dendrogram. Dendrogram is showing the hierarchial relationship between clusters and the optimal clustering of individuals who are relatively similar
to each other.

TABLE 3 Clinical characteristics across clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(N = 1,578) (N = 1,296) (N = 824) (N = 557)
Age 64.2 ± 7.29 65.0 ± 7.2 63.8 ± 7.53 63.3 ± 7.84

Female (93.1) (62.7) (10.7) (14)

BMI, kg/m2 26.3 ± 4.33 29.6 ± 5.25 30.1 ± 4.8 27.7 ± 4.06

BSA, m2 1.77 ± 0.168 1.91 ± 0.194 2.08 ± 0.185 2.03 ± 0.176

Diabetes mellitus (6.1) (10.5) (10.3) (6.5)

Hypertension (39.4) (52.6) (54.5) (46.5)

Dyslipidemia (21.6) (33.3) (41) (32.5)

Prior MI (1.5) (3.5) (6.3) (8.3)

CHF (0.5) (1.4) (1.9) (3.4)

PVD (23.7) (27.9) (28.9) (23.7)

Chronic Lung disease (1.8) (4.1) (2.9) (2.5)

CKD (0.3) (0.9) (1.8) (1.3)

Aortic Stenosis (0.4) (1.2) (0.7) (0.9)

MitralRegurgitation (0.4) (0.7) (0.7) (1.1)

Atrial Fibrillation (2.3) (2.1) (4.0) (5.9)

LVEF, % 56.6 ± 6.18 56.7 ± 6.32 54 ± 7.38 50.7 ± 9.58

LVEDV, ml 133 [116–150] 137 [120–158] 169 [151–192] 209 [193–231]

LVESV, ml 56 [48–66] 59 [50–70.3] 77 [65.8–91] 99 [86–117]

LVM index, g/m2 60.1 [57–65] 67.4 [59–75.9] 77.5 [74–83.2] 78.8 [74.2–85.7]

AST, U/L 22.8 [19.8–26.2] 24.3 [21.1–29.2] 27.5 [23.8–33.1] 25.5 [22.2–29.3]

ALT, U/L 16.9 [13.6–21.9] 22 [16.4–28.9] 26.8 [20.1–36] 21.1 [16.6–27.8]

Urea, mmol/L 4.94 [4.2–5.74] 5.37 [4.68–6.25] 5.7 [4.9–6.54] 5.36 [4.66–6.14]

Creatinine, µmol/L 61.8 [55.9–68] 69.2 [61.3–78.2] 81.2 [73.5–89.1] 76.5 [68.8–82.5]

HbA1c, mmol/L 34.6 [32.2–37.1] 35.3 [32.8–38] 35.3 [32.9–37.9] 34.3 [32.3–36.8]

HDL, mmol/L 1.6 [1.34–1.86] 1.35 [1.14–1.59] 1.23 [1.04–1.44] 1.33 [1.13–1.61]

LDL, mmol/L 3.48 [2.99–4.03] 3.57 [3.01–4.2] 3.62 [3.04–4.16] 3.39 [2.87–3.93]

Urate, µmol/L 236 [208–260] 323 [303–348] 412 [388–452] 310 [276–337]

Values are mean ± SD, (%), or median [Interquartile range]. All variables had p < 0.05. ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; BSA,

body surface area; CHF, congestive heart failure; CKD, chronic kidney disease; HbA1c, glycated haemoglobin; HDL, high density lipoprotein; LDL, low density lipoprotein;

LVEDV, left ventricular end diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end systolic volume; MI, myocardial infraction; PVD, peripheral

vascular disease.

Loutati et al. 10.3389/fcvm.2024.1357305
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FIGURE 3

Heatmap of variables across clusters. This heatmap demonstrates the uniqueness of each cluster by highlighting the relative ratio of each binary
variable/quantile of mean for numeric features. ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; CHF, congestive
heart failure; HbA1c, glycated haemoglobin; HDL, high density lipoprotein; LDL, low density lipoprotein; LVEDV, left ventricular end diastolic
volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end systolic volume; MI, myocardial infraction; PVD, peripheral vascular disease.

TABLE 4A Univariate Cox analysis for composite endpoint.

HR 95% CI p value
Unsupervised clustersa [n events (%)]:

Cluster 1 [n = 80 (5%)] Reference

Cluster 2 [n = 99 (7.6%)] 1.6 1.2–2.16 <0.001

Cluster 3 [n = 97 (11.7%)] 2.04 1.49–2.78 <0.001

Cluster 4 [n = 88 (15.8%)] 2.64 1.92–3.62 <0.001

Bold values represent statistical significance (p < 0.05).
aPatients in cluster 1 are serving as baseline.

TABLE 4B Multivariate Cox analysis for composite endpoint.

HR 95% CI p value
Unsupervised clustersa [n events (%)]:

Cluster 1 [n = 80 (5%)] reference

Cluster 2 [n = 99 (7.6%)] 1.38 1.02–1.88 0.039

Cluster 3 [n = 97 (11.7%)] 1.49 1.06–2.1 0.022

Cluster 4 [n = 88 (15.8%)] 1.94 1.36–2.78 <0.001

LVM indexed, per 10 g/m2 1.22 1.12–1.33 <0.001

Bold values represent statistical significance (p < 0.05).
aPatients in cluster 1 are serving as baseline; LVM, left ventricle mass.
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underpowered, especially cluster 2 which did not demonstrated

statistical significance with any endpoint. A summary of crude

number of events for each outcome, as well as their association

with all clusters are presented in Table 5.
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Lastly, in order to analyze the relationship between clustering

results and clinical outcomes we have identified the features that

differ the most between clusters, and evaluated their association

with the composite outcome. These features and corresponding

risk for the composite outcome are as follows: age (HR 1.61,

95% CI 1.48–1.75, p < .001), female sex (HR 0.5, 95% CI 0.4–

0.63, p < .001), BMI [per 5 kg/m2] (HR 1.22, 95% CI 1.11–1.34,

p < .001), chronic lung disease (HR 2.27, 95% CI 1.54–

3.33, p < .001), chronic kidney disease (HR 2.46, 95% CI 1.58–

3.34, p < .001), LVEF [per 5%] (HR 0.82, 95% CI 0.77–0.86,

p < .001), LVEDV [per 10 ml] (HR 1.1, 95% CI 1.08–

1.12, p < .001), and LVM index [per 10 g/m2] (HR 1.3, 95% CI

1.22–1.39, p < .001). Figure 6 depicts the difference (prevalence for

binary variables and quantile of mean for numeric variables) of

these features across clusters, as demonstrated in the radar plot,

together with a forest plot that summarizes the contribution of

each feature for the risk of adverse cardiovascular outcome.
Discussion

In this study, we used cluster analysis to identify the differences

between populations with increased LVM, revealing four groups

with distinct clinical, laboratory and cardiac features. The clusters

were associated with different clinical outcome, defined by the

composition of all-cause mortality, HF admissions, ventricular
frontiersin.org
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FIGURE 4

Kaplan-Meier for composite endpoint. Kaplan-Meier cumulative incidence curves of the composite outcome demonstrating a graded incidence of
cardiovascular outcomes across clusters. Log rank p < 0.001.

FIGURE 5

Kaplan-Meier for each outcome. Kaplan-Meier cumulative incidence curves for each of the cardiovascular outcome comprising the composite
endpoint, demonstrating a graded incidence across clusters. Log rank p < 0.001 for all. HF, heart failure.
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TABLE 5 Univariate Cox analysis for each endpoint.

Unsupervised clusters
[n events (%)]:

HR 95% CI p value

All-cause mortality
Cluster 1 [n = 22 (1.4%)] reference

Cluster 2 [n = 27 (2%)] 1.50 0.85–2.63 0.2

Cluster 3 [n = 30 (3.6%)] 2.64 1.53–4.59 <0.001

Cluster 4 [n = 21 (3.7%)] 2.70 1.48–4.91 <0.001

HF admissions
Cluster 1 [n = 22 (1.4%)] reference

Cluster 2 [n = 24 (1.9%)] 1.32 0.74–2.36 0.3

Cluster 3 [n = 32 (3.9%)] 2.84 1.65–4.89 <0.001

Cluster 4 [n = 40 (7.2%)] 5.27 3.13–8.86 <0.001

Ventricular arrhythmia
Cluster 1 [n = 3 (0.2%)] reference

Cluster 2 [n = 8 (0.6%)] 3.23 0.86–12.2 0.083

Cluster 3 [n = 6 (0.7%)] 3.85 0.96–15.4 0.057

Cluster 4 [n = 12 (2.1%)] 11.3 3.20–40.2 <0.001

Atrial fibrillation
Cluster 1 [n = 46 (3%)] reference

Cluster 2 [n = 62 (4.8%)] 1.65 1.12–2.41 0.01

Cluster 3 [n = 51 (6.2%)] 2.17 1.46–3.23 <0.001

Cluster 4 [n = 49 (8.8%)] 3.10 2.07–4.63 <0.001

Bold values represent statistical significance (p < 0.05).
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arrhythmia and new-onset AF. Using the clinical clustering, as

opposed to the echocardiographic clustering as done in the DHS,

may help improve the management of these patients, as mild

changes in the LVM may represent their clinical course.

We observed that cluster 1 patients correspond to the

“intermediate hypertrophy” group in the DHS. It consisted
FIGURE 6

Radar and forest plots of variables contribution to composite outcome across
clusters, and their contribution to risk of the composite outcome (as showe
univariate Cox analysis), thus linking between clusters to cardiovascular risk
with clinical outcomes. BMI, body mass index, CKD, chronic kidney disease,
LVEF, left ventricular ejection fraction; LVMi, left ventricular mass index.
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mainly of women with almost normal LVM and a low

prevalence of IHD. This group is still an enigma, as the reason

for increased LVM is obscure, and their prognosis is favorable.

Previously, high prevalence of increased LVM in women was not

found to be associated with age, hypertension, or obesity (24),

suggesting another pathophysiology to this idiopathic

observation. Sex-hormones were previously suggested as

mediators of LVM (25), potentially segregating men and women

without other risk factors.

Cluster 2 was also female-dominant, with higher LVM, higher

BMI, and prevalence of lung disease, HTN, DM, AS, and CHF.

Previous studies found association between these co-morbidities

in addition to low prevalence of IHD, and HfpEF (26, 27).

Hence, this cluster may represent patients who either have or

will develop HFpEF.

Cluster 3 is male-predominant, with the highest BMI and

worse metabolic syndrome features, including HTN and the

expected renal damage, with a mild reduction in LVEF and high

LVM. This cluster corresponds to and shares features with

“thick” or “thick and dilated” groups in the DHS. HTN,

metabolic syndrome and CKD are all associated with concentric

hypertrophy and poor outcomes (28, 29), and this cluster may

represent the early phase of these patients.

Cluster 4 is also male-predominant and classically represents

the “dilated” group in the DHS with the highest LVM, LVEDV,

and LVESV, and the highest prevalence of IHD, MR, and AF

These conditions were widely described as factors contributing to

eccentric hypertrophy (30–32). This cluster represents the

population in the early phases of the vicious cycles between their

LV and their predisposing conditions (33). As concentric

remodeling is the main hemodynamic response to HTN,
clusters. This plot depicts the eight features that differ the most between
d in the forest plot by calculating the HR and 95% CI of each feature in a
and providing further explainability to the association of the four clusters
CLD, chronic lung disease; LVEDV, left ventricular end diastolic volume;
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eccentric changes are associated with IHD in patients with HTN,

representing the beginning of the systolic failure (34). This

cluster has the poorest outcomes as it combines the highest

prevalence of serious conditions.

The distinction between the groups regarding clinical outcomes

is significant, although the study population was relatively healthy,

with mild elevation in the LVM. Previous studies could not

associate clinical parameters and hard endpoints, emphasizing

the need for new approaches.

Machine learning (ML)-based analysis is gaining momentum

with various uses. In HF, a supervised ML model that included

leg bioimpedance, age, sex, and self-reported myocardial

infarction accurately predicted HF without predefining the

variables (35). Cluster analysis used in the HFpEF population

was able to distinguish between three phenogroups, with clinical

and prognostic differences (18). In patients with HF with

recovered EF, unsupervised cluster analysis helped distinguish

between groups with different characteristics and outcomes,

providing information regarding those who are at higher risk of

HF recurrence and all-cause mortality (17). ML algorithm

utilizing both advanced echocardiographic data of full heart cycle

and clinical parameters was able to predict response to CRT

implantation in HF patients (16). Cluster analysis applied to a

cohort of patients with at least moderate TR identified

phenotypes with different mortality risks, suggesting underlying

pathophysiology (36).

These examples, along with our findings, shed some light on

the future potential risk stratification of different diseases. Non-

classic risk factors, which sometimes are not intuitive when

conducting a study, may be found by unsupervised ML

algorithms, improving the management of patients. Large

databases already in use may serve as potential grounds for novel

approaches in diagnosing and treating various conditions. These

advances should be used to tailor a specific and more efficient

treatment for patients based on their classical attributes and

overlooked ones.
Study strengths and limitations

A major strength of this study lies in its participants,

encompassing a large and well-documented population from

the UK Biobank. Additionally, the exploratory analysis of

clusters characteristics and their link to adverse events, validates

the demonstrated association between the unsupervised clusters

and observed outcomes, and may suggest that the ML algorithm

did not function as a black box for this clustering task. This

study has several important limitations. First, our unsupervised

clustering model was based on data exclusively from the UK

Biobank, and currently lacks external validation, which limits

the generalizability of our findings and introduce a possible

selection bias. Second, important clinical and laboratory

predictors of poor survival such as clinical signs of symptoms

heart failure, NYHA functional class, BNP, troponin, and more

laboratory markers were not available, potentially limiting the

comprehensiveness of the cluster analysis. Lastly, while
Frontiers in Cardiovascular Medicine 10
independent associations between clusters and clinical outcomes

have been demonstrated, causality could not be established due

to study design.
Conclusions

Utilizing unsupervised cluster analysis on a large patient

cohort exhibiting elevated left ventricular mass (LVM), we

discerned four distinct phenotypes characterized by unique

clinical and imaging attributes, each yielding divergent

outcomes. Machine learning algorithms offer a promising

avenue for novel insights into the associations between

predisposing conditions and diseases, providing advanced and

unparalleled perspectives.
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