AUTHOR=Loutati Ranel , Kolben Yotam , Luria David , Amir Offer , Biton Yitschak TITLE=AI-based cluster analysis enables outcomes prediction among patients with increased LVM JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=Volume 11 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2024.1357305 DOI=10.3389/fcvm.2024.1357305 ISSN=2297-055X ABSTRACT=Background: The traditional classification of left ventricular hypertrophy (LVH), which relies on left ventricular geometry, fails to correlate with outcomes among patients with increased LV mass (LVM). Objectives: To identify unique clinical phenotypes of increased LVM patients using unsupervised cluster analysis, and to explore their association with clinical outcomes. Methods: Among the UK Biobank participants, increased LVM was defined as LVM index ≥ 72 g/m2 for men, and LVM index ≥ 55 g/m2 for women. Baseline demographic, clinical, and laboratory data were collected from the database. Using Ward's minimum variance method, patients were clustered based on 27 variables. The primary outcome was a composite of all-cause mortality with heart failure (HF) admissions, ventricular arrhythmia, and atrial fibrillation (AF). Cox proportional hazard model and Kaplan-Meier survival analysis were applied. Results: Increased LVM was found in 4,255 individuals, with an average age of 64 ± 7 years. Of these patients, 2,447 (58%) were women. Through cluster analysis, four distinct subgroups were identified. Over a median follow-up period of 5 years (IQR: 4-6), 100 patients (2%) died, 118 (2.8%) were admissioned due to HF, 29 (0.7%) were admissioned due to VA, and 208 (5%) were admissioned due to AF. Univariate Cox analysis demonstrated significantly elevated risks of major events for patients in the 2 nd (HR = 1.6; 95% CI 1.2-2.16; p<.001), 3 rd (HR = 2.04; 95% CI 1.49-2.78; p<.001), and 4 th (HR = 2.64; 95% CI 1.92-3.62; p<.001) clusters compared to the 1 st cluster. Further exploration of each cluster revealed unique clinical phenotypes: Cluster 2 comprised mostly overweight women with a high prevalence of chronic lung disease; Cluster 3 consisted mostly of men with a heightened burden of comorbidities; and Cluster 4, mostly men, exhibited the most abnormal cardiac measures. Conclusions: Unsupervised cluster analysis identified four outcomes-correlated clusters among patients with increased LVM. This phenotypic classification holds promise in offering valuable insights regarding clinical course and outcomes of patients with increased LVM.