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A sensitivity indicator screening
and intelligent classification
method for the diagnosis
of T2D-CHD
Jiarui Li1 and Changjiang Ying2*
1The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China, 2Department of
Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
Background: The prevalence of Type 2 Diabetes Mellitus (T2D) and its significant
role in increasing Coronary Heart Disease (CHD) risk highlights the urgent need
for effective CHD screening within this population. Despite current
advancements in T2D management, the complexity of cardiovascular
complications persists. Our study aims to develop a comprehensive CHD
screening model for T2D patients, employing multimodal data to improve
early detection and management, addressing a critical gap in clinical practice.
Methods: We analyzed data from 699 patients, including 471 with CHD (221 of
these also had T2D) and a control group of 228 without CHD. Employing strict
diagnostic criteria, we conducted significance testing and multivariate analysis to
identify key indicators for T2D-CHD diagnosis. This led to the creation of a
neural network model using 21 indicators and a logistic regression model based
on an 8-indicator subset. External validation was performed with an independent
dataset from an additional 212 patients to confirm the models’ generalizability.
Results: The neural network model achieved an accuracy of 90.7%, recall of
90.78%, precision of 90.83%, and an F-1 score of 0.908. The logistic
regression model demonstrated an accuracy of 90.13%, recall of 90.1%,
precision of 90.22%, and an F-1 score of 0.9016. External validation reinforced
the models’ reliability and effectiveness in broader clinical settings.
Conclusion: Our AI-driven diagnostic models significantly enhance early CHD
detection and management in T2D patients, offering a novel, efficient approach
to addressing the complex interplay between these conditions. By leveraging
advanced analytics and comprehensive patient data, we present a scalable
solution for improving clinical outcomes in this high-risk population, potentially
setting a new standard in personalized care and preventative medicine.
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1 Introduction

Type 2 diabetes (T2D) is a significant global health issue, currently affecting over 573

million individuals worldwide. This number is projected to increase, highlighting the

urgency for effective management strategies to mitigate associated complications,

including coronary heart disease (CHD) (1, 2). T2D is a major risk factor for the

development of CHD, primarily due to the chronic hyperglycemic state it induces. This

state exacerbates oxidative stress and inflammation, leading to damage of the coronary

endothelium and the subsequent development of CHD (3).
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Patients with T2D are 2–4 times more likely to develop CHD

than those without diabetes, and they often present with more

severe manifestations of the disease (4). This increased risk

underscores the importance of early and accurate screening for

CHD in the diabetic population. Despite the advancements in

managing T2D, patients continue to face significant risks of

cardiovascular complications. The American College of

Cardiology notes that diabetic patients with acute coronary

syndrome (ACS) are at a higher risk of severe post-percutaneous

coronary intervention (PCI) complications, such as target lesion

revascularization, myocardial infarction, and cardiovascular

death, despite aggressive glucose-lowering strategies (5).

Moreover, large-scale clinical trials like ACCORD, ADVANCE,

and VADT have highlighted the complexity of managing

cardiovascular risks in patients with T2D, revealing that while strict

glycemic control can reduce microvascular complications, it may

not necessarily translate to a reduced risk of macrovascular events,

such as CHD (6). This paradox further emphasizes the need for a

proactive approach in screening for CHD among patients with T2D.

The diagnosis of CHD largely depends on coronary

angiograms, a vital tool for visualizing the heart’s blood vessels.

However, in patients with both CHD and T2D, CHD symptoms

may be masked by the neuropathic effects of high blood glucose

levels, complicating the clinical presentation (7). Our research

focuses on developing a comprehensive screening model for

CHD among individuals with T2D. This model aims to utilize a

wide array of multimodal data, including detailed patient

histories, clinical examinations, and laboratory tests, to facilitate

early detection and intervention for CHD in this high-risk

population. By enhancing early detection efforts, we aspire to

significantly improve patient outcomes and navigate the

complexities associated with the co-management of T2D and

CHD, thereby addressing a critical gap in current clinical practice.
2 Methods

2.1 Retrospective study design and patient
data analysis

2.1.1 Patient data collection
This research is grounded in a retrospective analysis, leveraging

a comprehensive patient dataset from the Department of

Cardiovascular Medicine at Xuzhou Medical University Affiliated

Hospital. The dataset spans records over the last four years,

including individuals diagnosed with Coronary Heart Disease

(CHD) and Type 2 Diabetes Mellitus (T2D), aiming to develop

an intelligent diagnostic model. This model capitalizes on a

diverse array of clinical and biochemical indicators for its analysis.

2.1.1.1 Diagnostic criteria
CHD was confirmed via coronary angiography, indicating stenosis

exceeding 50% in at least one major coronary artery or over 70% in

its primary branches.

T2D diagnosis followed the American Diabetes Association

criteria, characterized by fasting plasma glucose levels exceeding
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7.0 mmol/L or plasma glucose concentrations above 11.0 mmol/L

two hours post-oral glucose tolerance testing (OGTT) (4).

2.1.1.2 Exclusion criteria
Patients with severe valvular heart disease or non-ischemic

myocardial disease were excluded from the study.
2.1.2 Clinical and biochemical data inclusion
The study categorized examination indicators into clinical

symptoms, biochemical markers, and ECG indicators,

encompassing variables such as age, gender, duration of

diabetes, history of hypertension, lipid profiles, and various

ECG abnormalities.

For the biochemical indicator and ECG feature data, since the

numerical distribution intervals of multiple indicators vary greatly,

the min-max strategy is used for normalization processing. If the

original data is distributed in the interval min , max, transform

it to the interval min0, max0, the formula is as follows:

v0 ¼ min0 þ v �min
max�min

(max0 �min0): (1)

For clinical status information, the collected indicator

information can be structured and quantified to form a

standardized numerical vector.
2.1.3 Ethical considerations
The study adhered to stringent ethical guidelines, with approval

from the Medical Ethics Committee of Xuzhou Medical University

Affiliated Hospital (Ethical Approval Number: XYFY-2022-0217)

and Xuzhou Central Hospital (Ethical Approval Number: XCH-

20240202). All patient data were anonymized and analyzed with

utmost confidentiality to protect privacy.
2.2 Sensitive indicator screening based on
significance testing

2.2.1 Univariate analysis for preliminary screening
The initial patient pool included 471 individuals with CHD,

among which 221 were also diagnosed with T2D (T2D-CHD),

and 250 had CHD exclusively (CHD-only). Additionally, 228

individuals with T2D but without CHD (T2D-only) were

incorporated for comparative analysis. A thorough univariate

examination of each clinical and biochemical indicator was

conducted to narrow down the extensive list of potential

biomarkers to a more focused subset.
2.2.2 Sensitive indicator combination screening
In this step, we integrated indicators into a discriminant model

based on their individual significance. This process was refined

through iterative testing to identify an optimal set of indicators

for disease diagnosis. To thoroughly evaluate the impact of these

indicator combinations on diagnostic outcomes, we employed

several statistical measures:
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(1) Logistic Regression Coefficient (B): This metric quantifies the

relationship between each independent variable and the

outcome, with its sign indicating the direction of correlation.

The coefficient is determined as follows:

B ¼
P

(xi � �X)�(yi � �Y)P
(xi�yi) : (2)
TABLE 2 Model parameter settings.

Input Hidden layer Output
Node Number of Node Activation Node Activation

FIGURE 1

The architecture of the neural network classification diagnostic
model. The model features a fully connected double-hidden-layer
network structure, designed to enhance self-organizing learning
and provide strong nonlinear mapping capabilities.

TABLE 1 Dataset partitioning.

T2D-
CHD

CHD-
only

T2D-
only

Sample
size

Percentage

Training dataset 151 170 152 473 68.2%

Test dataset 70 80 76 226 31.8%

Total 221 250 228 699
(2) Odds ratio (OR), a statistical measure of the strength of

association between two variables. OR can be calculated as:

OR ¼ eB, (3)

(3) Wald, is a chi-square statistic used to assess the effect of

the independent variables on the dependent variable in

a multiple indicator regression model. Wald can be

calculated as:

Wald ¼ B
SEB

� �2

, (4)

where SEB is the standard error of B.

(4) P-value, a statistic used to evaluate the results of the Wald test.

The smaller the p-value, the more significant the association

between the independent and dependent variables. The

P-value can be calculated as:

P ¼ 1� f
ffiffiffiffiffiffiffiffiffiffiffi
Wald

p� �
, (5)
layers function function

where f(�) denotes the normal distribution function.
17 2 12, 5 Tanh 1 Softmax
2.3 Intelligent diagnostic model
development and initial verification

2.3.1 Neural network classification model
The neural network classification model, with a fully connected

double-hidden-layer architecture, showcases strong self-organizing

and nonlinear mapping capabilities, depicted in Figure 1. A dataset

of 699 samples—221 T2D-CHD, 250 CHD-only, and 228 T2D-

only—with 68.2% for training and the remainder for validation

(Table 1), it uses 21 indicators to distinguish between patient

groups effectively.

To optimize performance and mitigate overfitting, we

employed a 25% Dropout regularization in the second hidden

layer and selected cross-entropy loss, ideal for classification due

to its precision in assessing output-label discrepancies (Table 2).

The Mini-Batch Gradient Descent (MBGD) algorithm facilitated

training, focusing on minimizing cross-entropy loss to improve

accuracy (Table 3).

Hyperparameter tuning followed a phased strategy, starting

with broad adjustments to refine our search for the optimal

hyperparameter set. This methodical tuning, alongside performance

evaluation of each parameter set, guaranteed enhanced model

performance on both training and validation datasets.
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2.3.2 Logistic regression classification model
The logistic regression classification model, designed to

diagnose T2D-CHD, incorporates L2 regularization within a

generalized linear regression framework to mitigate overfitting.

This model estimates the probability of T2D-CHD occurrence by

applying the logistic function to linear combinations of selected

indicators, optimizing its coefficients and bias vector through

supervised learning. The basic model is:

y ¼ L(W � X þ B), (6)

where, the coefficient matrix W and the bias vector B are the

parameters to be solved, which are determined by supervised

learning on the sample set.

Logistic regression uses the logistic function L to correspond

W � X þ B to the probability p of the occurrence of a hidden

state, and then determines the value of the dependent variable

based on the size of p and 1� p, that is, whether it is T2D-CHD.

2.3.3 Evaluation metrics
The logistic regression model’s evaluation will also

comprehensively encompass Accuracy, Recall, Precision, and the
frontiersin.org
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TABLE 3 Training parameter settings.

Loss function Training algorithms Batch size Iterations Learning rate Regularization
Cross Entropy MBGD 32 50 0.1 Dropout

Li and Ying 10.3389/fcvm.2024.1358066
F-1 Score. These added metrics, indispensable for evaluating the

model’s efficacy in accurately diagnosing T2D-CHD cases, will

provide a more detailed view of the model’s overall diagnostic

performance.

(1) Accuracy represents the proportion of true results (both true

positives and true negatives) among the total number of

cases examined. It is the most intuitive performance

measure and it gives an overall effectiveness of the model.

Accuracy is calculated as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

, (7)

Where TP is the number of true positives, TN is the number

of true negatives, FP is the number of false positives, and FN is

the number of false negatives.

(2) Recall, also known as sensitivity, measures the proportion of

actual positive cases that were correctly identified. It is

particularly important in medical diagnostics, where failing

to identify a condition (false negative) can be more critical

than incorrectly diagnosing it (false positive). Recall is

defined as:

Recall ¼ TP
TPþ FN

, (8)

(3) Precision assesses the proportion of positive identifications

that were actually correct. It is crucial in situations where

the cost of false positives is high. Precision is given by:

Precision ¼ TP
TPþ FP

, (9)

(4) The F-1 Score is the harmonic mean of Precision and Recall,

providing a balance between the two metrics. It is especially

useful when the class distribution is imbalanced. The F-1

Score is calculated as:

F-1 Score ¼ 2� Precision� Recall
Precisionþ Recall

, (10)
2.4 External validation

To enhance our statistical analysis and model validation, we

expanded our dataset through collaboration with Xuzhou Central
Frontiers in Cardiovascular Medicine 04
Hospital, incorporating data from an additional 73 patients with

both T2D and CHD (T2D-CHD), 69 patients with CHD but

without T2D (CHD-only), and 70 individuals with T2D but

without CHD (T2D-only). This effort was aimed at increasing

the dataset’s diversity and improving the generalizability of our

findings.

The external dataset underwent the same preprocessing and

evaluation protocols as the initial dataset, ensuring a consistent

and rigorous assessment.
2.5 Statistical analysis

Data analysis in our study was conducted using IBM SPSS

Statistics 26, covering both descriptive and inferential statistics

to address our research questions comprehensively. After

preprocessing the data for quality, we employed descriptive

statistics to summarize the data distribution. Inferential analysis

followed, with one-way ANOVA and the Kruskal–Wallis H test

applied to continuous variables to compare group means or

medians based on normality checks. For categorical variables,

the chi-square test evaluated the significance of distributions

across groups. These methods collectively enabled the

identification of significant disease indicators and their

interactions, underpinning the development of our intelligent

diagnostic model.
3 Result

3.1 Univariate analysis

Univariate analysis identified crucial indicators for diagnosing

T2D in conjunction with CHD. Analysis results, as outlined in

Table 4, indicated significant disparities in key indicators

among three groups: those with T2D and CHD, those with

CHD alone, and those with T2D only. Notable indicators

included age, heart rate, HbA1c levels, fasting blood glucose,

total cholesterol (TC), HDL-C, LDL-C, troponin I, creatinine,

uric acid, albumin, γ-glutamyl transferase (GGT), total

bilirubin, apolipoprotein A1, apolipoprotein B, T-wave changes,

and ST-segment changes. The history of hypertension, aspartate

aminotransferase (AST), and alanine aminotransferase (ALT)

showed no significant variance, suggesting their limited value

in differentiation.
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TABLE 4 Results of univariate analysis.

Indicators T2D-CHD (n = 151) CHD-only (n = 170) T2D-only (n = 152) P-value
Age (year) 63 (45, 69) 68 (57.16, 73) 54.28 (47.82, 63) <0.001

Heart rate 74 (65, 81) 71.3 (63, 77) 72.79 (63.95, 79) 0.027

History of hypertension (year) 46 (30.5) 49 (28.8) 69 (45.7) 0.52

HbA1c (%) 6.9 (6.2, 7.1) 5.43 (5.2, 6.1) 6.72 (6.41, 6.89) <0.001

FBG (mmol/L) 6.4 (5.1, 7.8) 5.21 (4.71, 5.6) 5.63 (4.78, 5.98) <0.001

TG (mmol/L) 1.23 (0.91, 1.78) 1.35 (1.1, 1.92) 1.6 (0.95, 1.74) 0.067

TC (mmol/L) 3.62 (3.1, 4.8) 4.43 (3.46, 5) 4.7 (4.16, 5.38) <0.001

HDL-C (mmol/L) 1.25 (1.04, 1.45) 1.36 (1.06, 1.65) 1.21 (1.01, 1.34) <0.001

LDL-C (mmol/L) 2.5 (1.87, 3.02) 2.13 (1.76, 2.91) 2.7 (2.42, 3.3) <0.001

Troponin I (μg/L) 0.008 (0.003, 0.008) 0.006 (0.001, 0.019) 0.032 (0.001, 0.26) <0.001

Creatinine (μmol/L) 73.2 (56.6, 89.7) 81.2 (66.76, 94.05) 67.13 (56.87, 73.58) <0.001

Uric acid (μmol/L) 337.03 (337.03 ± 110.72) 320.14 (320.14 ± 111.72) 332.76 (332.76 ± 106.75) 0.018

Albumin (g/L) 38.13 (34.42, 41.31) 37.09 (32.13, 41.36) 39.92 (37.71, 42.55) <0.001

AST (U/L) 19.1 (15.3, 26.06) 19.36 (15.74, 27.15) 23.23 (16.96, 24.98) 0.462

ALT (U/L) 18.1 (12.11, 29.5) 20.2 (14.32, 28.02) 25.03 (14.15, 26.88) 0.397

GGT (U/L) 22.6 (16.1, 34.5) 19.1 (14.2, 31.25) 34.32 (15.73, 35.16) 0.019

Total bilirubin (μmol/L) 12.2 (9.3, 16.5) 13.71 (10.29, 20) 13.1 (9.8, 15.2) <0.001

Apolipoprotein A1 (g/L) 1.35 (1.35 ± 0.28) 1.26 (1.26 ± 0.29) 1.29 (1.29 ± 0.27) <0.001

Apolipoprotein B (g/L) 0.83 (0.66, 1.04) 0.73 (0.56, 0.91) 1.36 (0.9, 1.33) <0.001

T-wave changes 73 (48.3) 52 (30.6) 71 (46.7) <0.001

ST-segment change 71(47.02) 60(35.2) 20(13.6) <0.001

HbA1c, glycated hemoglobin A1c; FBG, fasting blood glucose; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL, low-density

lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, γ-glutamyl transferase.
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3.2 Selection results of significant indicator
combinations

A combination of 8 significant indicators was pinpointed

through multifactorial association and significance analysis,

demonstrating strong correlation with T2D and CHD: HbA1c,

fasting blood glucose, HDL-C, apolipoprotein B, total bilirubin,

T-wave change, ST-segment change, and heart rate, detailed in

Table 5. These findings form a solid foundation for our

diagnostic models.
3.3 Intelligent model typing diagnostic
results

Employing 21 sensitive indicators from the univariate analysis

and the 8 selected from multifactorial analysis, two diagnostic
TABLE 5 Results of multivariate correlation analysis.

Indicators B Wald Significance
P

OR (95%CI)

HbA1c (%) −1.468 35.652 <0.001 0.23 (0.142, 0.373)

FBG (mmol/L) −0.451 13.215 <0.001 0.619 (0.512, 0.735)

HDL-C (mmol/L) 1.969 17.818 <0.001 7.160 (2.871, 17.861)

Apolipoprotein B
(g/l)

−4.588 34.331 <0.001 0.010 (0.002, 0.047)

Total bilirubin
(μmol/L)

0.060 7.792 0.005 1.061 (1.018, 1.107)

T-wave changes 0.523 10.26 0.017 1.532 (1.251, 3.518)

ST segment changes 0.573 9.428 0.026 1.735 (1.105, 1.529)

Heart rate (bpm) −0.413 6.312 0.037 0.976 (0.937, 0.999)
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models were developed: a neural network and a logistic

regression model, aimed at classifying T2D with CHD cases.
3.3.1 Neural network diagnostic results
The neural network model was assessed using a test set, with

its classification performance depicted in Figure 2. The model

distinguished T2D-CHD, CHD-only, and T2D-only groups with

notable accuracy, though some outliers were observed. Figure 3

presents ROC curves for each classification indicator,

showcasing discriminative capabilities with AUC values of

0.961, 0.964, and 0.977, respectively. Performance metrics, listed

in Tables 6, 7, include an accuracy of 90.7%, recall of 90.78%,

precision of 90.83%, and an F-1 score of 0.908, highlighting its

diagnostic precision.
3.3.2 Logistic regression diagnostic results
The logistic regression model, applying the 8 chosen

indicators, showed proficiency in disease classification, as detailed

in Tables 8, 9. It accurately classified the majority of cases across

the three categories, achieving an accuracy of 90.13%, recall of

90.1%, precision of 90.22%, and an F-1 score of 0.9016,

demonstrating reliable diagnostic capability.
3.4 External validation of intelligent model
typing diagnostic results

External validation assessed the diagnostic models’

generalization capability using data from an independent hospital

cohort, which confirmed their effectiveness across T2D-CHD,
frontiersin.org
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FIGURE 2

Box plot of neural network classification results. This figure displays the classification performance of the neural network model, represented through
a box plot. The color blue indicates predicted T2D-CHD cases, red denotes NDM-CHD cases, and green symbolizes Non-CHD cases.
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CHD-only, and T2D-only patient categories, adhering to stringent

analytical standards.
3.4.1 Neural network model external validation
The external validation of the neural network model,

encapsulated in its classification confusion matrix and

summarized in Tables 10, 11, confirmed its exceptional capability

to accurately differentiate among the three patient categories. The

model achieved an external validation accuracy of 90.57%, with

closely aligned recall, precision, and F-1 scores of 90.62%,

90.55%, and 0.9058, respectively, affirming its robust

performance and wide applicability.
3.4.2 Logistic regression model external validation
Parallelly, the logistic regression model’s external validation,

meticulously detailed in Tables 12, 13, illustrated its commendable

accuracy and consistency in disease state classification. This model’s

external validation metrics showcased an overall accuracy of

89.15%, complemented by a recall of 89.23%, precision of 89.12%,

and an F-1 score of 0.8917, further reinforcing the diagnostic

models’ reliability and effectiveness in a broader clinical context.
Frontiers in Cardiovascular Medicine 06
4 Discussion

The necessity of managing cardiovascular risk in patients with

Type 2 Diabetes Mellitus (T2D) has become increasingly evident,

prompting a shift in the approach to cardiovascular disease

(CVD) prevention and management (8). The development of

risk assessment tools by authoritative bodies like the American

College of Cardiology (ACC) and the American Heart

Association (AHA) (9), alongside recommendations from the

European Society of Cardiology (ESC) (10), signifies a strategic

move towards early detection and primary prevention. These

tools and stratifications aim to tailor preventive measures and

treatments by evaluating individual risk factors such as age,

lifestyle, comorbidities, and disease duration. Yet, the variation in

methodologies underscores the complexity of accurately assessing

CVD risk in T2D patients, highlighting a critical need for

consensus and a more personalized approach to care.

The traditional approach for diagnosing Coronary Heart

Disease (CHD) in patients with Type 2 Diabetes Mellitus (T2D)

primarily utilizes electrocardiograms (ECG) and coronary

angiography. ECGs, as a non-invasive tool, are crucial for

detecting heart irregularities and ischemic conditions but may

not always accurately capture the onset of CHD or may have

ischemic changes masked by other diseases or confounding
frontiersin.org
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FIGURE 3

ROC curves for classification indicators in neural network model. This figure displays the ROC (Receiver Operating Characteristic) curves for each
classification indicator within the neural network model. The areas under the curves for DM, NDM, and NN are 0.973, 0.968, and 0.982 respectively.

TABLE 6 Neural network four-fold cross-validation results.

Training set classification results Test set classification results
T2D-CHD CHD-only T2D-only Total T2D-CHD CHD-only T2D-only Total

136 152 144 432 64 68 73 205

139 161 141 441 65 71 68 204

143 149 143 435 62 73 70 205

141 150 142 433 63 70 69 202

TABLE 7 Neural network classification results.

Training set accuracy Test set accuracy
Accuracy Recall Precision F-1 score Accuracy Recall Precision F-1 score

92.02% 92.16% 92.35% 0.923 90.27% 90.78% 90.83% 0.908

TABLE 8 Logistic regression four-fold cross-validation results.

Training set classification
results

Test set classification results

T2D-CHD CHD-only T2D-only Total T2D-CHD CHD-only T2D-only Total

136 149 143 428 62 69 71 202

140 150 141 431 64 72 67 203

133 153 139 425 61 70 69 200

138 149 140 427 63 71 70 204

Li and Ying 10.3389/fcvm.2024.1358066

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2024.1358066
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 12 Logistic classification confusion matrix.

T2D-CHD CHD-only T2D-only
T2D-CHD 66 2 5

CHD-only 4 59 6

T2D-only 1 5 64

TABLE 13 Logistic model external validation results.

Accuracy Recall Precision F-1 score
89.15% 89.23% 89.12% 0.8917

TABLE 11 Neural network model external validation results.

Accuracy Recall Precision F-1 score
90.57% 90.62% 90.55% 0.9058

TABLE 10 Neural network classification confusion matrix.

T2D-CHD CHD-only T2D-only
DM-CHD 67 3 3

CHD-only 3 62 4

T2D-only 5 2 63

TABLE 9 Logistic classification results.

Training set accuracy Test set accuracy
Accuracy Recall Precision F-1 score Accuracy Recall Precision F-1 score

90.43% 90.81% 91.02% 90.91% 89.49% 90.10% 90.22% 0.9016

Li and Ying 10.3389/fcvm.2024.1358066
factors (11). Coronary CT angiography (CTA) represents a non-

invasive early screening method, yet it suffers from a higher

false-negative rate, making it challenging to widely implement in

primary care settings. Meanwhile, Invasive coronary angiography,

despite offering detailed artery visualization, is invasive and

carries risks, rendering it less suitable for patients in early or

asymptomatic stages of CHD (12). Critically, the neuropathic

effects of diabetes can conceal the typical pain associated with

heart conditions, often leading diabetic patients to delay seeking

medical attention and hindering effective detection and diagnosis

(13). This underscores an urgent need for advancements in

diagnostic methods that are less invasive, highly sensitive, and

customized to individual patients, aiming to enhance the early

detection and efficient management of CHD in those with T2D.

In response, our study introduces a pioneering sensitivity index

screening method and a rapid diagnostic model for T2D-CHD,

leveraging the latest advancements in machine learning (ML) and

artificial intelligence (AI) to transcend the barriers posed by

current diagnostic methodologies. This approach, drawing upon

a comprehensive array of medical data, including patient history,

comorbidities, laboratory tests, and ECGs, aims to facilitate early

detection and risk stratification of CHD among T2D patients.

The inspiration for this approach stems from recent

breakthroughs in AI/ML, which have demonstrated significant
Frontiers in Cardiovascular Medicine 08
potential in revolutionizing the diagnosis and management of

cardiovascular diseases and diabetes.

For instance, the work of Alimova et al., employing ML

algorithms to predict diastolic dysfunction in cardiovascular and

diabetic patients, highlights the precision and effectiveness these

technologies bring to medical diagnostics (14). This is further

supported by research from Saeed and Hama, who explored

cardiac disease prediction using AI algorithms (15), and from

Chinmayi et al. and Barbieri et al., who delved into AI’s role in

disease risk prediction and the utilization of advanced imaging

techniques for enhanced diagnostic accuracy (16, 17). These

studies underscore the adaptability and depth of AI/ML in

capturing complex cardiovascular and metabolic interrelations,

setting a foundation for our methodology.
5 Limitations and future directions

While our study presents a promising direction for the use of

AI in T2D-CHD diagnostics, we acknowledge limitations such as

the reliance on limited training sets and potential selection biases

inherent in electronic medical records. Future research could

extend our findings through multi-center external dataset

validation or prospective cohort studies, further refining the

diagnostic models and expanding their applicability.
6 Conclusion

Our work contributes to the evolving evidence base supporting

the integration of AI and ML in diagnosing complex diseases like

T2D-CHD. Our results, in line with recent advancements,

advocate for the potential of AI-based diagnostic models to

significantly improve disease screening and management,

particularly valuable in primary care settings where early

detection can dramatically influence patient care and outcomes.
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