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Belonging to a lipid phosphatase family containing 16 members, myotubularin-
related proteins (MTMRs) are widely expressed in a variety of tissues and organs.
MTMRs preferentially hydrolyzes phosphatidylinositol 3-monophosphate and
phosphatidylinositol (3,5) bis-phosphate to generate phosphatidylinositol and
phosphatidylinositol 5-monophosphate, respectively. These phosphoinositides
(PIPs) promote membrane degradation during autophagosome-lysosomal
fusion and are also involved in various regulatory signal transduction. Based on
the ability of modulating the levels of these PIPs, MTMRs exert physiological
functions such as vesicle trafficking, cell proliferation, differentiation, necrosis,
cytoskeleton, and cell migration. It has recently been found that MTMRs are
also involved in the occurrence and development of several cardiovascular
diseases, including cardiomyocyte hypertrophy, proliferation of vascular
smooth muscle cell, LQT1, aortic aneurysm, etc. This review summarizes the
functions of MTMRs and highlights their pathophysiological roles in
cardiovascular diseases.
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1 Introduction

As a second messenger within the cell, phosphoinositides (PIPs) participate in a variety

of cellular processes, such as protein transport, signal transduction, remodeling of the

protein backbone, and fusion of the cell membrane. PIPs can be hydrolyzed into several

kinds of substrates, phosphatase and tensin homolog deleted on chromosome ten

(PTEN), myotubularin-related (MTMR) protein family, sac1 domain-containing

phosphatase, etc. (1, 2). MTMR protein family consists of 16 members, of which 9

members are active phosphatases, while the rest 7 members are inactive phosphatases

due to lacking of the conserved cysteine in the catalytic signature (2–4). The most

well-known and distinguished effect of MTMRs is the ability to dephosphorylate

phosphatidylinositol 3-monophosphate (PI(3)P) and phosphatidylinositol (3, 5)

bis-phosphate (PI(3,5)P2), indicating MTMRs are involved in cellular membrane

transport and endocytosis (5). MTMRs are widely expressed in different kind of tissue

and organs, including the neural system, heart, liver, testicle and gastrointestinal tract

(6–8). MTMRs also exert multiple physiological roles such as modulating cell

proliferation, differentiation, necrosis and migration (9). Recent studies demonstrate that
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several MTMRs are also involved in the development of CVDs (10,

11). Thus, illuminating the role of MTMRs in cardiovascular system

is of great importance to search novel targets for preventions of

CVDs. This review highlights the function of MTMRs in the

cardiovascular system and discusses the associated mechanisms.
2 Overview of the canonical
physiological mechanisms of MTMRs

2.1 Interactions between MTMRs

MTMRs have been found to have several functional domains

that mediate the interactions of protein-protein and protein-lipid,

such as the PH-glucosyltransferase, Rab-like GTPase activator and

myotubularin (GRAM) domain is involved in the interaction with

membranes, Rac-induced recruitment domain which is a

membrane-targeted motif, SET interacting domain/PDZ binding

domain which mediate protein-protein interactions, and Zinc

FYVE domain coupled with phosphatidylinositol (2, 12).

Furthermore, the coiled-coil (CC) domain is essential for the

homodimerization or heterodimerization between MTMRs (13).

The nine members of MTMR with catalytic activity can interact

with other members without enzymatic activity, and this

interaction between MTMRs plays a crucial role in maintaining its

normal function (Table 1). Nandurkar et al. demonstrate that

MTMR12, also known as 3-phosphatase adaptor (3-PAP), is a

catalytically inactive member of MTMR family and can interact

with myotubularin (MTM1) and MTMR2. Co-expression of

catalytically inactive MTMR12 with MTM1 can reverse the

remodeling of membrane phenotype caused by overexpression of

MTM1, translocate MTM1 into cytoplasm, and also attenuate

the formation of filamentous pseudopodia caused by

overexpression of MTM1 (14). The interaction between MTM1

and MTMR12 is essential for the stability of functional protein

complexes in skeletal muscle, which offers novel targets for Mtm1

mutation-induced X-linked myotubular myopathy (XLMTM) (15).
TABLE 1 Several MTMRs can homodimerize or heterodimerize to form active
phosphoinositide activity.

Name Ho
MTM with catalytic activity MTM1

MTMR1

MTMR2

MTMR3

MTMR4

MTMR6

MTMR7

MTMR8

MTMR14/JUMPY

MTM with no catalytic activity MTMR5/SBF1

MTMR9/LIP-STYX

MTMR10

MTMR11/CRAa/b

MTMR12/3-PAP

MTMR13/SBF2

MTMR15/FAN1
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MTMR2 is a 73-kDa protein that forms a dimer via its coiled

structure, while its interacting partner, MTMR13/SBF2 belongs to

the catalytically inactive members. Mutation of either MTMR2 or

MTMR13 leads to Charcot-Marie-Tooth type 4B, which is

characterized by reduced nerve conductive velocity and folding of

myelin within the peripheral nerve (16). MTMR2 binds to

MTMR13 and forms a protein complex within Schwann cell,

which is critical for the integrity of peripheral nervous system (17).

Additionally, Kim et al. demonstrate that MTMR2 interacts with

MTMR5 via its CC domain, which enhances the enzymatic

activity of MTMR2 and alters its subcellular localization (5).

In addition to heterologous interaction between catalytically

active and inactive MTMRs, two catalytically active MTMRs can

also interact with each other. The first reported interaction

between two catalytically active MTMRs was MTMR3-MTMR4

(18). A subfamily of homologous MTMRs include MTMR6,

MTMR7, and MTMR8, all of which can form a heterodimer

with MTMR9. The MTMR6/MTMR9 complex has higher activity

against, while the MTMR8/MTMR9 complex prefers PI(3)P as

substrate (19). Some cellular processes have been implicated in

the function of MTMR6/7/8/9 myostuin subsets, such as the

heterodimer of MTMR6-MTMR9, which is confirmed to

ameliorate cellular apoptosis both in vivo and in vitro (20).
2.2 Modulating the PI3K/AKT pathway

PI3K/AKT pathway plays a vital role in cardiovascular events,

including atherosclerosis, cardiac hypertrophy, and vascular

remodeling (21). AKT can be activated by a variety of external

stimuli in cardiovascular system, such as insulin, vascular

endothelial growth factor (VEGF), reactive oxygen species (ROS),

and several phosphatase inhibitors (22, 23). These stimuli usually

transcriptionally or post-translationally regulate AKT activity.

AKT exerts its roles in cardiovascular system by affecting its

downstream targets. For example, AKT induces endothelial nitric

oxide synthase (eNOS) phosphorylation, vasodilation, and
-active or active-inactive complexes, allowing more precise regulation of

modimerization with Heterodimerization with
√ MTMR12

MTMR12

MTMR5, MTMR13

√ MTMR4

√
√ MTMR9

MTMR9

MTMR9

MTMR2

√ MTMR6, MTMR7, MTMR8

√ MTM1, MTMR1, MTMR2

√ MTMR2
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angiogenesis via enhancing VEGF secretion. AKT promotes

cellular survival via suppressing FOXOs, caspase 9, and Bcl-2.

Additionally, AKT also induces cellular growth and proliferation

via increasing mammalian target of rapamycin complex 1

(mTORC1) activity (21).

Razidlo et al. demonstrate that silencing MTM1 significantly

inhibits growth factors-induced AKT phosphorylation, which is

resulted from abnormal accumulation of PI(3)P, the substrate of

MTMR (24). PI(3)P and PI(3,5)P2 generate into phosphatidylinositol

(PI) and phosphatidylinositol 5-monophosphate (PI(5)P) when

MTM1 is dephosphorylated (Figure 1), while MTM1 knockdown

causes a 2-fold rise in total PI(3)P in cell (25). PI(3)P is usually

believed to originate from phosphatidylinositol kinase type III.

However, increasing evidences suggest that PI3K-C2β can also

generates PI(3)P. Overexpression of PI3K-C2β suppresses AKT

phosphorylation within mammalian cell, indicating that impaired

AKT phosphorylation may be caused by excessive accumulation

of PI(3)P (26).
TABLE 2 Summary of the pathophysiological roles of MTMRs in
cardiovascular diseases and common biological functions.

Myotubularins Application in the
cardiovascular system

Universal
physiological
functions

MTM1 Distributed at the membrane of
platelets and co-localized with α

granule

Increase the amount of
autophagosome

Absence leads to cholestatic liver
disease and may be associated
with increased cardiovascular risk
factors in children with
cholestatic disease

MTMR3/MTMR4 Prevents protein aggregation in
trophoblasts and abnormal
placental dysfunction in
preeclampsia

Regulates autophagy

Alleviate the clinical
2.3 Physiological function description of
atypical MTMR

The specific pathological and physiological mechanisms of

atypical MTMR are as follows. Among the genes abnormally

expressed in ankylosing muscular dystrophy type 1 (DM1),

myosin associated 1 gene (MTMR1) is associated with impaired

muscle differentiation. Maria et al. found that her2 can regulate

MTMR11 and promote malignant tumor proliferation. The

human heterozygous 15q13.3 microdeletion contains genes

FAN1/MTMR15 and MTMR10, which are associated with

neuropathological disorders. In addition, MTMR15, as a

highly conserved protein, MTMR15/FAN1, interacts with the

monoubiquitinated form of FANCD2 and recruits DNA damage

sites through FANCD2, promoting repair.
FIGURE 1

Nine out of sixteen members of the MTMRs family possess catalytic
activity, dephosphorylating PI(3)P and PI(3,5)P2 to PI and PI(5)P. This
metabolic reaction is indicated in blue arrow.
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3 Roles of MTMRs in cardiovascular
system

There are growing evidences that some MTMRs are

differentially expressed in cardiovascular diseases (Table 2). For

instance, MTM1 is highly expressed in the membrane of platelets

and utilized in the diagnosis of X-linked myotubular myopathy

(XMLM). MTMR4 has an effect on the development of LQT1

and aortic aneurysm. As a positive regulator of peroxisome

proliferator-activated receptor gamma (PPARγ), MTMR7 has

certain diagnostic and therapeutic value for the prevention and

treatment of heart failure. MTMR14 regulates cardiomyocyte

hypertrophy and proliferation of vascular smooth muscle cell.
3.1 MTM1

Molecular genetics and histopathology are presently used to

diagnose XMLM, which can be resulted from Mtm1 mutation
manifestations of LQT1 patients

May be a potential therapeutic
target in the process of
myocardial fibrosis

MTMR7 Regulates glucose and fatty acid
metabolism

Negative regulation of
autophagy

May be a potential research target
for the relationship between vCJD
and cardiovascular disease

MTMR14 Regulates myocardial
hypertrophy

Regulates lipid
metabolism

Regulates myocardial contractility Inhibits basal autophagy

Inhibits the proliferation of
vascular smooth muscle cells

MTMR2/MTMR5 Inhibits autophagy

MTMR6 May be possible to modulate
cardiovascular events by
modulating KCa3.1

Actively regulates late
autophagy

Regulates potassium
channels

MTMR9 SNP RS2293855 on the MTMR9
gene intron is associated with
increased HbA1c level

Regulates lipid
metabolism

Interacts with MTMR8 to
reduce autophagy activity

CVDs, cardiovascular diseases; LQT1, long QT syndrome; LQT1, subtype; vCJD,

variant Creutzfeldt-Jakob diseases; KCa3.1, Ca2+-activated K+ channels3.1.
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(27). MTM1, a hyperactive 3-phosphatase, is discovered to be

abundantly expressed in platelets. MTM1 is mainly distributed at

the membrane of platelets and co-localized with α granule.

Furthermore, there is no change in aggregation and secretory

reaction of platelets after stimulus of thrombin or collagen by

using a mouse Mtm1-knocking out model, suggesting that other

MTMRs instead of MTM1 play a role in platelets (28). In fact,

the mRNA levels of several members of MTMRs are increased

during the process of human hemopoietic progenitor cells

differentiate into megakaryocyte (29). Whether which kind of

MTMR functions in aggregation and secretory reaction of

platelet needs further exploration.

MTM1 can interact with a protein which is a striated muscle

preferentially expressed protein kinase (SPEG) (30). SPEG plays an

important role in the excitation-contraction coupling (31),

cytoskeleton organization (32), and other cellular processes (33).

The Speg gene is recessively mutated in central nuclear myopathy

(CNM) and dilated cardiomyopathy (30). Embryonic Speg-KO

mouse shows cardiac enlargement, cardiac fibrosis, decreased

cardiac function after birth, and eventually died, which confirms the

relationship between SPEG and the occurrence of dilated

cardiomyopathy (34). Whether MTM1 plays a role in the

pathogenesis of dilated heart disease needs to be further explored.

The most recent report was that in 2023, Ka et al. described in a

model of zebrafish that loss-of-function mutations in MTM1 lead to

severe cholestatic liver disease, while previous studies have reported

that there may be increased cardiovascular risk factors in children

with cholestatic disease, suggesting that MTM1 may be involved in

the occurrence and development of cardiovascular events (35).
3.2 MTMR3/MTMR4

Yeast two-hybrid and co-immunoprecipitation experiments

have shown that MTMR3 can bind to MTMR4, so MTMR3 and

MTMR4 are introduced together (18). that MTMR3 was found

to be a direct target of miR-181a, linking the miRNA to

autophagy. In turn, the increase of miR-181a reduced MTMR3,

inhibited the occurrence of autophagy, prevented protein

aggregation in trophoblasts and abnormal placental dysfunction,

and provided a potential therapeutic target for the diagnosis of

preeclampsia (36), thereby further reducing the risk of

cardiovascular disease, diabetes and other metabolic diseases in

women and infants who survived preeclampsia (37).

MTMR4 is a 133-kDa intracellular protein and has two single

nucleotide variations (SNVs) within its conserved phosphatase

region, which attenuates the degradation of channel proteins and

protects ion channels (38). Congenital long QT syndrome

(LQTS) is the first reported channelopathy and is associated with

mutations of genes encoding ion channels or their regulatory

proteins, among which LQT1 is the most common one (39).

MTMR4 is confirmed to alleviate the clinical manifestations of

LQT1 patients due to the existence of SNVs, which also explain

why LQT1 patients has incomplete penetrance and show

relatively mild clinical manifestations (38). MTMR4 targets early-

stage endosome, regulates TGFβ signaling pathway, and thus
Frontiers in Cardiovascular Medicine 04
participates in cardiovascular diseases via its FEVY domain.

Smads protein family act downstream of TGFβ to play critical

roles in CVDs. MTMR4 dephosphorylates Smad2/3 within early-

stage endosome via binding to the phosphorylated SXS-motif of

Smad2/3 and thus stabilizes TGFβ signal (40). Dysregulation of

TGF-β signal pathway is involved in the development of aortic

aneurysm (41). Three microRNAs (miRNAs) have been

identified as diagnostic biomarkers for aortic aneurysm. MTMR4

is the same predictive target of these three miRNAs and shows

negative correction with the miRNAs (42). Though MTMR4 may

affect aortic aneurysm via affecting TGFβ signaling pathway,

there is no direct evidence that MTMR4 has definite curable

effects on aortic aneurysm. In addition, Dy et al. (2019) found

that MTMR3/MTMR4 regulated interferon gene stimulating

factor (STING) trafficking by regulating ptdins3p production,

suggesting that MTMR3/MTMR4 may be a potential therapeutic

target in the process of myocardial fibrosis, macrophage

infiltration and cardiac inflammatory response in patients with

diabetes and obesity mediated by STING signaling, which needs

to be further experimentally verified (43).
3.3 MTMR7

Peroxisome proliferators-activated receptors (PPARs) belong to

the nuclear receptor superfamily, among which a nuclear

transcription factor PPARγ inhibits proliferation of cancer cells,

exerts lipid lowering and sensitization, and is utilized to prevent

against type 2 diabetes (8, 44). RAS-ERK signal transduction has

multiple regulatory effects on PPARγ. Weidner et al. demonstrated

that downstream effectors of RAS inhibit PPARγ, e.g., by nuclear

export and cytosolic sequestration through MEK1. as well as by

ERK1/2-dependent phosphorylation (45). Further research found

that MTMR7 as a novel interaction partner for PPARγ to counter

the inhibitory effect of RAS-ERK on PPARγ (44). MTMR7 is

widely expressed in brain, muscle, liver, kidney and cytoplasmic

segregation (46). Unlike other MTMRs, MTMR7 is a pro-survival

phosphatase and utilizes inositol-1,3 bisphosphate (Ins(1,3)P2) as

substrate (47). A synthetic peptide that mimics the CC domain of

MTMR7 is able to interact with the steroid receptor coactivator

(SRC1) binding site of PPARγ both in vivo and in vitro,

indicating that MTMR7 interacts with PPARγ and positively

regulates of PPARγ (44). Furthermore, MTMR7 is known to

suppress RAS-ERK1/2 and PI3K/AKT/mTOR pathway (8),

suggesting that MTMR7 can also indirectly enhance the function

of PPARγ. PPARγ is involved in glucose and fatty acid oxidation

in cardiac and vascular tissues (48). Pioglitazone, the agonist of

PPARγ, ameliorates mitochondrial disorders, reduces lipid

deposition during, and thus prevents against severe pulmonary

arterial hypertension and vascular remodeling (49). Therefore,

further efforts are needed to investigate whether MTMR7 can

function in cardiovascular diseases via affecting PPARγ. In

addition, a relatively rare SNP variant (rs4921542) in the intron

region of MTMR7 is associated with a high risk of variant

Creutzfeldt-Jakob disease (vCJD) (50). So, MTMR7 may be a

potential research target linking vCJD and cardiovascular disease.
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3.4 MTMR14

MTMR14, which takes a variety of phosphates as substrates, is

originally identified in human centronuclear myopathy and

expressed at kidney, placenta, fat, liver, teste, heart and muscle

(51). Recent researches demonstrate that MTMR14 is involved in

cardiovascular regulation. The cardiovascular protection mediated

by MTMR14 is related to PI3K, which can be activated by G

protein-coupled receptors after stress and induces AKT

phosphorylation and cardiac hypertrophy (52). MTMR14 can

modulate the activity of PI(3,5)P2, which is crucial for

maintaining the homeostasis of in muscle (53). MTMR14-

mediated regulation of PI(3,5)P2 also exerts in cardiac tissue.

Chad et al. demonstrate that PI(3,5)P2 directly binds to RyR2

thus promoting the release of Ca2+ from sarcoplasmic reticulum

and improving cardiac contractility (53).

MTMR14 is also discovered to has a specific inhibitory effect

on the proliferation of vascular smooth muscle cell (VSMC).

Abnormal proliferation and migration of VSMC is the critical

step during the development of atherosclerosis and vascular

restenosis (54). Kong et al. demonstrate that vascular injury

causes neointimal formation and increased expression of

MTMR14 in carotid artery (10). Knocking down MTMR14

aggravates neointimal hyperplasia by inducing proliferation of

VSMC. Further analysis shows that knocking out MTMR14

(MTMR14-KO) enhances the phosphorylation of polo-like kinase

1 (PLK1), ERK and AKT. PLK1 is activated in proliferating cells

and promotes proliferation by activating MEK/ERK signal

(55–57). Silencing PLK1 ameliorates MTMR14-KO-induced

vascular neointimal hyperplasia, indicating MTMR14 inhibits

PLK1 activity by interacting with PLK1, suppresses MAPK

activity and thus inhibits vascular restenosis (10).
4 Common biological functions of
MTMRs

In addition to participating in the occurrence and development

of cardiovascular events, MTMRs are also involved in some cellular

processes that are critical in cardiovascular regulation. For example,

MTMR9/MTMR14 involved in regulating lipid metabolism.

MTMR6 negatively regulates ion channels. Additionally, some

MTMRs regulate endocytosis, membrane transport during

autophagy, and maintaining autophagy flow (Table 2).
4.1 Effect of MTMRs in regulation of
metabolism

Increased prevalence and incidence of obesity have garnered

considerable attention worldwide (58). Obesity typically

manifests as systemic inflammation, metabolic complications, and

fatty accumulation (59), leading to increased risk of chronic

diseases such as cardiovascular diseases, cancer, and respiratory

diseases (60). Previous studies have found that MTMR7 is highly
Frontiers in Cardiovascular Medicine 05
correlated with glucose metabolism and mammalian targets of

rapamycin complex 1 (mTORC1). Further experiments

confirmed that MTMR7 significantly inhibited glycolysis and

mTORC1 activity in PDGF BB-excited VSMCs in vitro, so it was

concluded that MTMR7 inhibited glucose metabolism and thus

inhibited VSMC proliferation and migration and vascular intimal

proliferation (61). PPARγ is a member of the nuclear receptor

superfamily that plays a key role in the differentiation,

maintenance, and function of adipocytes (62). In addition,

PPARγ also plays an important role in pulmonary hypertension,

atherosclerotic and right heart failure cardiovascular disease

(45, 63). MTMR7 can interact with PPAR, which indirectly

indicates that MTMR7 regulates cardiovascular disease by

regulating metabolism. Additionaly, Johnson et al. demonstrate

that MTMR9 is located at 8p23-p22 segment and is associated

with the obesity phenotype (64). Hotta et al. confirm a close

relationship between body mass index (BMI) and single

nucleotide polymorphism (SNP) RS2293855. Further analysis

shows that the transcription level of MTMR9 in the mouse

hypothalamic region is increased after fasting while decreased

after high-fat diet, suggesting that genetic variants in MTMR9

may cause obesity and hypertension by regulating hypothalamic

neuropeptides (65). SNP RS2293855 on the MTMR9 gene intron

is associated with increased HbA1c level, insulin sensitivity, and

insulin secretion. However, this association disappears after the

recovery of blood glucose, indicating this association is mediated

by glycaemic pathways (66). Moreover, MTMR9 overexpression

can reduce the surface expression of Wnt/β-catenin signaling

gene WNT3A (20). And the rs752107 polymorphism of WNT3A

gene is significantly associated with susceptibility to Essential

hypertension (EH), and is also associated with the risk of heart

failure (HF) and ischemic stroke (IS), suggesting that MTMR9

may be a target between Wnt signaling and cardiovascular

diseases (67).

In addition to MTMR9, catalytically active MTMRs also play a

role in regulating lipid metabolism. The weight of adult MTMR14-

KO mice increases more quickly than that of wild type mice (68),

indicating that MTMR14 is involved in obesity. Further analysis

shows that MTMR14 deletion results in fatty accumulation,

inflammation, and metabolic disorder by releasing serum

cytokines, abnormal regulation of several modulatory genes and

the PI3K/AKT and ERK signaling pathways. There are also

studies demonstrating that elder MTMR14-KO mice display

more severe fatty accumulation and metabolic disorder,

suggesting that MTMR14-mediated inflammation and metabolic

disorder are age-dependent (51) (68).
4.2 Regulates potassium channels

There are four genes encoding Ca2+-activated K+ channels with

small or intermediate conductance, including KCa2.1, KCa2.2,

KCa2.3, and KCa3.1. KCa3.1 (also known as KCa4, IKCa1, hIK1,

or SK4) can be activated by intracellular Ca2+ and the gating of

KCa3.1 is voltage-independent (69). It has been reported that

KCa3.1 mRNA expression was significantly increased in the
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FIGURE 2

MTMRs not only exert their regulatory effects in the cardiovascular system through the PI3K-AKT signaling pathway, but also participate in a series of
cellular processes crucial for cardiovascular regulation, including autophagy, metabolism, and ion channels.
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coronary arteries of pigs with early atherosclerosis (70) or in rats

with myocardial infarction (71) and hypertension (72).

Therefore, inhibition of KCa3.1 activity is essential for the

development of cardiovascular diseases. CHO-KCa3.1 is a cell

line stably expressing KCa3.1. The KCa3.1 current is significantly

decreased after co-transfection of CHO-KCa3.1 with GFP-labeled

MTMR6, suggesting that MTMR6 inhibits the activity of KCa3.1

(73). MTM1 does not display inhibitory effect on KCa3.1,

however, the chimeric MTM1 in which the CC domain is

exchanged with the MTMR6 CC domain also inhibits KCa3.1,

demonstrating that this inhibition is mediated by the CC domain

(73). MTMR6 is known to form heterodimer with MTMR9 to

exert its function (5). However, silencing MTMR6 instead of

MTMR9 attenuates the lethality of Vps34 mutation in C. elegans,

indicating that MTMR6 can also function in a MTMR9-

independent manner (73). Whether MTMR9 is essential for the

inhibitory role of MTMR6 in KCa3.1 also needs further

investigation. MTMR6 selectively dephosphorylates PI(3)P and

leads to declined PI(3)P in lipid microdomains adjacent to K(Ca)

3.1. Further analysis shows that KCa3.1 activity is also

suppressed by PI3K inhibitors, and this suppression can be

reversed by the supplement of PI(3)P instead of other

phosphoinositides. Additionally, MTMR6-mediated inhibition of
Frontiers in Cardiovascular Medicine 06
K(Ca)3.1 is also rescued by the supplement of PI(3)P (73). Taken

together, these data suggest that MTMR6-mediated inhibition of

K(Ca)3.1 by dephosphorylating and decreasing PI(3)P may

participant in the development of some cardiovascular diseases.
4.3 Role of MTMRs in autophagy/apoptosis

Autophagy and apoptosis are closely regulated processes in

cellular and tissue homeostasis, development, and disease (74).

Autophagy is a evolutionarily conserved cellular process that

depends on lysosomal degradation of cytoplasmic components

(75). Serving as an important cellular survival mechanism under

stress, autophagy plays a critical role in maintaining cellular

homeostasis and function (76). Autophagy or necessary proteins

involved in the autophagy process may promote cell death, either

by decomposing cells to promote apoptosis or by activating the

necrosis program to promote cell death (77). So autophagy is

inseparable from programmed cell death. There are many lines of

evidences that autophagy/apoptosis is involved in the regulation

of CVDs, such as atherosclerosis, hypertension, myocardial

infarction, and cardiomyopathy, etc. (78, 79). Depending on PI(3)

P- and PI(3,5)P2-mediated degradation of membranes during
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autophagosome-lysosome fusion, macromolecules are digested by

lysosomal enzymes and transported to the cytoplasm for anabolic

activities (80). Therefore, enzymes that facilitate the conversion or

production of PIs are important for autophagy. MTMRs are

known to modulate membrane trafficking (81) and maintain

autophagic flux (82) during autophagy and endocytosis. For

instance, suppression of MTM1, MTMR1, MTMR2, and MTMR3

in mammal cells, zebrafish, mice, and fruit flies both increase the

amount of autophagosome (83–85). And Overexpression of

MTM1 can inhibit granulosa cell proliferation and promote cell

apoptosis in polycystic ovary syndrome (86). MTMR3 is one of

the main genes involved in the regulation of autophagy pathway

in mammalian cells, and MTMR3 induces autophagy by inducing

or down-regulating mTORC1 (87), while up-regulation leads to

the reduction of autophagosomes, thereby inhibiting autophagy

(36, 88, 89). MTMR2/MTMR5 is a heterodimer that suppresses

autophagy and is crucial for autophagy initiation and

autophagosome maturation (90). MTM1, MTMR6 and MTMR9

in C. elegans promote fluid-phase endocytosis. Moreover, Allen

et al. demonstrate that CG3530 (dMTMR6), which affects

autophagy in fruit flies, is homologous to the human MTMR6,

exerts as a regulator of autophagy flux in Drosophila cells, and

shares similar function to MTMR8 in mammal cells (82). Further

analysis shows that dMTMR6 and MTMR8 function as positive

regulators of autophagosome-lysosome homeostasis and positively

regulate late autophagy. Downregulation of dMTMR6 and

MTMR8 leads to accumulation of autophagic vesicles and

disorder of phagocytosis, which finally impairs lysosomal

homeostasis (82). In spite of the effect on promoting late

autophagy, MTMR6 also exerts as an antagonism under stress via

interference with PI3K signal pathway and inhibiting formation of

autophagosome (4). There have also been reports that deletion of

either the MTMR6 or the MTMR8/MTMR9 complex leads to an

increase in autophagy (43, 91). Wang et al. found that negative

regulation of MTMR6 can inhibit the proliferation of ovarian

cancer cells and promote apoptosis. MTMR7 and MTMR8 are

homologous to MTMR6 and can also interact with MTMR9

(19, 46). MTMR7 inhibits insulin signaling and negatively

regulates autophagy in colorectal cell line (8), while MTMR8/

MTMR9 regulates the PI(3)P pool and positively modulates the

level of p62, whose degradation within autophagosome serves

as a hallmark of autophagy. However, silencing MTMR8 or

MTMR9 alone does not affect autophagy (19). MTMR14 is

able to suppress basal autophagy instead of stress-induced

autophagy (4). Knocking down MTMR14 leads to

accumulation of autophagosome and increased level of LC3Ⅱ,

which prevents the subsequent degradation of autophagy

macromolecules and provides evidence that MTMR14 is a

positive regulator of autophagy (92). MTMR14 can also

regulate cardiomyocyte enlargement and programmed cell

death through the PI3K \/AKT pathway, as well as inhibit

nuclear transcription factor (NF)- κ B) signal transduction

reduces cell death and inflammatory response, serving as a

protective factor against hepatic ischemia-reperfusion injury.

Moreover, knocking out MTMR14 can promote tumor cell

apoptosis and inhibit cell migration.
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5 Conclusion

The current review summarized the roles and mechanisms of

MTMRs in CVDs. MTMRs are a kind of phosphatases that are

involved in many biological processes. Mutations in MTMRs are

associated with several lines of diseases, including neural

disorders, skeletal muscle defects, cancers and CVDs. The

canonical biological roles of MTMRs include forming

homodimer or heterodimer and regulating PI3K/AKT pathway,

by which MTMRs exert their regulatory roles in cardiovascular

system. In addition to directly participating in the development

of cardiovascular events, MTMRs are also involved in a series of

cellular processes that are critical in cardiovascular regulation,

including autophagy, metabolism and ion channel (Figure 2).

However, the current opinions on MTMRs-dependent

cardiovascular regulation are still insufficient. For example, since

several MTMRs regulate proliferation in cancer cells and

neurocytes, what about the role of these MTMRs in the

proliferation of VSMCs, vascular adventitial fibroblasts and

vascular intimal hyperplasia? Do MTMRs modulate the

development of CVDs via regulating mechanism, autophagy or

potassium channels? Taken collectively, a better understanding of

the functions of MTMs/MTMRs might significantly contribute to

develop novel targets for preventing CVDs.
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