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Background: Strain analysis of cardiac magnetic resonance imaging (CMR) is
important for the prognosis of heart failure (HF). Herein, we aimed to identify
the characteristics and prognostic value of strain analysis revealed by CMR in
different HF phenotypes.
Methods: Participants with HF, including HF with reduced ejection fraction, HF
with mildly reduced ejection fraction, and HF with preserved ejection fraction,
and controls were enrolled. The baseline information and clinical parameters
of participants were collected, and echocardiography and CMR examination
were performed. Three-dimensional strain analysis was performed in the left
ventricle, right ventricle, left atrium, and right atrium using CMR. A multifactor
Cox risk proportional model was established to assess the influencing factors
of cardiovascular adverse events in patients with HF.
Results: During a median follow-up of 999 days (range: 616–1334), 20.6% of
participants (73/354) experienced adverse events (HF readmission and/or
cardiovascular death). Univariable Cox regression revealed that a 1% increase in left
atrial global longitudinal strain (LAGLS) was associated with a hazard ratio (HR) of
1.21 [95% confidence interval (CI):1.15–1.28; P < 0.001]. Left ventricular global
circumferential strain (LVGCS) (HR, 1.18; 95% CI: 1.12–1.24; P < 0.001), and left
ventricular global longitudinal strain (LVGLS) (HR, 1.27; 95% CI: 1.20–1.36;
P < 0.001) were also associated with HF hospitalizations and cardiovascular deaths.
Among clinical variables, hypertension (HR, 2.11; 95% CI: 1.33–13.36; P=0.002),
cardiomyopathy (HR, 2.26; 95% CI: 1.42–3.60; P < 0.001) were associated with
outcomes in univariable analysis. Multivariable analyses revealed that LAGLS (95%
CI: 1.08–1.29; P < 0.001), LVGLS (95% CI:1.08–1.29; P < 0.001) and LVGCS (95% CI:
1.19–1.51; P < 0.001) were significantly associated with outcomes. Among clinical
variables, hypertension (95% CI: 1.09–3.73; P < 0.025) remained a risk factor.
Conclusion: CMR plays an obvious role in phenotyping HF. Strain analysis,
particularly left atrial and left ventricular strain analysis (LAGLS, LVGLS, and
LVGCS) has good value in predicting adverse outcome events.
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1 Introduction

Heart failure (HF) is the end-stage stage of many cardiovascular

diseases and has a high prevalence and mortality rate (1). HF with

reduced ejection fraction (HFrEF) has been extensively studied

with a compelling evidence base; however, there is a lack of

similar data on HF with mildly reduced ejection fraction (HFpEF)

and HF with midrange ejection fraction (HFmEF) (2). Most

epidemiological and clinical trial data on HF are based on imaging

with echocardiography; nonetheless, cardiac magnetic resonance

imaging (CMR) is the gold standard for the majority of imaging

parameters that comprise the latest guidance on HF and right

ventricular assessment (3).

Myocardial strain is the deformation of the myocardium from

the relaxed to the contracted state that can provide insight into the

mechanics of the myocardium; it can be divided into three

categories: global longitudinal strain (GLS), global circumferential

strain (GCS), and global radial strain (GRS) (4). Myocardial

strain analysis can reveal the deformation and velocity of the

global and regional myocardium; it can be used as a developing

indicator to assess the systolic and diastolic function. Compared

with traditional parameters such as left ventricular ejection

fraction (LVEF), myocardial strain analysis can analyze and

assess the global and regional myocardial movement and

function in detail at an early stage (5). CMR is a favorable tool

for assessing the structure and function of the left ventricle (LV);

it can serve as a gold standard for morphological structure and

function assessment (6).

Left ventricular global longitudinal strain (LVGLS) is a broadly

accepted strain index for evaluating the left ventricular global

systolic function; it can predict hospitalization for HF and

cardiovascular death (7, 8). GCS and GRS have not been well

investigated in patients with HF. Although LV plays a significant

role in controlling the contraction and relaxation of the heart, the

importance of left atrial strain has gradually been paid attention to,

and the research on it has also slowly increased (9). Furthermore,

strain analysis of the right ventricle (RV) is increasingly being used

in clinical practice. For example, compared with the ejection fraction

of RV, strain analysis of RV can more sensitively identify early right

ventricular dysfunction (10).
2 Materials and method

2.1 Study population

This retrospective, observational, cohort study was conducted at

a single tertiary cardiac center (the Affiliated Hospital of Xuzhou

Medical University, China) and was approved by the Institutional

Review Board (Approval number: XYFY2021-KL116-01; May 25,

2021). The patients were recruited between July 2016 and

September 2021, and they provided written informed consent

during follow-up. The inclusion criteria for the HFpEF group and

exclusion criteria for the study were consistent with those in our

previous study (11). The inclusion criteria for the HFrEF and

HFmEF group were as follows: (1) patients having typical HF
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signs and symptoms; (2) those with an N-terminal pro-brain

natriuretic peptide level of >125 pg/ml; (3) those with LVEF

between 41% and 49% were included in HFmEF group and those

with LVEF of <40% were included in HFrEF group (12). Controls

were recruited based on the following criteria: (1) be free of

HF symptoms (2) LVEF ≥50% and be free of echocardiographic

signs of severe diastolic dysfunction. Participants were excluded

if they have: (1) Severe liver and kidney dysfunction (2).

Severe heart valve disease (severe mitral stenosis, severe main

stenosis) or known infiltrative or hypertrophic cardiomyopathy

(3). Malignant tumors and severe hematological diseases (4).

Severe infection (5). Autoimmune system diseases. All participants

underwent a review of medical records and clinical data (general

condition, medication, and blood sample analysis); transthoracic

echocardiography and CMR were performed during the same visit.
2.2 Echocardiography acquisition and
analysis

All participants underwent transthoracic echocardiography

(iE33, Philips Healthcare, Best, The Netherlands), and cardiac

systolic and diastolic function indices were obtained using a

similar procedure used in our previous study (11).
2.3 CMR acquisition and analysis

A retrospectively gated cine-CMR method was utilized to

capture cine images in cardiac short-axis, vertical long-axis, and

horizontal long-axis orientations, while a steady-state free

precession sequence was employed for volumetric analysis. The

steady-state free precession images were utilized for cine imaging

with specific parameters (repetition time msec/echo time msec,

3.2/1.2; flip angle, 64°; voxel size, 1.41.46 mm; matrix,

180 × 256 pixels).

CVI42 software (v5.13.5, Circle Vascular Imaging, Canada) was

used by a single observer with over 3 years of experience to evaluate

the CMR images, maintaining blindness to all data. Ventricular

volumes, ejection fraction (EF), and left ventricular (LV) mass

(excluding papillary muscles) were determined using balanced

steady-state cine imaging and calculated from the short-axis cine

stack. Endocardial borders were traced in end-systole and end-

diastole, and volumes were averaged for calculation.

All volumetric and mass data were indexed to body surface area

to derive ventricular volumetric index and mass index. The biplane

approach was employed to calculate left atrial volumes, excluding

the appendage and pulmonary veins, with maximum and

minimum volumes determined. End-diastolic volume (EDV) and

end-systolic volume (ESV) of the ventricular volumes were

assessed from the volume-time curve for the maximal and

minimal values to calculate EF.

Endocardial and epicardial borders of the LV, right ventricle

(RV), and left atrium (LA) were delineated to enable semi-

automatic tracking of the myocardium throughout the cardiac

cycle. After automatic profile delineation, tracking performance
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was verified and manually adjusted if necessary to ensure accurate

strain analysis. LA strain analysis utilized one two-chamber view

and one four-chamber view. LV and RV strain were assessed

using a stack of short-axis views and three long-axis views (two-

chamber, three-chamber, and four-chamber views). GCS, GLS,

and GRS values (GLS and GRS were obtained from LA strain

analysis) were averaged from peak values of all 16 American

Heart Association segments, excluding the most basal and apical

sections. Tracking was repeated three times, and the average of
TABLE 1 Baseline clinical characteristics.

Characteristics HFpEF N = 143 HFmEF N = 43

Demographics
Age, years 58 ± 11a,b 56 ± 14a,b

Gender, n (%)

Male 95 (66.4) 22 (51.2)

Female 48 (33.6) 21 (48.8)

BMI, kg/m2 25.4 ± 3.9 25.8 ± 3.6

Clinical findings
HR, beats/min 78 ± 16b,c 85 ± 14a

SBP, mmHg 128 ± 20 127 ± 25

DBP, mmHg 77 ± 12b 80 ± 18

Smoking, n (%) 54 (37.8)a,b 23 (53.5)a,b

Functional status
NYHA, n (%)

I/II 119 (83.2)a,b 36 (83.7)a,b

III/IV 15 (10.5)a 7 (16.3)a

Medical history
CHD, n (%) 105 (73.4)a 33 (76.7)a,b

MI, n (%) 92 (64.3)a 29 (67.4)a,b

Hypertension, n (%) 71 (49.7)a 21 (48.8)a

Cardiomyopathy, n (%) 17 (11.9)b 4 (9.3)b

Hyperlipidemia, n (%) 15 (10.5)b,c 17 (39.5)a

T2DM, n (%) 28 (19.6)a,b,c 5 (11.6)a

Medication
Aspirin, n (%) 111 (76.6)a,b 30 (69.8)a,b

DAPT, n (%) 94 (65.7)a,b 27 (62.8)a,b

Statins, n (%) 116 (81.1)a,b 35 (81.4)a,b

β-blocker, n (%) 117 (81.8)a 35 (81.4)a

ACEI/ARB, n (%) 95 (66.4)a,b 30 (69.8)a,b

Diuretics, n (%) 47 (32.9)a,b,c 27 (62.8)a,b

Blood biochemistry
Hemoglobin, g/L 136 ± 18b 141 ± 18

Hematocrit, % 40.4 ± 6.3b 42.0 ± 5.5

eGFR, ml/min/1.73 m2 76.0 ± 51.6a 67.6 ± 18.9

NT-proBNP, pg/ml
Median (Q1, Q3)

1,579 (999, 2,564)a,b,c 3,093 (1,998, 5,449)a

TG, mmol/L 1.5 ± 1.1a 1.5 ± 0.8

HDL, mmol/L 1.1 ± 0.3a 1.0 ± 0.2a

Na+, mmol/L 140.5 ± 3.0a 139.3 ± 3.3a,b

Continuous variables were presented as mean ± SD or median (Q1, Q3). Category var

creatinine−1.234× age−0.179× 0.79 (if female). P value < 0.05 was considered statistical

failure with mid-range ejection fraction; HFrEF, heart failure with reduced ejection fr

diastolic blood pressure; NYHA, New York Heart Association; CHD, coronary heart

hypertension; T2DM, type 2 diabetes mellitus; DAPT, dual-anti platelet-therapy; ACE

CRP,C-reactive protein; NT-proBNP, N-terminal pro–B-type natriuretic peptide; HbA

density lipoprotein; LDL, low-density lipoprotein.
aSignificant difference compared to control.
bSignificant difference compared to HFrEF.
cSignificant difference compared to HFmEF.
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these repetitions was used for further analysis, with repetitions

conducted in separate sessions (13). The cardiologists who

assessed outcomes of clinical outcomes and CMR parameters

were all blinded to the group of patients.

Strain analysis was performed on LV, LA, and RV in the

previous study, and in this study, we added the right atrium

(RA). The delineation of endocardial and epicardial borders in

RA was similar to that in LA; thus, only GLS and GRS were

acquired from RA strain analysis.
HFrEF N = 82 Control N = 86 P value

47 ± 14 44 ± 17 <0.0001

0.206

57 (69.5) 54 (62.8)

25 (30.5) 32 (37.2)

26.5 ± 4.5a 24.1 ± 3.2 0.001

85 ± 15a 74 ± 9 <0.0001

129 ± 21 125 ± 14 0.469

85 ± 17a 77 ± 9 0.004

16 (19.5)a 3 (3.5) <0.0001

30 (36.6)a NA <0.0001

46 (56.1)a NA <0.0001

17 (20.7) 10 (11.6) <0.0001

7 (8.5) 1 (1.2) <0.0001

30 (36.6)a 14 (16.3) <0.0001

50 (61.0)a 5 (5.8) <0.0001

8 (9.8) 5 (5.8) <0.0001

9 (11.0)a 5 (5.8) 0.022

31 (37.8) 31 (36.0) <0.0001

10 (12.2) 5 (5.8) <0.0001

30 (36.6) 36 (41.9) <0.0001

73 (89.0)a 30 (34.9) <0.0001

77 (93.9)a 10 (11.6) <0.0001

76 (92.7)a 3 (3.5) <0.0001

147 ± 21 140 ± 14 0.001

4.38 ± 7.3 41.7 ± 3.8 0.007

80.1 ± 24.7a 60.7 ± 16.2 0.007

241 (1,277, 3,849)a 5 (0, 51) <0.0001

1.3 ± 0.6 1.1 ± 0.6 0.011

1.0 ± 0.2a 1.3 ± 0.4 <0.0001

140.9 ± 2.9 142.0 ± 2.3 <0.0001

iables were presented as n (%). eGFR (estimated glomerular filtration rate) = 175 ×

ly significant. HFpEF, heart failure with preserved ejection fraction; HFmEF, heart

action; BMI, body mass index; HR, heart rate; SBP, systolic blood pressure; DBP,

disease; MI, myocardial infarction; AF, atrial fibrillation; PAH, pulmonary arterial

I, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blockers;

1c, glycated hemoglobin; TC, total cholesterol; TG, total triglyceride; HDL, high-
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2.4 Outcome data

All patients were followed up through telephone calls and

interviewed by a single cardiologist in February 2022. The clinical

endpoint was a composite of mortality or HF readmission (12).

Assuming that recall may be inaccurate in some elderly patients,

we conducted a secondary validation using hospital databases.
3 Statistical analysis

SPSS version 26.0 (IBM Corporation, Armonk, NY, USA) and

GraphPad Prism Version 8.3.0 (GraphPad Software, San Diego,

CA, USA) were used for statistical analyses. The mean + standard

deviation (SD) or median (Q1, Q3) of continuous variables was

calculated through a sample t-test in two groups. The categorical

variables were expressed as numbers and percentages using the χ2

test. The Kaplan–Meier curves and univariable and multivariable
TABLE 2 Baseline imaging characteristics.

Characteristics HFpEF N = 143 HFmEF N = 43

Echocardiography
LVEF, % 55.3 ± 5.6a,b,c 46.5 ± 2.6a,b

E/e’ ratio 15.0 ± 4.9 13.8 ± 7.6

CMR

LV parameters
LVEF, % 56.6 ± 10.5a,b,c 38.8 ± 17.2a,b

LVEDVI, ml/m2 78.5 ± 26.07b,c 106.0 ± 38.8b

LVESVI, ml/m2 35.5 ± 22.47b,c 68.1 ± 26.18a,b

LVMI, g/m2 73.4 ± 25.5a,b 80.9 ± 36.9a

RV parameters
RVEF, % 47.5 ± 13.7b,c 40.2 ± 14.8a,b

RVEDVI, ml/m2 72.7 ± 24.2 73.3 ± 18.2

RVESVI, ml/m2 39.8 ± 20.5b 45.6 ± 19.0b

LA parameters
LAVImin, ml/m2 21.2 ± 11.6a 22.5 ± 10.5a

LAVImax, ml/m2 39.4 ± 18.4a 44.1 ± 14.4a

LAGRS 22.07 ± 8.47a,b,c 17.95 ± 7.88a,b

LAGLS −12.80 ± 4.32a,b −11.33 ± 4.75a,b

LVGRS 17.96 ± 6.11a,b,c 11.17 ± 4.02a

LVGLS −11.39 ± 3.61a,b −9.91 ± 3.53a,b

LVGCS −13.66 ± 3.28a,b,c −9.80 ± 2.59a,b

RAGRS 32.66 ± 17.60a,b 28.26 ± 13.82a

RAGLS −14.68 ± 6.09a,b −13.60 ± 5.60a

RVGRS 28.90 ± 13.41b 26.60 ± 9.95

RVGLS −14.86 ± 5.09b −12.94 ± 5.37

RVGCS −9.33 ± 3.76b −8.46 ± 4.28b

Outcome data
Follow-up(day) 846 ± 30a,b 793 ± 66a,b

Composite events 27 11

Data are presented in mean ± SD, P < 0.05 is considered statistically significant. LVEF,

early diastolic mitral annular velocity (e’); CMR, cardiovascular magnetic resonance; LVE

ventricular end-systolic volume indexed to body surface area; LVMI, left ventricular

fraction; RVEDVI, right ventricular end-diastolic volume indexed to body surface ar

LAVImin, left atrium minimum volume indexed to body surface area; LAVImax, left at

strain; GLS, global longitudinal strain; GRS, global radial strain; LA, left atrium; LV, left
aSignificant difference compared to control.
bSignificant difference compared to HFrEF.
cSignificant difference compared to HFmEF.
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Cox regression analyses were used to obtain the prognostic value

of clinical and imaging risk factors.
4 Results

4.1 Baseline clinical characteristics

In total, 354 patients, including 143 with HFpEF, 43 with HFmEF,

82 withHFrEF, and 86 participants withoutHF, were enrolled. Table 1

shows the baseline characteristics of the study population, including

demographics, clinical findings, functional status, medical history,

medication history, and biochemistry results. Patients with HFpEF

(58 ± 11 years) and HFmEF (56 ± 14 years) were older than the

controls (44 ± 17 years). Patients with HFrEF had higher body mass

index levels (26.5 ± 4.5 kg/m2) than the other patients. From the

perspective of heart rate, it can be observed that as LVEF decreases,

the heart rate of the subjects gradually increases. As LVEF decreases,
HFrEF N = 82 Control N = 86 P value

31.1 ± 5.3a 62.5 ± 4.4 <0.0001

16.0 ± 7.9 16.6 ± 7.1 0.538

20.2 ± 11.4a 61.4 ± 7.1 <0.0001

172.6 ± 247.7a 74.5 ± 16.9 <0.0001

115.4 ± 43.2a 28.2 ± 8.3 <0.0001

89.8 ± 24.8a 55.7 ± 12.7 <0.0001

23.6 ± 14.8a 49.0 ± 11.1 <0.0001

78.7 ± 30.5 76.9 ± 20.5 0.375

78.7 ± 30.5a 38.4 ± 12.0 <0.0001

32.3 ± 18.6a 13.0 ± 7.1 <0.0001

37.0 ± 24.1a 23.3 ± 17.6 <0.0001

13.22 ± 8.10* 26.42 ± 10.02 <0.0001

−7.55 ± 4.28a −15.75 ± 4.23 <0.0001

9.85 ± 5.73a 20.86 ± 6.37 <0.0001

−6.51 ± 3.45a −14.52 ± 3.42 <0.0001

−6.47 ± 4.06a −15.90 ± 4.39 <0.0001

21.58 ± 12.66a 42.18 ± 19.88 <0.0001

−11.04 ± 5.08a −17.16 ± 5.69 <0.0001

20.42 ± 12.28a 30.72 ± 13.46 <0.0001

−10.96 ± 4.97a −15.27 ± 5.24 <0.0001

−6.12 ± 3.79a −8.27 ± 3.96 <0.0001

1,109 ± 44 1,252 ± 43 <0.0001

31 4 <0.0001

left ventricular ejection fraction; E/e’ ratio, mitral peak velocity of early filling (E) to

DVI, left ventricular end- diastolic volume indexed to body surface area; LVESVI, left

end-diastolic mass indexed to body surface area; RVEF, right ventricular ejection

ea; RVESVI, right ventricular end-systolic volume indexed to body surface area;

rium minimum volume indexed to body surface area; GCS, global circumferential

ventricle; RA, right atrium, RV, right ventricle.
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FIGURE 1

Comparison of myocardial strain between individuals with and without adverse events in HFmEF.
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blood pressure, especially SBP, tends to decrease. Compared to HFpEF

subjects, HFmrEF and HFrEF subjects have a higher proportion of

NYHA grade III or IV evaluations. Compared with the normal

population, patients with HF have a higher proportion of previous

coronary heart disease, myocardial infarction, hypertension, and

cardiomyopathy. Moreover, they used more heart failure medication

and anticoagulant drugs for maintaining or restoring cardiac function.
4.2 Baseline imaging characteristics

The baseline imaging characteristics, including echocardiography

and CMR measurements, are shown in Table 2. The ejection fraction

of patients with different phenotypes of HF decreased to varying

degrees (55.3 ± 5.6 for HFpEF, 46.5 ± 2.6 for HFmEF, 31.1 ± 5.3 for

HFrEF, 62.5 ± 4.4 for controls), met the criteria. The CMR analysis

of LV, RV, LA, and RA revealed the impairment of chambers in

chamber volume and mass. Patients with HF had enlarged chamber

volumes and larger chamber weights. These results remained

unchanged after controlling for body mass index each strain was

altered in the three groups compared with the control group. The

mean values for left atrial GRS, left ventricular GRS, and left

ventricular global circumferential strain (LVGCS) in the HFpEF

group were different from that in the HFmEF group (P < 0.001).

Moreover, all eight strains were altered in these groups compared

with the HFrEF group (P < 0.001).
4.3 Prognostic value of strain analysis in HF

The follow-up was completed for all participants during a

median follow-up of 999 days (616–1,334); 20.6% (73/354) of

participants experienced adverse events, including HF readmission

or cardiovascular death. Due to the serious confounding bias

caused by the small sample size of HFmEF and HFrEF, regression
Frontiers in Cardiovascular Medicine 05
analysis could not be implemented, but difference analysis was

performed. The results are shown in Figures 1, 2. We performed

COX regression analysis on HFpEF and obtained the results.

For 82 patients with HFrEF, LAGLS showed variation in any

adverse event (t = 2.79, P = 0.007), similarly to LVGCS (t = 5.74,

P < 0.001).Among the 43 patients with HFmEF in this study, we

observed differences in LVGLS (t = 5.34, P < 0.001), LVGCS

(t = 5.28, P < 0.001), and LAGRS (t =−4.41, P < 0.001) in relation

to the endpoint events. The results are shown in Figures 1, 2.

In our study, the myocardial strain in the left ventricle and left

atrium was associated with cardiovascular adverse events. After

adjusting for other prognostic indicators, such as diabetes

mellitus and smoking history, we found that the LAGLS (HR,

1.46; 95% CI: 1.07–1.46; P = 0.015), LVGRS (HR, 1.34; 95% CI:

1.07–1.68; P = 0.009), LVGCS (HR, 1.44; 95% CI: 1.06–1.94;

P = 0.017), LVGLS (HR, 2.30; 95% CI: 1.513.49; P < 0.001) were

all significantly associated with the occurrence of adverse

cardiovascular events. The results are shown in Table 3.

The univariate Cox regression analysis revealed that a 1%

increase in left atrial global longitudinal strain (LAGLS) was

associated with a hazard ratio (HR) of 1.21 [95% confidence

interval (CI): 1.15–1.28; P < 0.001]. LVGCS (HR, 1.18; 95% CI:

1.12–1.24; P < 0.001) and LVGLS (HR, 1.27; 95% CI: 1.20–1.36;

P < 0.001) were also associated with adverse events. Among

clinical variables, hypertension (HR, 2.11; 95% CI: 1.33–13.36;

P = 0.002) and cardiomyopathy (HR, 2.26; 95% CI: 1.42–3.60;

P < 0.001) were associated with adverse outcomes.

In multivariable analyses, LAGLS (95% CI: 1.08–1.29; P < 0.001)

and LVGCS (95% CI: 1.19–1.51; P < 0.001) were significantly

associated with outcomes; the clinical variable hypertension (95%

CI: 1.09–3.73; P < 0.025) remained a risk factor. Tables 3, 4 shows

the results of univariate and multivariable Cox regression analyses.

The results are shown in Table 4.

Further receiver operating characteristic curve (ROC) analysis

of LAGLS, LVGCS, and LVGLS showed that the critical value of
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TABLE 3 Univariate and multivariate Cox regression analysis of global
longitudinal strain in HFpEF group.

HFpEF Univariable analysis Multivariable analysis

Variable Unadjusted
hazard ratio

P
value

Unadjusted
hazard ratio

P
value

Clinical variables
Age, years 1.01 (0.98–1.05) 0.052

NYHA 3.04 (0.98–9.40) 0.053

Hypertension 0.96 (0.42–2.18) 0.930

AF 0.60 (0.17–2.07) 0.421

Cardiomyopathy 0.21 (0.07–0.21) 0.003

CHD 2.89 (1.23–6.81) 0.015

T2DM 1.14 (0.39–3.34) 0.801

Smoking 3.61 (1.28–10.16) 0.015

TC 0.98 (0.86–1.12) 0.862

TG 0.88 (0.55–1.39) 0.594

HDL 0.70 (0.16–3.04) 0.640

LDL 1.08 (0.62–1.87) 0.778

Cardiovascular MRI variables
lagrs 0.93 (0.88–0.98) 0.004

lagls 1.30 (1.15–1.46) <0.001 1.46 (1.07–1.46) 0.015

lvgrs 1.94 (1.51–2.48) <0.001 1.34 (1.07–1.68) 0.009

lvgcs 1.18 (1.12–1.24) <0.001 1.44 (1.06–1.94) 0.017

lvgls 1.93 (1.51–2.48) <0.001 2.30 (1.51–3.49) <0.001

rvgrs 1.00 (0.97–1.03) 0.967

rvgcs 1.02 (0.91–1.13) 0.757

rvgls 1.06 (0.96–1.13) 0.285

ragrs 0.99 (0.97–1.02) 0.882

ragls 1.00 (0.93–1.07) 0.964

Data in parentheses are 95% confidence intervals. P value < 0.05 was considered

statistically significant. In this analysis, a predefined set of variables was entered

into the multivariable model. The association was of strain at cardiovascular MRI

and was adjusted for a predefined set of risk factors (age, clinical condition,

global circumferential strain, global longitudinal strain, global radial strain) with

the composite end point of heart failure hospitalization and cardiovascular death.

TABLE 4 Univariate and multivariate Cox regression analysis of global
longitudinal strain for all populations.

Univariable analysis Multivariable analysis

Variable Unadjusted
hazard ratio

P
value

Unadjusted
hazard ratio

P
value

Clinical variables
Age, years 1.02 (1.00–1.04) 0.032

NYHA 2.60 (1.63–4.16) <0.001

Hypertension 2.11 (1.33–3.36) 0.002 2.02 (1.09, 3.73) 0.025

AF 0.99 (0.47–2.07) 0.975

Cardiomyopathy 2.26 (1.42–3.60) <0.001

CHD 1.21 (0.75–1.96) 0.440

Smoking 1.41 (0.76–1.41) 0.263

TC 0.99 (0.94–1.04) 0.765

TG 1.12 (0.83–1.52) 0.434

HDL 0.39 (0.14–1.03) 0.058

LDL 1.04 (0.75–1.44) 0.773

Cardiovascular MRI variables
lagrs 0.94 (0.91–0.96) <0.001

lagls 1.21 (1.15–1.28) <0.001 1.18 (1.08–1.29) <0.0001

lvgrs 0.91 (0.88–0.94) <0.001

lvgcs 1.18 (1.12–1.24) <0.001 1.34 (1.19–1.51) <0.0001

lvgls 1.27 (1.20–1.36) <0.001 1.18 (1.08–1.29) <0.0001

rvgrs 0.98 (0.96–1.00) 0.061

rvgcs 1.05 (0.99–1.12) 0.133

rvgls 1.06 (1.01–1.11) 0.010

ragrs 0.99 (0.97–1.00) 0.054

ragls 1.03 (0.99–1.07) 0.146

Data in parentheses are 95% confidence intervals. P value < 0.05 was considered

statistically significant. In this analysis, a predefined set of variables was entered

into the multivariable model. The association was of strain at cardiovascular MRI

and was adjusted for a predefined set of risk factors (age, clinical condition,

global circumferential strain, global longitudinal strain, global radial strain) with

the composite end point of heart failure hospitalization and cardiovascular death.

FIGURE 2

Comparison of myocardial strain between individuals with and without adverse events in HFrEF.

Zhao et al. 10.3389/fcvm.2024.1366702
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FIGURE 3

K-M survival curve based on ROC analysis of LAGLS critical values.

Zhao et al. 10.3389/fcvm.2024.1366702
LAGLS was −9.72 [area under the curve (AUC) 0.858, sensitivity

86.3%, specificity 78.6%], that of LVGCS was −12.43 (AUC

0.833, sensitivity 91.7%, specificity 61.2%), and that of LVGLS

was −9.56 (AUC 0.866, sensitivity 93.1%, specificity 71.5%).

The patients were divided into groups according to the critical

value. We drew the Kaplan–Meier survival curve of all patients in

the group with a LAGLS of ≧9.72 and LAGLS of ≤9.72. The
median survival time of patients with a LAGLS of ≧9.72 was

1,736 days (95% CI: 1,659–1,812) and that of patients with a

LAGLS of ≤9.72 was 1,371 days (95% CI: 1,163–1,578).

Significant differences were observed between the two groups

(LogRank P < 0.001). Similarly, we drew a Kaplan–Meier survival

curve with an LVGCS of 12.43 and an LVGLS of 9.56 as

the critical value. The median survival time of the groups divided

by the critical value was significantly different, and significant

differences were observed between the groups (LogRank

P < 0.001). The results are shown in Figures 3–5.
5 Discussion

CMR is the gold standard for cardiac evaluation, and its

clinical application is also increasing recently. European

guidelines classify HF based on left ventricular systolic function.

However, the value of LVEF measured by echocardiography in
Frontiers in Cardiovascular Medicine 07
evaluating the prognosis of HF patients is limited (14). Strain

analysis can better identify different subtypes of heart failure

and predict prognosis. In HFrEF, GLS, as a measure of left

ventricular systolic function, is significantly associated with

increased neurohormonal activation and early hemodynamic

deterioration (15). In addition, some scholars have observed

that RVGLS is an independent predictor of cardiac events in

acute decompensated heart failure. Due to the small sample size

in this study, we are currently unable to confirm that LAGLS

and LVGCS can predict adverse events in HFrEF. However, the

LAGLS and LVGCS values in the no-adverse-event group were

significantly higher than those in the adverse-event group. Some

scholars believe that patients with HFmEF are considered to

have similar prognosis and clinical manifestations as patients

diagnosed with HfpEF (16), but Strain analysis can better

evaluate systolic function and predict prognosis. We found

some indicators that may be related to prognosis in the HFmEF

samples in this study, such as LVGLS, LVGCS, and LAGRS.

Perhaps left atrial and left ventricular strain analysis has more

advantages in predicting adverse events. Almost half of patients

with signs and symptoms of heart failure have a normal

ejection fraction on cardiac ultrasound, and this group of

people needs more indicators to evaluate the prognosis. We

found in HFpEF that LAGLS, LVGRS, LVGCS, and LVGLS are

risk factors for adverse events in heart failure.
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FIGURE 4

K-M survival curve based on ROC analysis of LVGCS critical values.

Zhao et al. 10.3389/fcvm.2024.1366702
Although there have been many studies on CMR, most of them

have been based on a single chamber, lacking visual presentation

and comparison of each chamber (13, 17, 18). Therefore, we

conducted this study to explore the association between each

chamber and clinical practice.

By observing LA, we found that there were significant

differences in the left atrial GRS among the four groups.

Although LAGLS was not significantly different in the HFpEF

and HFmEF groups, it was still different when compared with

the control and HFrEF groups. Moreover, left atrial volume is

closely associated with adverse events of heart disease. Benjamin

H et al. found that strain analysis of LA provides significant

value for the clinical diagnosis and prognosis of HFpEF (19).

We found similar results in LV, for example, LVGCS presented

differently in four groups. Djawid Hashemi et al. found significant

differences in LVGLS and LVGCS values by comparing HFrEF, HF

with mildly reduced ejection fraction, and HFpEF, which is similar

to our study results. This result may be related to the first injury of

the left ventricular septum when HF occurs (20).

RV systolic dysfunction is a powerful predictor of mortality and

HF-related hospitalization (21). By observing the myocardial strain

force of RA and RV, we found that compared with the control

group, the myocardial strain force of RA and RV had different

degrees of change (including GRS, GLS, and GCS). However,

compared with HFpEF and HFmEF, as well as HFmEF and HFrEF,
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we did not observe obvious strain change. This may be related to the

fewer patients with HF caused by pulmonary hypertension in our

study. J. L. Vos et al. confirmed that the myocardial strain of RV in

HF caused by pulmonary hypertension was significantly damaged

(22). Moreover, Louise A. E. Brown et al. observed 46 patients with

HFmEF and 134 patients with HFpEF and found that patients with

HFmEF and HFpEF had the most phenotypic characteristics,

including the degree of microvascular injury (23).

To further study the relationship between myocardial strain

and adverse events, we conducted a COX survival analysis.

LAGLS, LVGCS, and LCGLS were significantly associated with

adverse events in multivariate analysis. Further ROC analysis

revealed that the critical values of LAGLS, LVGCS, and LVGLS were

−9.72, −12.43, and −9.56, which will help doctors in clinical

treatment and judgment of prognosis. It is noteworthy that there is a

certain correlation between the left atrium and adverse cardiac

events LAGLS has been proven to be a sensitive indicator for

distinguishing hypertrophic cardiomyopathy from non-hypertrophic

cardiomyopathy left ventricular hypertrophy (24). Some scholars

found in a large cohort of patients that GCS has an increasing

independent prognostic value besides the clinical variables LVEF and

late gadolinium enhancement (25). Jian He et al. found that GRS and

GLS are the indicators of early damage in HF caused by hypertension

(26), which is similar to our study results. Therefore, they may play a

certain role in the diagnosis of HF in the future.
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FIGURE 5

K-M survival curve based on ROC analysis of LVGLS critical values.

Zhao et al. 10.3389/fcvm.2024.1366702
Nevertheless, our study has several limitations. First, this was a

retrospective study with a certain bias. Second, the follow-up time

was less, which needs to be further extended; thus, the occurrence

of end-point events was insufficient. Third, although strain analysis

of RA was added, no valuable results were obtained. Finally, the

clinical characteristics of patients with HF varied greatly, and the

sample size of this study was small. In the future, multi-center

and large-sample trials are warranted.

In conclusion, our study revealed the prognostic value of HF

strain analysis and predicted the mean survival time according to

the ROC curve. Strain analysis of LV and LA has a certain

predictive value for positive events.
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