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Atrioventricular re-entrant
tachycardia and atrioventricular
node re-entrant tachycardia in a
patient with cancer under
chemotherapy: a case report and
literature review
Meiyan Dai1†, Yue Chen2† and Jin Qin1*
1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China, 2Department and Institute of
Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
Cardio-oncology is a new field of interest in cardiology focusing on the detection
and treatment of cardiovascular diseases, such as arrhythmias, myocarditis, and
heart failure, as side-effects of chemotherapy and radiotherapy. The association
between chemotherapeutic agents and arrhythmias has previously been
established. Atrial tachyarrhythmias, particularly atrial fibrillation, are most
common, but ventricular arrhythmias, including those related to treatment-
induced QT prolongation, and bradyarrhythmias can also occur. However, the
association between chemotherapeutic agents and atrioventricular re-entrant
tachycardia (AVRT)/atrioventricular node re-entrant tachycardia (AVNRT) remains
poorly understood. Here, we report a patient with new-onset AVRT/AVNRT and
lung cancer who underwent chemotherapy. We considered that chemotherapy
or cancer itself may have been a trigger for the initiation of paroxysmal
AVRT/AVNRT, and that radiofrequency catheter ablation was effective in treating
this type of tachycardia. Here, possible mechanisms and potential genes (mostly
ion channels) involved in AVRT/AVNRT are summarized and the mechanisms
underlying the possible regulatory patterns of cancer cells and chemotherapy
on ion channels are reviewed. Finally, we considered that ion channel
abnormalities may link cancer or chemotherapy to the onset of AVRT/AVNRT.
The aim of the present study was to highlight the association between
chemotherapeutic agents and AVRT/AVNRT and to provide new insights for
future research. Understanding the intermediate mechanisms between
chemotherapeutic agents and AVRT/AVNRT may be beneficial in preventing
chemotherapy-evoked AVRT/AVNRT (and/or other arrhythmias) in future.
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1 Introduction

Cancer is a major disease threatening human health, accounting for nearly one in six

deaths (1). Some cancers that have historically been associated with high fatality and

mortality rates now have high cure rates, converting malignancy into a chronic disease (2).

However, an increasing number of patients with cancer are at risk of the adverse effects of

cancer therapy. Cancer therapy-related cardiac dysfunction is a serious side-effect of
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chemotherapy, occurring in approximately 10% of patients (3).

Cancer therapy has been linked to myocyte damage, such as heart

failure, thrombogenesis, pericardial pathology, hypertension,

ischemia, vasospasm, and myocarditis (4–6). However, few reports

have addressed cancer treatment-induced arrhythmia until recently.

Chemotherapeutic agents, such as anthracyclines, alkylating

agents, antimetabolites, histone deacetylase (HDAC) inhibitors,

immunomodulatory drugs, platinum compounds, proteasome

inhibitors, multitargeted tyrosine kinase inhibitors, vascular

endothelial growth factor (VEGF) signaling pathway inhibitors,

and immune check point inhibitors, are suggested to be

associated with a broad range of arrhythmias, including sinus

bradycardia and tachycardia, premature atrial complexes,

supraventricular tachycardia (SVT), premature ventricular

complexes (PVCs), and ventricular tachycardia (VT) (2, 7–11).

Accelerated apoptosis, inflammation, mitochondrial dysfunction,

oxidative stress, and impairment of intracellular calcium (Ca2+)

handling have been implicated in cancer therapy-induced

arrhythmia (12–14). However, the detailed mechanisms through

which chemotherapeutic agents cause arrhythmia remain unclear.

In terms of various arrhythmias, previous studies have reported

the association between chemotherapeutic agents and SVT. SVT

can be categorized as follows: atrioventricular re-entrant

tachycardia (AVRT), atrioventricular node re-entrant tachycardia

(AVNRT), atrial tachycardia, sinus tachycardia, sinus nodal re-

entrant tachycardia, inappropriate sinus tachycardia, multifocal

atrial tachycardia, junctional ectopic tachycardia, and non-

paroxysmal junctional tachycardia. AVNRT and AVRT are types

of paroxysmal supraventricular tachycardia (PSVT) that result

from the presence of congenital re-entry circuits long before the

development of cancer (15, 16). Currently, the association

between cancer therapy and re-entrant tachycardia, such as

AVNRT and/or AVRT, is poorly established.

Here, we report a case of new-onset AVRT/AVNRT in a patient

with lung cancer who underwent chemotherapy. This case suggests

that chemotherapy for cancer, or even the cancer itself, might be a

possible trigger for the onset of AVRT/AVNRT. Moreover, as the

direct mechanisms underlying cancer therapy-induced arrhythmia

(especially AVNRT/AVRT) remain unclear, we summarize relevant

evidence from available mechanistic studies. This study may

provide insights into the development of new strategies and drugs

to prevent and treat cancer therapy agent-induced arrhythmias.
2 Case report

2.1 Chemotherapy as a trigger for
AVRT/AVNRT

A 65-year-old man with a history of lung cancer and

chemotherapy, admitted to hospital on 4 October 2023 with a

2-week history of right-sided chest pain, was diagnosed with lung

adenocarcinoma (LUAD) (cT2N2MIaIVa). The patient denied a

history of hypertension, diabetes, mental illness, or cardiovascular/

cerebrovascular disease and did not receive any daily

pharmacological treatment. The patient did not refer to any
Frontiers in Cardiovascular Medicine 02
arrhythmia relevant to his medical history. On 12 October 2023, he

was treated with pemetrexed and nedaplatin (NDP; intravenous

injection) and endostatin (intrapleural infusion). On 30 October, he

received a bevacizumab intravenous injection. During the course of

the disease, the patient’s serum electrolyte level was dynamically

monitored, and the electrolyte balance was basically maintained; in

particular, the serum potassium level was maintained at

approximately 4.0–4.5 mmol/L. On 5 November, he complained of

hourly palpitations and tachycardic episodes. A 12-lead

electrocardiogram (ECG) showed a narrow QRS complex

tachycardia (Figure 1A), which was refractory to intravenous

therapy with propafenone and adenosine triphosphate. A

subsequent transesophageal electrogram indicated a possible slow-

fast AVNRT and orthodromic AVRT (Figures 1B–D). After

obtaining patient and family consent, electrophysiology study and

radiofrequency catheter ablation were performed using the Carto

3TM system. A decapolar catheter was advanced into the coronary

sinus (CS) and a quadripolar catheter was positioned in the right

ventricular apex. The patient was in normal sinus rhythm at

baseline with proximal to distal coronary sinus activation. During

the electrophysiology study, fixed retrograde atrial conduction was

observed under ventricular pacing, with the earliest atrial

activation at CS7/8. Coronary sinus pacing showed the jump-up

phenomenon, and a narrow QRS tachycardia was stably induced. A

combined analysis of electrophysiology study with transesophageal

electrogram, a left posterior septal accessory pathway, and AVNRT

were considered. The ablation catheter gained access to the left

ventricle via a retrograde aortic approach, and the earliest atrial

activation and local VA fusion was detected at CS7/8 under

ventricular pacing (Figure 2A). After ablation with a 35 W

discharge, the earliest atrial activation changed to CS1/2 with

ventricular pacing (Figure 2B). Therefore, the patient appeared to

have another concealed left lateral accessory pathway (Figure 2C).

After ablation with a 35 W discharge, the local VA fusion was

separated under ventricular pacing. Ventricular decremental pacing

and ventricular extrastimuli did not demonstrate ventriculoatrial

conduction anymore, while atrial extrastimulus testing

demonstrated dual AV node physiology. During the coronary sinus

stimulation with S1S2, the jumping phenomenon was observed,

even though it could not induce tachycardia. After intravenous

infusion of isoproterenol, coronary sinus stimulation revealed the

jumping phenomenon and induced narrow QRS wave tachycardia

stably. During tachycardia, the retrograde A wave in the coronary

sinus electrode remained in a straight line, leading to the diagnosis

of slow-fast atrioventricular nodal re-entrant tachycardia. A slow

pathway ablation was performed (Figure 2D), eliminating the dual

AV node physiology even with programed atrial stimulation with

and without isoproterenol. The patient reported no palpitations

during a follow-up phone call 4 months after the procedure.
2.2 Genes/pathways associated with
AVRT/AVNRT

AVNRT occurs when a re-entry circuit is formed within or in

close proximity to an AV node (17). Dual AV nodal conduction is a
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FIGURE 1

Patient characteristics: (A) 12-lead electrocardiogram showed a small-complex supraventricular tachycardia; (B) esophageal electrocardiogram
showed RP’ < P’R and RP’ interval of 120 ms in V1; (C,D) jumping phenomenon caused by S2R stimulation.
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congenital abnormality that develops during prenatal cardiogenesis

(18). AVRT is a macro-re-entrant tachycardia with an anatomically

congenital circuit consisting of two distinct pathways (19). While

these are congenital abnormalities, some studies have reported

that the onset of AVNRT/AVRT can be triggered through

several factors.

AVNRT is twice as common in women as in men and is the

most common arrhythmia encountered during pregnancy, with

approximately 44% of patients with known AVNRT experiencing

symptoms during pregnancy (20, 21). Women with AVNRT are

known to be significantly younger at symptom onset than men

(22); therefore, sex hormones may also trigger tachycardia.

It has been suggested that AVNRT is an ion channel disease.

Familial clustering indicates the involvement of genetic factors in

AVNRT pathophysiology. Andreasen et al. reported that 26.4%

of patients with AVNRT had ≥1 variant in genes affecting

sodium handling, namely, SCN3A, SCN5A, SCN10A, SCN8A,

SCN4A, SCN1A, SCN2B, and SCN9A, and 19.0% of patients with

AVNRT had variants in genes affecting calcium handling (RYR2,
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RYR3, CACNB2, ATP2A2, CACNA1C, CACNA1D, CACNA1I,

and CACNA1G) in the heart. Moreover, variants in HCN1–4 and

KCNE3 have also been associated with AVNRT (23).

One study performed whole-exome sequencing (WES) in

82 patients with AVNRT and in 100 controls. They reported that

the genes SCN1A, PRKAG2, RYR2, CFTR, NOS1, PIK3CB,

GAD2, and HIP1R and the related pathways mediated by these

genes, such as neuronal system/neurotransmitter release cycles

or ion channels/cardiac conduction, might be involved in

AVNRT (24, 25).

In terms of another type of PSVT, AVRT had a similar

incidence in both young and older adults. The male/female ratio

was similar across all age ranges (26). Familial Wolff–Parkinson–

White syndrome (WPW), which is a common cause of AVRT, is

well recognized as a cardiovascular disease, partly due to

mutations in genes such as PRKAG2 (27, 28). Pathogenic

variants of MYH7 and rare de novo variants of genes associated

with arrhythmia and cardiomyopathy (ANK2, NEBL, PITX2, and

PRDM16) have been suggested as the genetic basis of WPW (29).
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FIGURE 2

Electrophysiology study was performed with zero-fluoroscopy-approach-guided Carto 3TM system. (A) The earliest atrial activation was at CS7/8 with
fixed retrograde atrial conduction under ventricular pacing. (B) The earliest atrial activation changed to CS1/2 with fixed retrograde atrial conduction
under ventricular pacing. (C) The ablation targets of left lateral and septal accessory pathways. (D) The ablation targets of slow pathway modification.
Red dots: ablation target; yellow dots: His bundle.
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Therefore, compared with AVRT, AVNRT appears to be more

intricately linked to ion channels if not caused by ion channel

dysfunction, and the onset of symptoms is largely influenced by

ion channels (Figure 3).
2.3 Regulation of ion channels in cancers

Previous studies have reported the dysregulation of ion

channels in cancer cells. One study reported that the voltage-

gated K+ channel of Kv10.1 (EAG1) was aberrantly expressed in

human pancreatic ductal adenocarcinoma (30). Moreover, EAG1

channels have been detected in approximately 70% of tumor

biopsies originating from various cancers (31). Another K+

channel, KCNQ1 (potassium voltage-gated channel subfamily

Q Member 1), is also associated with the development of

colorectal cancer (CRC) (32). In breast and prostate cancers,

decreased expression of the K+ channel KCNA3 has been found

to be associated with an increased tumor grade. The K+ channel
Frontiers in Cardiovascular Medicine 04
HERG1 (KCNH2) is upregulated in CRCs. The K+ channels

EAG2 (KCNH5) and KCNT2 are highly expressed in the

medulloblastoma of pediatric brain tumors. KCNA5, KCNQ1,

and KCNN4 are also abnormally expressed in certain cancers (33).

Na+ channels include the voltage-gated sodium channel

(VGSC) and ligand-gated sodium channel (LGSC) subfamilies.

VGSC contains nine subtypes of Nav1.1–Nav1.9, including both

α and β subunits. The expression of Nav1.5, Nav1.6, and Nav1.7

is upregulated in many cancer types, such as prostate, breast,

lung, and cervical cancer, and leukemia (34).

Dysregulation of Ca2+ channels has also been shown to be

involved in the development of various types of cancer (35, 36).

For example, in breast cancer, prostate cancer, and leukemia, the

voltage-gated Ca2+ channels are upregulated (37). Notably, ion

channel-related proteins in cancer cells are secreted by small

extracellular vesicles (sEVs). Proteomic profiling of small

extracellular vesicles secreted by human pancreatic cancer cells

has shown the presence of KCNN4, KCNK5, and KCNMA1 in

extracellular vesicles (38). KCNN4 has also been reported to be
frontiersin.org
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FIGURE 3

Genes that are potentially associated with AVNRT and AVRT.
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detectable in cancer extracellular vesicles in breast, colon, and

melanoma cancers. KCNAB3 is expressed in the extracellular

vesicles of ovarian cancer cells. KCNQ1 and KCNH8 are present

in the EVs of colon cancer. KCNAB2 is measurable in

extracellular vesicles in breast, colon, and kidney cancers, and in

leukemia and melanoma. KCNH4 has been detected in the

extracellular vesicles of breast and lung cancer cells. The Ca2+

channel CACNA2D2 has been detected in breast, colon,

melanoma, and ovarian extracellular vesicles. CACNA2D1 is

highly expressed in breast, brain, lung, melanoma, and prostate

cancer extracellular vesicles. CACNA1E has been detected in the

extracellular vesicles of the breast, brain, colon, kidney, and

ovaries (39, 40). sEVs can efficiently translocate to the

cardiomyocytes (41, 42). Mechanistically, cancer cell-derived

sEVs carrying aberrant ion channels that translocate into the

heart may mediate ion homeostasis between cancer cells

and cardiomyocytes.

Ion homeostasis affects cancer apoptosis and cell migration,

and regulates the release of neurotransmitters, hormones, and

growth factors in both normal cells (such as myocytes) and

neoplastic cells (43, 44). Cancer cell secretions appear to

indirectly induce ion channel dysfunction in myocytes. After

treatment with cancer cell secretions, the maximum

depolarization velocity and action potential amplitude in human-

induced pluripotent stem cell (iPSC)-derived cardiomyocytes

were reduced. Moreover, the action potential duration was

prolonged, the peak Na+ and transient outward currents

decreased, and late Na+ and slowly activating delayed rectifier K+

currents increased. Mechanistically, DNA methylation of ion
Frontiers in Cardiovascular Medicine 05
channel genes via activation of TGF-β/PI3K signaling might

contribute to ion channel dysfunction (45).

Moreover, cancer cells metabolize glucose via glycolysis, and

hypoxia can further aggravate dependence on glycolytic fueling,

resulting in the overproduction of lactic acid (46, 47). Elevated

circulating lactate levels have been documented in patients with

various types of cancers (breast, prostate, colorectal, lung, and

ovarian) (48–51). Lactate potently regulates ion channels in the

muscle cells. For example, Ca2+-activated K+ channels (KCa

channels) are activated by lactate in smooth muscle cells. Keung

and Li reported that lactate activates KATP channels in guinea

pig myocytes, and Han et al. reported that lactate induces the

opening of KATP channels in rabbit ventricular myocytes

(52, 53). Lactate has also been shown to modify the fast sodium

current through hyperpolarization in guinea pig myocytes (54),

which may contribute to the development of arrhythmia.

Investigators have found that tumor cells secrete neurotrophic

growth factors, axon guidance molecules, VEGF, and chemical

messengers (55–57). Many cancer cells synthesize and

release catecholamines. Norepinephrine levels are higher in

pancreatic cancer tissue than in normal tissue (58). Plasma

norepinephrine and epinephrine concentrations are significantly

upregulated in patients with oral and oropharyngeal squamous

cell carcinoma (SCC) compared with those in patients with no

cancer (59). Plasma-free metanephrine and normetanephrine

levels are elevated in patients with gastric carcinoma and

lung cancer (60, 61). Catecholamines play major roles in

the induction of cardiac ion channel dysfunction and

rhythm disorders (62).
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The possible mechanisms linking cancer cells and the

dysregulation of myocyte-localized ion channels are summarized

in Figure 4.
2.4 Regulation of ion channels under
chemotherapy

Ion channels are key regulators of cancer cell pathophysiology

(63). Anticancer therapeutics appear to play non-negligible roles in

the regulation of ion homeostasis in tumor cells.

Zhang et al. reported that paclitaxel, considered the most

significant advance in chemotherapy in the past two decades,

accelerates Ca2+ oscillations through increasing the IP3R opening

frequency (64). Kang et al. showed that trifluoperazine, a well-

known antipsychotic drug with anticancer effects, suppresses

glioblastoma invasion through binding to the Ca2+-binding

protein calmodulin subtype 2 (CaM2) (65).

The chemotherapeutic drug cisplatin activates the K+ channel

KCa3.1, with the activation effect most likely due to the

increase in intracellular Ca2+ concentration (66). Reduction in

the activity of KCa3.1 has also been demonstrated with

oxaliplatin treatment (67).

In non-tumor tissues/cells, chemotherapy can induce ion

channel dysfunction. The development of acute oxaliplatin-

induced peripheral neuropathy has been suggested to be due to

changes in voltage-gated sodium channels, voltage-gated calcium

channels, and in the TREK-1 two-pore-domain background K+

channel (68–70). Chemotherapy directly alters the ion channel
FIGURE 4

Possible mechanisms underlying the crosstalk between cancer cells and ca
heart, either through sEVs or other forms of particles, and regulate the expr
neurotransmitters, hormones, and growth factors secreted from cancer cell
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activities of cardiomyocytes. Chemotherapy drugs and HDAC

inhibitors have been associated with QTc prolongation and

arrhythmias, and blockade of the KCNH2 by HDAC inhibitors

may be a mechanistic explanation (71). Ibrutinib upregulates

calmodulin kinase 2 expression and increases the

phosphorylation of ryanodine receptor 2 (RyR) in the

cardiomyocyte endoplasmic reticulum, impairing intracellular

calcium handling and triggering ectopic electrical activity (72).

PD-1 deficiency results in premature mortality due to high-titer

IgG autoantibodies against cardiac troponin I, augmenting the

voltage-dependent L-type calcium current in normal

cardiomyocytes (73). Anti-HER2 therapy also causes calcium

homeostasis dysfunction within cardiomyocytes, leading to

Reactive Oxygen Species (ROS) activation within the

myocardium, similar to that caused by anthracyclines or other

antineoplastic agents (74). Calcium oscillations in cardiac cells

that alter automaticity have been proposed to be the mechanism

underlying Bruton kinase inhibitor-induced cardiac toxicity (75).

The possible mechanisms linking chemotherapy with

dysfunction of myocyte-localized ion channels are summarized

in Figure 5.
2.5 Chemotherapy associated arrhythmias
in LUAD

It has been suggested that chemotherapeutic agents are

associated with a variety of arrhythmias. Combination

chemotherapy of pemetrexed and carboplatin is a standard
rdiomyocytes. Molecules secreted from cancer cells translocate into the
ession or activity of cardiomyocytes localized ion channels. Alternatively,
s might mediate the crosstalk between cancer cells and cardiomyocytes.
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FIGURE 5

Regulatory pattern of chemotherapy drugs on cardiomyocytes. (1)
Chemotherapeutic agents act upon cancer cells, leading to cancer
cell death and subsequent release of chemical messages to
indirectly influence cardiomyocytes localized ion channels; (2)
direct action of chemotherapeutic agents on ion channels in
cardiomyocytes.
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treatment approach for non-small cell lung cancer (NSCLC). A

case report showed pemetrexed and carboplatin appear to have

triggered sinus arrhythmia in a patient undergoing multiple

courses of chemotherapy (76). However, the mechanisms

underlying the case of sinus arrhythmia are unclear. NDP is a

second-generation platinum derivative, which has similar

antitumor activity to cisplatin with less nephrotoxicity and

gastrointestinal toxicity. NDP-induced cardiotoxicity is rare,

although it has been presented that three patients who were

treated with NDP developed chemotherapy-induced serious

arrhythmias. The three cases developed sinus tachycardia and

atrial premature beats, complete left bundle branch block, and

bigeminy ventricular premature contraction, in the second, sixth,

and second cycles, respectively (77). The arrhythmias in these

patients were resolved after drug treatment, withdrawal of

chemotherapy, or adjustment of chemotherapy regimens.

Treatment with bevacizumab increases the risk of arterial

adverse events, particularly cardiac and cerebral ischemia, venous

adverse events, bleeding, and arterial hypertension (78). However,

bevacizumab-associated arrhythmia is also rare. One case

reported a patient with lung adenocarcinoma who was treated

with bevacizumab monotherapy, and a poor R-wave increase

with slight ST segment elevation in V1-V3 leads and ventricular

arrhythmia were detected. The patient’s chest tightness and rapid

heartbeat disappeared after the amiodarone treatment. The ECG

monitoring results returned to normal (79).

It has been hypothesized that chemotherapeutic drug-

associated cardiotoxicity occurs due to electrolyte imbalance or

disturbance of the sinoatrial node. Herein, it is important to note

that our patient developed ANRT and AVNRT during the first

course of chemotherapy, without any electrolyte imbalance.
Frontiers in Cardiovascular Medicine 07
However, it is important to consider that multiple factors,

including chemotherapeutic drug combination, the selective

cardiotoxicity of this chemotherapeutic regimen, aging, and heart

disease-related risk factors, are all likely to have contributed to

our patient’s situation.

KCNQ1 is implicated in long QT syndrome (LQTS) and

cardiac arrhythmia; the clinical significance and biological role of

KCNQ1 in LUAD is also described. The potential mechanism of

KCNQ1 underlying LUAD progression may lie in the

perturbation of genes relevant to the cell cycle and DNA

replication. However, KCNQ1-inhibitor gefitinib, which is the

first-generation targeted therapy for non-small cell lung cancer,

was implicated in the induction of heart QT prolongation in a

guinea pig model, thereby raising a concern of arrhythmia when

gefitinib is used for NSCLC treatment (80).
3 Conclusions and perspectives

An estimated 32%–40% of the population has dual

atrioventricular nodal physiology; however, only a minority

develop AVNRT (81). The incidence of AVNRT is 35 per 10,000

person-years or 2.29 per 1,000 persons, and it is the most

common form of non-sinus tachydysrhythmia in young adults

(82). Regarding AVRT, one study reported a tachyarrhythmia

rate of 1.0% per year in individuals with a WPW pattern (83).

Therefore, the onset of AVNRT or AVRT in patients with dual

atrioventricular nodal pathways or accessory atrioventricular

pathways is rare, and when they occur, they are usually

attributed to stress in relation to pregnancy, exertion, caffeine,

alcohol, beta-agonists (salbutamol), or sympathomimetics

(amphetamines) (84, 85). Chemotherapeutic agents directly

promote various arrhythmias, such as atrial fibrillation (AF) and

ventricular ectopic beats. However, chemotherapy-induced

AVRT/AVNRT has rarely been reported. Here, we present a

typical case of chemotherapy-related AVRT/AVNRT. Moreover,

we propose the following potential mechanisms underlying

chemotherapeutic agent-induced AVRT/AVNRT: (1) molecules

secreted from cancer cells translocate into the heart, either

through sEVs or other forms of particles, regulating the

expression or activity of cardiomyocyte-localized ion channels;

(2) chemotherapeutic agents act on cancer cells, leading to

cancer cell death and the subsequent release of chemical

messages to indirectly influence cardiomyocyte-localized ion

channels; and (3) direct action of chemotherapeutic agents on

ion channels in cardiomyocytes.

Animal models are of vital importance for investigating the

cause-effect relationship and detailed mechanisms between

chemotherapy and arrhythmias, such as AVRT/AVNRT. Mice are

the primary animal models for studying arrhythmias, particularly

genetic arrhythmia syndromes. RYR2 mutations have been found

to be implicated in several arrhythmia disorders, including

catecholaminergic polymorphic ventricular tachycardia (CPVT),

PVC ventricular fibrillation, and AF (86). KCNQ1 or CACNA1C

(Cav1.2) overexpression has been associated with LQTS,

sympathetic stimulation-induced early after depolarizations
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(EADs), and VT; mice with HCN4 (HCN4) ablation exhibited

bradycardia, exit block, SVT, VT, and complete block (86).

However, mouse models of AVRT/AVNRT have not been well

established, partly because of technical difficulties in performing

esophageal electrophysiological examinations or intracardiac

electrophysiological studies on mice. Therefore, in the absence of

an effective animal model, it is difficult to determine the exact

pathophysiological basis of AVNRT. Further studies are required

to establish animal models and develop electrophysiological

examination technologies for small animals (such as mice). For in

vitro studies, patient-specific iPSC-derived cardiomyocytes and

human iPSC-derived 3D organotypic cardiac microtissues might

be attractive experimental platforms to investigate the regulation of

secretions from cancer cells and chemotherapeutic agents on ion

channel activities on a large scale (87, 88). Moreover, high-

throughput sequencing and mass spectrometry methods would

allow for the systemic investigation of the regulation of ion

channels by different types of chemotherapeutic agents. Further

studies are required to identify the chemotherapeutic agents that

are strongly associated with ion channel dysfunction. In clinical

practice, agents that do not cause ion channel dysfunction are

preferred.

Mechanistically, the direct regulation of cardiomyocytes by

chemotherapeutic agents and the indirect regulation of cancer

cells (with or without chemotherapy) on cardiomyocytes, such as

sEV-mediated cancer-myocyte crosstalk, should be thoroughly

investigated. Cell co-culture and Transwell experiments are

helpful for studying complicated cancer-myocyte crosstalk.

In terms of treatment, arrhythmias are considered one of the

clinical manifestations of heart failure and cardiomyopathy.

Permanent treatment, such as ablation therapy, should be

considered for arrhythmias with high success or cure rates, such

as atrial flutter, AVNRT, AVRT, and atrial tachycardia (89). In

this case, SVT was refractory to intravenous therapy with

propafenone and reappeared repeatedly until ablation therapy

successfully prevented the onset of AVNRT/AVRT after

chemotherapy. Therefore, radiofrequency ablation may be an

option for patients with arrhythmias after chemotherapy and

poor response to antiarrhythmic drugs.
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