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Background: Stroke continues to be a leading cause of death and disability
worldwide despite improvements in prevention and treatment. Traditional
stroke risk calculators are biased and imprecise. Novel stroke predictors need
to be identified. Recently, deep neural networks (DNNs) have been used to
determine age from ECGs, otherwise known as the electrocardiographic-age
(ECG-age), which predicts clinical outcomes. However, the relationship
between ECG-age and stroke has not been well studied. We hypothesized
that ECG-age is associated with incident stroke.
Methods: In this study, UK Biobank participants with available ECGs (from 2014
or later). ECG-age was estimated using a deep neural network (DNN) applied to
raw ECG waveforms. We calculated the Δage (ECG-age minus chronological
age) and classified individuals as having normal, accelerated, or decelerated
aging if Δage was within, higher, or lower than the mean absolute error of the
model, respectively. Multivariable Cox proportional hazards regression models
adjusted for age, sex, and clinical factors were used to assess the association
between Δage and incident stroke.
Results: The study population included 67,757 UK Biobank participants (mean age
65±8 years; 48.3%male). Every 10-year increase in Δagewas associated with a 22%
increase in incident stroke [HR, 1.22 (95% CI, 1.00–1.49)] in the multivariable-
adjusted model. Accelerated aging was associated with a 42% increase in
incident stroke [HR, 1.42 (95% CI, 1.12–1.80)] compared to normal aging. In
addition, Δage was associated with prevalent stroke [OR, 1.28 (95% CI, 1.11–1.49)].
Conclusions: DNN-estimated ECG-age was associated with incident and
prevalent stroke in the UK Biobank. Further investigation is required to
determine if ECG-age can be used as a reliable biomarker of stroke risk.
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Introduction

Stroke is the second leading cause of death and disability worldwide despite improvements

in prevention and treatment. It continues to pose a massive burden on both individual and

societal levels. Stroke alone accounts for approximately 116 million global disability-

adjusted life-years (DALYs) lost in 2016 and over US$891 billion in 2019 (1, 2). Globally,
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the prevalence of stroke is expected to rise, leading to further increases

in stroke-related costs (3). In the US and other developed nations, the

main driver for increased stroke prevalence is advanced age, as age is

the most important non-modifiable risk factor. Moreover, the

literature suggests that evidence-based guidelines for stroke care are

less likely to be followed with older age (4). As a result, stroke risk

reduction among older patients remains crucial.

Predicting which patients are at highest risk for a certain disease

enable early intervention, thereby improving patient outcomes and

reducing pressure on the healthcare system through primary

prevention. However, at present many stroke risk calculators like

the American College of Cardiology/American Heart Association

(ACC/AHA) Pooled Cohort Equations (PCE) and the

Framingham Stroke Risk Score (FSRS) are derived from

conventional statistical methods that include a few predictors

quantified by human observers. These models oversimplify

complex relationships (5, 6). In contrast, a study by Dritsas and

Trigka demonstrated the potential of various machine learning

(ML) algorithms in predicting stroke (7), an approach that has

been used to improve the prediction of other diseases like

hypertension and diabetes mellitus (8, 9). Further, both the PCE

and FSRS tend to underperform in certain ethnicities and

socioeconomic classes. They also do not incorporate novel risk

markers that some consider important for risk assessment (10).

Fortunately, one of the key applications of machine learning (ML)

in healthcare is risk stratification and clinical decision support. ML

has the potential to circumvent these limitations and outperform

current stroke risk prediction tools (5).

The ML method utilized depends on the type of data. Deep

learning (DL) models based on neural networks have been used to

extract features from imaging and ECGs as a basis for predicting

cardiovascular disease (CVD) risk (5). One such model was a deep

neural network (DNN)-based age prediction model developed on

the Clinical Outcomes in Digital Electrocardiography (CODE) data

set to predict an individual’s age based on ECG waveform,

otherwise known as the electrocardiographic age (ECG-age) (11).

Existing literature has shown that DNN-estimated age is highly

correlated to chronological age with the delta age (ECG-age minus

chronological age) being a predictor of overall mortality (12). A

recent study showed that advanced “biological aging,” as predicted

by ECG data, was associated with increased risk of all-cause

mortality, myocardial infarction (MI), atrial fibrillation (AF), and

heart failure, highlighting the vital role of ECG as a biomarker of

CVD risk and its potential role in stroke prediction (11, 13).

We hypothesize that ECG changes with age relate strongly to

stroke risk. This study aimed to evaluate whether DNN-estimated

ECG-age can predict incident stroke in the large-scale and long-

term UK Biobank.
Methods

Study population

Our study population is comprised of more than half a

million volunteers aged 40–69 years who enrolled in the UK
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Biobank between the years 2006 and 2010 (14). These

participants lived within 25 miles of one of the 22 assessment

centers located throughout England, Wales, and Scotland. On

enrollment in the UK Biobank, participants provided signed

consent and answered questions about sociodemographic,

lifestyle, environmental, and health-related factors. 12-lead

(at-rest) ECGs were performed at an imaging assessment

center for UK Biobank. Exact details of the procedure can be

found at https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=510.

ECG acquisition was approximately 10 s per individual.

Participants who had an ECG done during their clinic visit

(2014 or later) or subsequent clinic visit (2019 or later) were

included in our study. For participants with two ECGs, only the

first valid ECG was accounted. We excluded individuals with

prevalent stroke (n = 808), which left 67,757 individuals for the

association analysis of ECG-age and incident stroke.
Clinical variables

All the lifestyle and clinical risk factors of stroke were

measured at the same time as the ECG measurement. Lifestyle

factors (smoking, alcohol consumption, physical activity, and

diet) were self-reported and were dichotomized as previous

publications presented (15). For blood pressure, two measures

were taken one minute apart using a digital blood pressure

monitor. Body mass index was calculated as weight in

kilograms divided by height in meters squared. Particulate

matter (PM) air pollution (PM2.5, unit micro-g/m3) was

collected from local environment air pollution data in the year

2010 (Data Field 24,006). Another air pollutant, PM10 (PM

with an aerodynamic diameter of <10 micro-g), was measured

in 2007 (Data Field 24,019) and 2010 (Data Field 24,005).

Health-related outcomes including diabetes mellitus (DM),

chronic kidney diseases (CKD), and dyslipidemia were

followed up based on the primary care data (READ code),

hospital inpatient data (ICD-9/ICD-10 codes), death registry

(ICD-10 code), and self-reported medical conditions. Their

first occurrence dates were derived and provided by the UK

Biobank: DM included type 1, type 2, and other diabetes (Data

Fields 130,706, 130,708, 130,710, 130,712, 130,714), CKD Data

Field was 132,032, and dyslipidemia was 130,814.
Study outcomes

Ischemic stroke and hemorrhagic (intracerebral and

subarachnoid subtypes) stroke were the outcomes of interest.

These outcomes were defined by self-reported medical

conditions, ICD-9, or ICD-10 codes (16, 17). The Data Field

related to the stroke outcomes were 42,006, 42,008, 42,010,

and 42,012. The included participants were followed up since

they took the first ECG until whichever came first: newly

diagnosed stroke, or their last follow-up time in the UK

Biobank, in which they were free of stroke, death, or end

of August 2023.
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DNN-estimated ECG-age

The ECG-age was obtained using a DNN that applies the raw

ECG waveform in an end-to-end approach as opposed to classical

automatic analysis methods (18). The model was trained to predict

a person’s age by extracting features directly from the data instead

of relying on traditional ECG interpretation (18, 19). Through this

learning process, the DNN captured how aging affects ECG

waveform (11). For this study, the raw ECG signals used to

generate the ECG-age model were derived from the CODE study,

which was further refined using the UK Biobank ECG data. The

CODE study is part of the Telehealth Network of Minas Gerais

(TNMG) with a database containing ECGs obtained from 2010

to 2017 in Brazilian primary care settings (20). To date, the

CODE data set has been recognized as the world’s largest ECG

database used to develop artificial intelligence (AI)-ECG

applications with 1,558, 415 participants (21). The ECG-age

model in the CODE study and its development have been

previously described (12). The model uses a DNN to make

predictions like the residual network proposed for image

classification except with unidimensional signals (11). More

information on the code used in the DNN-estimated ECG-age

model training, evaluation, and statistical analysis can be found

at https://github.com/antonior92/ecg-age-prediction.
TABLE 1 Baseline characteristics of participants with ECG-age in the UK
Biobank.

Overall No stroke Incident
stroke

P
value

n 67,757 67,378 379

Chronological age
[mean (SD)]

65 (8) 65 (8) 68 (7) <0.001

Men (%) 32,706 (48.3) 32,487 (48.2) 219 (57.8) <0.001

Δage [mean (SD)] −0.01 (5.88) −0.02 (5.88) 1.09 (6.34) <0.001

Body mass index [mean
(SD)]

26.6 (4.5) 26.6 (4.5) 26.9 (4.4) 0.30

Systolic blood pressure
[mean (SD)]

141 (19) 141 (19) 146 (21) <0.001

Diastolic blood pressure
[mean (SD)]

79 (10) 79 (10) 81 (12) 0.005

Current smoker (%) 2,273 (3.4) 2,259 (3.4) 14 (3.7) 0.82

Healthy drinking (%) 44,985 (66.9) 44,727 (66.9) 258 (68.8) 0.47

Physically active (%) 53,261 (87.2) 52,970 (87.2) 291 (86.4) 0.71

Healthy diet (%) 29,686 (45.0) 29,525 (45.0) 161 (43.9) 0.71

Prevalent diabetes (%) 3,846 (5.7) 3,807 (5.7) 39 (10.3) <0.001

Prevalent chronic kidney
diseases (%)

1,444 (2.1) 1,428 (2.1) 16 (4.2) 0.008

Prevalent dyslipidemia (%) 16,013 (23.6) 15,901 (23.6) 112 (29.6) 0.008

Incident ischemic stroke
(%)

304 (0.4) 0 (0.0) 304 (80.2) <0.001

Incident hemorrhagic
stroke (%)

86 (0.1) 0 (0.0) 86 (22.7) <0.001

Incident hemorrhagic
intracerebral stroke (%)

65 (0.1) 0 (0.0) 65 (17.2) <0.001

Incident hemorrhagic
subarachnoid stroke (%)

32 (0.0) 0 (0.0) 32 (8.4) <0.001

Follow-up years [mean
(SD)]

3.94 (2.55) 3.95 (2.56) 2.75 (1.88) <0.001

Δage, ECG predicted age—chronological age; P values were from the t-test

(continuous variables) or Chi-square test (categorical variables).
Statistical analyses

To assess the DNN-estimated ECG-age as a predictor for stroke

risk, we used the Δage (ECG-age minus the chronological age) as

the independent variable and thereby capturing the excess risk

caused by a greater decline in cardiovascular health than

expected by chronological aging. We also separated participants

into three aging categories based on Δage mean absolute error

(MAE) (12). Those with an ECG-age older than the

chronological age by ≥MAE years were considered accelerated

aging. Those with an ECG-age younger than the chronological

age by ≥MAE years were considered decelerated aging. Those

with an ECG-age within the MAE were considered normal aging.

We used Cox proportional hazards regression models to assess

the association of Δage and incident stroke: the first model was

chronological age and sex adjusted, and the second multivariable

model was additionally adjusted for SBP, BMI, particulate matter

air pollution, smoking status, diet, physical activity level, alcohol

consumption, diabetes, CKD, and dyslipidemia. The results were

expressed as stroke risk of Δage per 10 years.

For the secondary analysis, we assessed the association of Δage

with prevalent stroke by logistic regression models and adjusted for

chronological age, sex, and additional clinical risk factors. Several

sensitivity analyses included: (A) we excluded participants with

prevalent atrial fibrillation at the time of ECG measurement, (B)

we assessed the 5-year stroke risk by the Cox model, (C) we

assessed the ability of Δage to predict incident stroke using the

C-statistics where we calculated the change in the predictive

capacity with and without the Δage in the multivariable Cox

models, and the net reclassification index was also generated to
Frontiers in Cardiovascular Medicine 03
assess the prediction ability (22), (D) we explored the non-linear

relationship of Δage and the hazard of incident stroke by using

the fractional polynomials and splines.

In our sensitivity analysis, we performed stratified analysis in

two age groups (chronological age <60, or ≥ 60), and in men

and women separately to assess the associations of Δage and

incident stroke. We used the multivariable-adjusted Kaplan–

Meier curves which were achieved by the inverse probability

weighting method to illustrate the cumulative risk of stroke

across decelerated, normal, and accelerated aging groups. We

used P values less than 0.05 (two-sided) as the statistical

significance level. All the analyses were performed using R

software package version 4.2.1 (https://www.r-project.org/).
Results

Our primary analysis includes 67,757 participants (68,565 for

the secondary analysis) from the UK Biobank. The mean age was

65 ± 8 years and 48.3% were men. The clinical characteristics are

shown in Table 1. Those in the accelerated aging cohort were

more likely male, had a higher BMI, and more current smoking,

alcohol consumption, unhealthy diet, and less physical activity

(Supplementary Table S1). ECG-age was generated with a DNN
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(based on a previous model from the CODE study) using raw ECG

waveform data. On the other hand, participants within the

decelerated age group had less prevalent DM, CKD, and

dyslipidemia (Supplementary Table S1). A total of 808

participants had a stroke before or at the time an ECG was

performed. During an average of 3.94 ± 2.55 years of follow-up,

an additional 379 participants were diagnosed with stroke.
Association of Δage with incident stroke

Table 2 shows the association of Δage with incident stroke in

the chronological age- and sex-adjusted, and multivariable-

adjusted models. Every 10-year increase in Δage was associated

with a 22% increase in the risk of incident stroke [HR = 1.22

(95% CI, 1.00–1.49)] after adjusting for multiple risk factors.

The association remained significant if we restricted to 5 years

risk of incident stroke in both age- and sex- adjusted and
TABLE 2 Associations of Δage (per 10 years) and incident stroke.

Chronological age and sex adjusted

Total Incident
cases

HR (95% CI) P
value

All 67,757 379 1.38 (1.17, 1.64) <0.001

Baseline chronological age <60 18,266 60 1.06 (0.68, 1.64) 0.81

Baseline chronological age ≥60 49,491 319 1.45 (1.20, 1.74) <0.001

Men 32,706 219 1.49 (1.19, 1.87) <0.001

Women 35,051 160 1.24 (0.96, 1.61) 0.11

Multivariable model adjusted for chronological age, sex, BMI, current smoking, drinkin

and prevalent dyslipidemia.

FIGURE 1

Multivariable adjusted Kaplan-Meier plot for the associations of ECG aging
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multivariable-adjusted models (Supplementary Table S2). The

association of Δage with incident stroke in the multivariable-

adjusted model was attenuated when we excluded prevalent

atrial fibrillation cases (Supplementary Table S3). However, the

inclusion of Δage did not significantly improve the prediction

of incident stroke with a change of C-statistics of 0.003 [95%

CI, −0.003–0.009] in the multivariable model. There was also

no significant change in terms of net reclassification

improvement (NRI) (P > 0.05).

Figure 1 shows the multivariable-adjusted cumulative risk of

incident stroke across three aging groups. Participants in the

accelerated aging group had a higher probability of developing

stroke compared to the normal and decelerated aging groups

(log-rank test P value = 0.02). We also fit a smoothing spline fit

for the relative hazard of incident stroke as a function of Δage

(Supplementary Figure S1). The graph did not support a

nonlinear relationship between Δage and hazard of incident

stroke (P = 0.07 for the nonlinear term).
model Multivariable adjusted model

P
interact

Total Incident
cases

HR (95% CI) P
value

P
interact

– 50,100 282 1.22 (1.00, 1.49) 0.05 –

0.18 14,009 46 0.82 (0.49, 1.38) 0.45 0.12

36,091 236 1.31 (1.05, 1.63) 0.02

0.28 24,501 170 1.34 (1.03, 1.74) 0.03 0.25

25,599 112 1.07 (0.78, 1.47) 0.66

g, physical activity, diet, systolic blood pressure, prevalent diabetes, prevalent CKD,

groups and cumulative risk of incident stroke.
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Two additional analyses on comparisons of the stroke risk

models based on PCE with or without ECG Δage and revised

FSRS (R-FSRS) with or without ECG Δage were conducted.

Although there was subtle improvement in the C statistics when

Δage was added to both models, these findings were not

statistically significant (Supplementary Table S8).
Sensitivity analysis

In the age and sex-stratified analysis, Δage was positively

associated with stroke incidence in individuals older than 60

years and in men (HR = 1.31 [95% CI, 1.05–1.63] and 1.34 [95%

CI, 1.03–1.74] respectively). However, the difference did not

reach the pre-defined significance threshold (both with

interaction P values greater than 0.05). Similar association results

were seen in the incidence of ischemic stroke (Supplementary

Table S4). Because we had very limited incident hemorrhagic

stroke cases, we did not find any association of Δage and

hemorrhagic stroke (Supplementary Table S1). Moreover, in

Supplementary Table S5, accelerated aging was associated with a

42% increase in incident stroke [HR = 1.42 (95% CI, 1.12–1.80)]

in the age- and sex-adjusted model. Decelerated aging was

associated with a 10% decrease in incident stroke, but this

finding was not statistically significant.
Association of Δage with prevalent stroke

As shown in Supplementary Table S6, participants with

prevalent stroke were more likely to be male and have higher

Δage, BMI, and systolic blood pressure. Like their incident stroke

counterparts, they were more likely to have prevalent DM, CKD,

and dyslipidemia. Supplementary Table S7 shows the association

between Δage and prevalent stroke in the age- and sex-adjusted,

and multivariable-adjusted models. There was a significant

association between prevalent stroke and Δage [OR, 1.28 (95%

CI, 1.11–1.49)], suggesting that those with a history of stroke

were 28% more likely to exhibit accelerated aging.
Discussion

In this study, we found that Δage (the difference between

DNN-estimated ECG-age and chronological age) was associated

with incident stroke in UK Biobank. ECG-age was also associated

with prevalent stroke even after adjusting for known risk factors.

These results indicate that ECG-age may reflect an accelerated

compromise in cardiac electrical function (11). Accelerated aging

was able to predict incident stroke in the age- and sex-adjusted

model. All in all, our findings suggest that ECG-age is connected

to stroke in the community.

DNNs and other AI-related technologies are being increasingly

implemented in healthcare. These technologies not only have the

potential to transform various aspects of patient care, but also

some studies are already suggesting that AI can perform as well
Frontiers in Cardiovascular Medicine 05
as if not better than humans at certain tasks (23). As mentioned

previously, commonly used stroke risk stratification tools (i.e.,

PCE, FSRS) fail to incorporate newer risk markers including pro-

BNP and left ventricular hypertrophy, which are associated with

increased risk of stroke (24, 25). Moreover, traditional risk

calculators like the PCE tend to under- or overestimate according

to ethnicity, socioeconomic class, and presence of inflammatory

states. Our results demonstrated that the addition of ECG Δage

in risk models like the PCE and R-FSRS could improve their

accuracy in stroke risk assessment.

Current literature is rife with examples demonstrating

significant relationships between specific ECG features, age, and

CVD risk. A study by van der Wall et al. found that the most

important features for the prediction of physiologic age were T

wave morphology indices in leads V4 and V5, and P wave

amplitude in leads aVR and II (26). Recent findings in

population-based studies suggest that abnormal P wave terminal

force in lead I, a marker of left atrial abnormality, is strongly

associated with incident stroke (27). Moreover, lower heart

variability has been shown to be associated with increased risk of

CV events and mortality (28).

Similarly, previous studies have linked AI-generated ECG-age

to cardiovascular risk and outcomes. A study by Raghunath et al.

incorporated a DNN-based model using ECG waveforms, which

predicted all-cause mortality (29). The ECG-age model developed

by the CODE study was associated with all-cause mortality in

multiple validation cohorts (12). One of these is the ELSA-Brasil

cohort study (Brazilian Longitudinal Study of Adult Health),

wherein accelerated aging was able to predict 1-year overall

mortality (12). Others have examined the connection between

Δage and clinical outcomes. Chang et al. found that—compared

to chronological age—older DNN-estimated ECG-age was

correlated to all-cause mortality and CVD (30). Our study adds

to these findings by demonstrating that ECG-age is also able to

predict incident stroke in the community.

Unfortunately, since the DNN remains partly enigmatic in

terms of interpretation, the ways in which ECG-age can explain

cardiovascular risk may be complicated (11). Lima et al. found

no significant differences between common ECG features (heart

rate, P duration, QRS axis and duration, RR interval, and QTc

interval) among subjects with accelerating, normal, or

decelerating aging (12). To better understand this finding, the

same study performed an analysis restricted to normal ECGs

(per conventional standards) that reported a significant

relationship between ECG-age and death. It appears that ECG-

age prediction does not solely rely on traditional ECG

abnormalities. This hypothesis is further corroborated by studies

merging traditional and deep learning methods, suggesting that

traditional ECG features alone do not fully explain the age

prediction (19). Interestingly, DNN-estimated ECG-age appears

to be a proxy for biological aging stemming from a single input,

possibly capturing the residual risk from traditional and

unknown risk factors (11). However, this lack of explainability

could potentially be mitigated by incorporating aspects of the

Bayesian approach. This approach has been used to infer ‘heart

age’ from a patient’s chronological age and sex by assessing and
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quantifying an individual’s expected vs. actual ECG findings (31).

Various ECG parameters were used as modifiers of the Bayesian-

predicted heart age including QRS-T angle, a strong prognostic

factor for all-cause mortality and CV events (31, 32).

There are a few limitations to address in this study. First, use of

deep learning does not allow for feature extraction or explainability,

leading to uncertainty about how ECG-age detects stroke risk.

Future research should concentrate on understanding the

components associated with DNN-estimated ECG-age and

investigating if ECG-age quantifies modifiable excess risk

amenable to early intervention (11). Moreover, our study

population was predominantly healthy, better educated, and of

white European descent. On the other hand, the DNN model

used to predict ECG-age in our study was trained by extracting

features from the CODE dataset, which is derived from a

population that is generally sicker than the UK Biobank cohort.

Also, compared to the hold-out split or CODE-15% cohort,

mean age and the prevalence of CV risk factors were higher in

both validation cohorts used in the CODE study. As such, the

generalizability of our results to more diverse populations is

unknown. Lastly, we cannot infer the causality of ECG-age to

stroke due to the observational nature of our study and potential

residual confounding factors.

In conclusion, DNN-estimated ECG-age was associated with

incident and prevalent stroke in a large population-based study.

Further analysis is needed to determine if ECG-age can be used

as a practical biomarker of stroke risk.
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