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Circulating metabolites and
coronary heart disease:
a bidirectional Mendelian
randomization
Huanyu Chen1*†, Yuxuan Huang1†, Guangjing Wan1 and Xu Zou2*
1The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China,
2Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine,
Guangzhou, China
Background: Numerous studies have established a link between coronary heart
disease and metabolic disorders. Yet, causal evidence connecting metabolites
and Coronary Heart Disease (CHD) remains scarce. To address this, we
performed a bidirectional Mendelian Randomization (MR) analysis investigating
the causal relationship between blood metabolites and CHD.
Methods: Data were extracted from published genome-wide association studies
(GWASs) on metabolite levels, focusing on 1,400 metabolite summary data as
exposure measures. Primary analyses utilized the GWAS catalog database
GCST90199698 (60,801 cases and 123,504 controls) and the FinnGen cohort
(43,518 cases and 333,759 controls). The primary method used for causality
analysis was random inverse variance weighting (IVW). Supplementary analyses
included MR-Egger, weighted mode, and weighted median methods.
Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy.
Reverse MR analysis was employed to evaluate the direct impact of
metabolites on coronary heart disease. Additionally, replication and meta-
analysis were performed. We further conducted the Steiger test and
colocalization analysis to reflect the causality deeply.
Results: This study identified eight metabolites associated with lipids, amino
acids and metabolite ratios that may influence CHD risk. Findings include: 1-
oleoyl-2-arachidonoyl-GPE (18:1/20:4) levels: OR = 1.08; 95% CI 1.04–1.12; P
= 8.21E-06; 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) levels: OR = 1.07;
95% CI 1.04–1.11; P= 9.01E-05; Linoleoyl-arachidonoyl-glycerol (18:2/20:4):
OR = 1.08; 95% CI 1.04–1.22; P= 0.0001; Glycocholenate sulfate: OR = 0.93;
95% CI 0.90–0.97; P= 0.0002; 1-stearoyl-2-arachidonoyl-GPE (OR= 1.07;
95% CI 1.03–1.11; P= 0.0002); N-acetylasparagine (OR = 1.04; 95% CI 1.02–
1.07; P= 0.0030); Octadecenedioate (C18:1-DC) (OR = 0.93; 95% CI 0.90–
0.97; P= 0.0004); Phosphate to linoleoyl-arachidonoyl-glycerol (18:2–20:4) (1)
ratio (OR = 0.92; 95% CI 0.88–0.97; P=0.0005).
Conclusion: The integration of genomics and metabolomics offers novel
insights into the pathogenesis of CHD and holds significant importance for
the screening and prevention of CHD.
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1 Introduction

Coronary heart disease (CHD) is the predominant

cardiovascular disease globally and a leading cause of mortality

(1). Despite significant advances in pharmacological and surgical

interventions, these therapies address only a limited number of

the potential pathophysiological pathways, resulting in

persistently high mortality rates in CHD patients (2–4).

In recent years, integrating metabolomics into systems biology

has offered novel insights into disease mechanisms. Specifically,

metabolomics plays a crucial role in elucidating the biological

mechanisms underlying diseases, primarily through the

identification of altered metabolites and metabolic pathways

(5, 6). For instance, gut metabolites, such as trimethylamine-N-

oxide (TMAO), have been shown to have a strong association

with coronary heart disease (CHD). Yao et al. (7) notably

discovered that elevated levels of TMAO correlate with increased

incidences of major adverse cardiac events (MACE) in patients

with CHD. Furthermore, a considerable number of studies have

explored the potential relationship between metabolites and

CHD, suggesting that specific metabolites may play roles in the

onset and progression of CHD. For instance, eicosapentaenoic

acid (EPA) is a crucial anti-inflammatory/anti-aggregation fatty

acid, while arachidonic acid (AA) is a precursor for various pro-

inflammatory/pro-aggregation mediators. Epidemiological

evidence suggests that a low EPA: AA ratio is linked to

heightened CHD risk (8, 9), and clinical studies demonstrate that

increasing this ratio can effectively improve CHD prognosis (10).

Ganna et al. identified four lipid-related metabolites with

evidence for clinical utility, as well as a causal role in CHD

development.1 Hosseinkhani et al. (11) observed that levels of

circulating amino acids and acylcarnitines were partially

correlated with CHD severity in postmenopausal women. Würtz

et al. substantiates the value of high-throughput metabolomics

for biomarker discovery and improved risk assessment.2

Unfortunately, existing studies examining the causal relationship

between metabolites and CHD have limitations, particularly in

terms of their evaluation systems needing to be more

comprehensive. Nevertheless, there is still a need for more

comprehensive and systematic studies to evaluate this causal

relationship between blood metabolites and CHD. Given the

inherent limitations of traditional observational studies, existing

evidence cannot definitively establish a metabolic profile

associated with the onset of CHD. While rigorous randomized

controlled trials (RCTs) are the quintessence standard in
1Ganna A, Salihovic S, Sundström J, et al. Large-scale metabolomic profiling

identifies novel biomarkers for incident coronary heart disease [J]. PLoS

Genet, 2014, 10(12): e1004801.
2Würtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and

cardiovascular event risk: a prospective study of 3 population-based

cohorts [J]. Circulation, 2015, 131(9): 774-85.
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evidence-based medicine for establishing causality, their

implementation faces challenges due to ethical concerns,

observational duration, high costs, and other logistical constraints.

Mendelian randomization (MR) studies have increasingly been

utilized in investigating disease etiology. In scenarios where RCTs

are not feasible, MR emerges as a highly compelling approach to

ascertain causality between an exposure of interest and its

corresponding outcome (12). Unlike traditional studies, MR

utilizes exposure-associated single nucleotide polymorphisms

(SNPs) as instrumental variables (IVs) and employs genetic

proxies to assess the causal effects of exposure (13). Precisely,

this IV method, as applied in Mendelian Randomization,

parallels RCTs since SNPs are randomly assigned to offspring at

conception (14). This significantly reduces confounding factors,

as variables such as gender and age are unlikely to influence the

causal effects assessed.

Given the limited understanding of the causal relationship

between blood metabolites and CHD, in-depth research in this

field is essential. To address this, our study collected

comprehensive serum metabolome data (encompassing 1,400

types) and applied an MR analysis akin to an RCT design. This

approach enabled us to comprehensively assess the causal

relationship between CHD and relevant metabolites through a

bidirectional MR validation. Genome-wide association studies

(GWAS) can identify multiple genetic associations, but

distinguishing causal variants from simple correlations remains a

significant challenge. Refining these findings, the colocalization

analysis offers evidence to determine whether the same causal

variant may influence multiple traits. Consequently, we

conducted GWAS-GWAS colocalization analysis to identify and

mitigate false positive results. This was achieved by comparing

gene loci across different GWAS, which ensures a more accurate

identification of genuine genetic associations.
2 Methods and materials

2.1 Study design

All published GWAS received ethical approval from the

appropriate institutional review boards. This study utilized only

summary-level data, eliminating the need for additional ethical

approval.

In this study, we conducted a rigorous MR design to

systematically evaluate the causal relationship between 1,400

human blood metabolites and CHD risk. A robust MR design

must satisfy three key assumptions: (1) the genetic instrument

exhibits a strong association with the exposure; (2) the genetic

instruments are independent of confounding factors; (3) the

genetic instruments influence the outcome solely through the

exposure of interest (15). Due to the independence from

horizontal pleiotropy inherent in the second and third

hypotheses, various statistical methods can be utilized to confirm

this, as detailed in relevant literature (16). In order to minimize

the bias inherent in the genetic data of CHD, our study

undertook both preliminary and replication analyses using two
frontiersin.org
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independent GWAS consortia, culminating in a meta-analysis.

Figure 1 presents a schematic of this bidirectional MR study.
2.2 GWAS data for 1,400 serum metabolites

This research, which involves a dataset of 1,400 blood

metabolites from genome-wide association studies (GWAS), is

based on the study by Chen et al. (17). Genetic information for

each metabolite is available at https://www.ebi.ac.uk/gwas/

publications/36635386 and can be accessed through the

Metabolomics GWAS Server. Specifically, the data were derived

from a large-scale genome-wide association scan and high-

throughput metabolic analysis performed by Chen et al. (17).

Specifically, the analysis encompassed 1,091 metabolites and 309

metabolite ratios in a sample of 8,299 individuals from the

Canadian Longitudinal Study of Aging (CLSA) cohort. Using

genome-wide association studies of 1,091 blood metabolites and

309 metabolite ratios, researchers identified associations with

690 metabolites at 248 loci. And the association with 143

metabolite ratios at 69 sites. In the study, out of the 1,091

metabolites examined, 850 were classified into eight metabolic

pathways: lipids, amino acids, cofactors and vitamins,

xenobiotics, carbohydrates, nucleotides, peptides, and energy
FIGURE 1

Flow chart of Mendelian randomization (MR) analysis. This overview illustrate
that the genetic instruments are strongly associated with the exposure of in
confounders; Hypothesis 3 stipulates that genetic instruments affect outcom
terms include IVW (Inverse Variance Weighting), LD (Linkage Disequilibrium
Residuals Sum and Outlier), SNPs (Single Nucleotide Polymorphisms), and W

Frontiers in Cardiovascular Medicine 03
metabolism. The remaining 241 substances were identified as

unknown molecules.
2.3 GWAS data for CHD

GWAS statistics for coronary artery disease in the primary analysis

were obtained from the CARDIoGRAMplusC4D consortium. This

consortium, which focuses on the replication and meta-analysis of

Coronary Artery Disease (CARDIoGRAM) and Coronary Artery

Disease Genetics (C4D), included 60,801 CHD cases and 123,504

control subjects (18). The consortium’s data is accessible at https://

gwas.mrcieu.ac.uk (19). Chronic stable angina, acute coronary

syndrome, coronary artery stenosis exceeding 50%, and myocardial

infarction were included in the case definition of coronary heart

disease (18). To substantiate our results through replicate analysis

and meta-analysis, we utilized data from the FinnGen R9 study of

coronary heart disease, comprising 43,518 cases and 333,759 controls.
2.4 IVs selection

The selection of instrumental variables (IVs) in this Mendelian

Randomization (MR) analysis adhered to three fundamental
s the three fundamental hypotheses of MR analysis: Hypothesis 1 posits
terest; Hypothesis 2 asserts that genetic instruments are independent of
es solely through exposure, with no direct association to outcomes. Key
), LOO analysis (Leave-One-Out Analysis), MR-PRESSO (MR-Pleiotropic
M (Weighted Median).
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assumptions. Firstly, single nucleotide polymorphisms (SNPs)

strongly associated with P-values less than 1 × 10−5 were

identified for each metabolite, establishing the genome-wide

significance threshold. Secondly, we employed the clustering

procedure in R software to discern independent variants, defining

linkage disequilibrium (LD) as an R2 of less than 0.001 within a

500-kilobase (kb) distance. This criterion has been extensively

adopted in prior research (20, 21). Finally, to verify the

suitability of the selected SNPs as instrumental variables, we

calculated their proportion and F-statistic for each metabolite.

Generally, an F-statistic exceeding ten was considered the

threshold for selecting robust instrumental variables in

subsequent analyses (22).
2.5 MR analysis

This study investigated the causal relationship between

metabolites and CHD using bidirectional MR analysis with the

standard IVW method. Although propensity score matching

(PSM), difference-in-differences (DiD), and regression

discontinuity design (RDD) are analytical methods used in

epidemiology and economics to infer causality, PSM is limited to

accounting for observed and measured confounding factors. Any

unmeasured confounders could still bias the results; moreover,

the quality of the match significantly influences the estimates,

and a perfect match in propensity scores does not ensure the

balance of all critical covariates. DiD assumes parallel trends,

meaning that, in the absence of treatment, the treatment and

control groups’ average outcomes would follow a parallel

trajectory over time. Any deviation from this assumption could

lead to biased estimates. RDD’s applicability is confined to

individuals near the cutoff point, limiting result generalization.

Furthermore, if individuals can manipulate their position relative

to the cutoff, the design’s integrity may be compromised.

The selection of these methods is influenced by various factors,

such as the data’s nature, the research question, the validity of

underlying assumptions, and the method’s applicability in

specific contexts. In contrast, MR is particularly suited for

assessing the causal effects of biomarkers or exposures that are

challenging to manipulate directly. This is because MR employs

genetic variation as an instrumental variable. Given that genetic

variation inherently exists, MR is effective in determining the

causal effects of lifetime exposures, thereby validating the

methodological choice of MR in this study.

While IVW assumes the validity of all genetic variants, making

it highly effective for MR estimation, it is not without challenges,

primarily its susceptibility to pleiotropy. Thus, IVW served as the

primary method for identifying CHD-related metabolites,

complemented by various assessment methods to address its

limitations. Secondary evaluation methods, including the

weighted model, MR Egger, and weighted median (WM), were

employed further to scrutinize significant metabolites (IVW P <

0.05), enhancing the robustness of the MR results.

Sensitivity analyses were conducted to evaluate the impact of

MR assumptions on the significance estimates and to mitigate
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potential biases from horizontal pleiotropy and heterogeneity.

These analyses included: (1) heterogeneity assessment using Q-

tests with IVW and MR Egger methods; (2) estimation of

horizontal pleiotropy via the MR Egger intercept; (3)

application of additional methods like the weighted median and

modulus for hypothesis testing reliability; (4) single SNP

analysis and a retention test for assessing associations (23, 24).

Additionally, heterogeneous SNPs were re-examined using

MR-PRESSO. For result robustness, a leave-one-out (LOO)

analysis was conducted, sequentially excluding each SNP, to

determine if the results were disproportionately influenced by

individual SNPs.

Therefore, we identified potential candidate metabolites

associated with CHD development based on the following items:

(1) the P-value of the primary analysis was significant, with the

IVW method yielding a P-value below 0.05; (2) the directions

and magnitudes of the results were consistent across the four

MRI methods; (3) the MR results exhibited neither heterogeneity

nor horizontal pleiotropy; (4) no single SNP significantly

influenced the Mendelian Randomization estimates.
2.6 Replication and meta-analysis

To verify the robustness of the candidate metabolites, we

repeated the IVW analysis in an additional CHD cohort. There

are publicly accessible databases resulting from genome-wide

association studies, one of which is the FinnGen research project,

which has provided genetic insights from phenotypically good

isolated populations (25). The replication analysis for CHD

utilized GWAS data from the latest R9 publication (43,518 cases

and 333,759 controls) provided by the FinnGen Consortium,

available at https://r9.finngen.fi/. Through a meta-analysis of two

MR Analyses, we finally identified blood metabolites associated

with a causal link to CHD.
2.7 Colocalization analysis

We conducted a colocalization analysis with the coloc R

package to further explore if the relationship between the

identified metabolites and CHD was due to a shared causal

variant (26). This involved examining regional loci within 1,000

KB above and below the lead SNP in the exposure data, thereby

mitigating the risk of reinforcing spurious associations between

the two phenotypes. In the Bayesian framework, the coloc

approach evaluated posterior probabilities for five hypotheses

(H0, H1, H2, H3, H4) at each variant locus: (1) no association

with either trait; (2) association with only trait 1; (3) association

with only trait 2; (4) associations with both traits due to different

causal variants; and (5) both traits sharing a common causal

variant (27). We employed default priors (p1 = 1 × 10–4, p2 = 1 ×

10–4, p12 = 1 × 10–5) for the colocalization analysis. The presence

of a posterior probability exceeding 80% for H4 (PP4) under

diverse prior and window conditions was deemed compelling

evidence of colocalization.
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3 Results

3.1 Analyzing the impact of 1,400 blood
metabolites on coronary heart disease

A genome-wide significance threshold of P < 1 × 10−5 was

employed to identify strongly associated SNPs in conjunction

with screening 1,400 serum metabolites. Within the filtered IVs,

a total of 34,931 SNPs were identified. All SNPs associated with

metabolites demonstrated F-statistics greater than 10, suggesting

the exclusion of weak analytical tools, as detailed in

Supplementary Table S2. The IVW analysis identified 113

metabolites potentially causing effects on CHD (P < 0.05 for

IVW), comprising 60 protective and 53 risk factors for CHD.

Subsequent IVW analysis identified 113 metabolites potentially

impacting Coronary Heart Disease (CHD) (P < 0.05 for IVW),

comprising 60 protective factors and 53 risk factors. The most

notable metabolite was 1-oleoyl-2-arachidonoyl-GPE (18:1/20:4)

(P = 8.21E-06), followed by 1-palmitoyl-2-arachidonoyl-GPE

(16:0/20:4) (P = 9.01E-05) and linoleoyl-arachidonoyl-glycerol

(18:2/20:4) (P = 1.12E-04), as detailed in Supplementary Table S7.

Of the 113 metabolites analyzed, 42 remained unnamed.

Supplementary Table S8 presents the chemical classifications of

102 known metabolites, encompassing amino acids,

carbohydrates, dipeptides, lipids, nucleotides, metabolite ratios,

and xenobiotics. From these, eight metabolites (FDR < 0.1)

meeting stringent screening criteria were identified as prime

candidates through complementary and sensitivity analyses (refer

to Table 1 and Supplementary Table S3), including 1-oleoyl-2-

arachidonoyl-GPE (18:1/20:4) levels: OR = 1.08; 95% CI 1.04–

1.12; P = 8.21E-06; 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4)

levels: OR = 1.07; 95% CI 1.04–1.11; P = 9.01E-05; Linoleoyl-

arachidonoyl-glycerol (18:2/20:4): OR = 1.08; 95% CI 1.04–1.22;

P = 0.0001; Glycocholenate sulfate: OR = 0.93; 95% CI 0.90–0.97;

P = 0.0002; 1-stearoyl-2-arachidonoyl-GPE (OR = 1.07; 95% CI

1.03–1.11; P = 0.0002); N-acetylasparagine (OR = 1.04; 95% CI

1.02–1.07; P = 0.0030); Octadecenedioate (C18:1-DC)(OR = 0.93;

95% CI 0.90–0.97; P = 0.0004); Phosphate to linoleoyl-

arachidonoyl-glycerol (18:2–20:4) (1) ratio (OR = 0.92; 95% CI

0.88–0.97; P = 0.0005) (Figures 2, 3). The IVW estimates showed

significance (P < 0.05) and exhibited consistent direction and

magnitude across IVW, Weighted median, Weighted mode, and

MR-Egger analyses. The MR-PRESSO results indicated no

heterogeneity in SNPs after outlier removal (Supplementary

Table S6), and both the Cochran Q test and the MR-Egger

intercept test supported the absence of heterogeneity and

pleiotropy (P < 0.05) (Table 1). The Leave-One-Out (LOO)

analysis confirmed that individual SNPs did not bias MR

estimates (Supplementary Figures S1–S8). All estimates

demonstrated a power exceeding 0.8. These eight serum

metabolites warrant further investigation. Furthermore, we

conducted a Steiger test to address potential reverse causality bias

(Supplementary Table S5) (28). In cases of coronary heart

disease, a scenario where the interpretable variance explained by

IVs exceeds that of the blood metabolites could result in an

incorrect inference of causal direction.
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3.2 Impact of coronary artery disease on
1,400 blood metabolites (reverse MR)

Given the absence of heterogeneity and the limitations of the

measurement instrument, we employed the IVW method as our

primary estimation approach. In conducting a reverse Mendelian

Randomization (MR) Analysis to explore the causal effect of

CHD on circulating metabolites, we identified 50 metabolites

significantly associated with CHD (P < 0.05). These included

various lipids, nucleotides, carbohydrates, and amino acids, as

detailed in Supplementary Table S11. Notably, the ratio of

Adenosine 5′-diphosphate (ADP) to N-palmitoyl-sphingosine

(d18:1–16:0) showed the most significant association

(P = 0.00033809), followed by Adenosine 5′-diphosphate alone

(P = 0.003389943). Seven of these 50 metabolites identified from

the reverse analysis were unnamed. Unfortunately, none of the

metabolites passed the false discovery rate (FDR) test, as reported

in Supplementary Table S11.
3.3 Replication and meta-analysis

To enhance the robustness of our estimates, we replicated the

MR analysis using GWAS data from another study on CHD. In

this additional GWAS dataset for CHD, we consistently observed

a similar pattern in the candidate metabolites. The meta-analysis

further identified eight serum metabolites significantly associated

with coronary artery disease (Figure 4). These included high

levels of 1-oleoyl-2-arachidonoyl-GPE (18:1/20:4) (OR 1.06, 95%

CI 1.03–1.08), 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) (OR

1.05, 95% CI 1.03–1.08), linoleoyl-arachidonoyl-glycerol (18:2/

20:4) (2) (OR 1.04, 95% CI 1.02–1.07), 1-stearoyl-2-

arachidonoyl-GPE (18:0/20:4) (OR 1.05, 95% CI 1.03–1.07),

N-acetylasparagine (OR 1.03, 95% CI 1.01–1.05), and

octadecenedioate (C18:1-DC) (OR 0.73, 95% CI 0.58–0.92,

P = 0.008) which increased susceptibility to CHD. Conversely,

high levels of octadecenedioate (C18:1-DC) (OR 0.95, 95% CI

0.92–0.98) were found. Utilizing the FinnGen coronary artery

disease database, glycocholenate sulfate (Heterogeneity: I2 = 74%,

τ2 = 0.0009, P = 0.05) and the 2-phosphate to linoleoyl-

arachidonoyl-glycerol (18:2–20:4) (1) ratio (Heterogeneity:

I2 = 86%, τ2 = 0.0027, P < 0.01) demonstrated significant

heterogeneity and inconsistent directions.
3.4 Colocalization analysis

For the eight known metabolites identified as being

associated with coronary heart disease risk in this study, we

conducted a colocalization analysis to assess their relationship

with CHD outcomes. This analysis utilized exposure data from

within a 1,000-kb range of the lead SNP to ensure that the

observed associations were not confounded by the same causal

variant within a region. This approach aimed to minimize the

likelihood of a spurious association between the two
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FIGURE 2

Forest plots of causal relationships. Forest plots illustrating the causal relationships between blood metabolites and coronary heart disease (CHD),
derived from inverse variance weighted (IVW) analysis. Key terms: CI (confidence interval), IVW (inverse variance weighting), OR (odds ratio), and
SNPs (single nucleotide polymorphisms).

FIGURE 3

Scatter plots of significant associations. Scatter plots depicting significant associations (IVW-derived P < 0.05) with consistent directionality. Key term:
SNP (single nucleotide polymorphism).

Chen et al. 10.3389/fcvm.2024.1371805
phenotypes (refer to Supplementary Table S10). The

colocalization analysis results indicated that the associations

between CHD and the eight known metabolites were
Frontiers in Cardiovascular Medicine 07
unrelated to shared causal variant sites. Supplementary Figures

S9–S16 depict the regional associations observed in the

colocalization results.
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FIGURE 4

Meta-analysis of the causal relationships between metabolites and coronary heart disease. Key terms include 95% CI (95% confidence interval) and OR
(odds ratio). In the heterogeneity column, the P-values and I2 indicate the heterogeneity test results. A P-value >0.1 suggests no significant
heterogeneity, while <0.1 indicates notable heterogeneity. Lower I2 values denote higher reliability in the combined effect results. Typically, I2

ranges of 0%–25%, 25%–50%, 50%–75%, and 75%–100% correspond to no, mild, moderate, and severe heterogeneity, respectively.
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4 Discussion

By integrating two large-scale GWAS datasets, we employed a

rigorous two-sample MR design to explore the bidirectional

causality between 1,400 blood metabolites and genetic proxies for

CHD. Our analysis identified genetically determined high levels

of 1-oleoyl-2-arachidonoyl-GPE (18:1/20:4), 1-palmitoyl-2-

arachidonoyl-GPE (16:0/20:4), linoleoyl-arachidonoyl-glycerol

(18:2/20:4), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4), N-

acetylasparagine, and octadecenedioate (C18:1-DC) as risk factors

for CHD. Conversely, high levels of octadecenedioate (C18:1-

DC), glycocholenate sulfate, and the phosphate to linoleoyl-

arachidonoyl-glycerol (18:2/20:4) ratio were identified as

protective factors against CHD. Our study did not identify any

blood metabolites with bidirectional effects. Furthermore,

GWAS-GWAS co-localization analysis provided robust evidence

of the causal relationships unaffected by overlapping SNPs.

In recent years, the substantial global health burden resulting

from the high morbidity and mortality associated with CHD has

emphasized the pressing need for early screening and preventive

strategies (29, 30). The advent of metabolomics technology has

heightened interest in exploring the role of metabolites in CHD.
Frontiers in Cardiovascular Medicine 08
Previous clinical studies have indicated specific changes in serum

metabolites among CHD patients (31–33). For instance, Fan et al.

(3) reported downregulation of lysophosphatidylcholine,

lysophosphatidylethanolamine 18:2, and phosphatidylethanolamine

in patients with nonobstructive coronary atherosclerosis (NOCA)

compared to those with normal coronary arteries, and an

upregulation of sphingosine. Sphingosine expression in plants is

up-regulated (33). While previous studies have convincingly

demonstrated the involvement of metabolites in the biological

mechanisms of CHD and their therapeutic potential, their

contribution to the early screening and prevention of CHD

remains constrained by unclear causal relationships. Therefore, we

conducted a pivotal MR study to clarify the causal links between

blood metabolites and CHD, including the associated metabolic

pathways, aiming to guide CHD screening and treatment strategies.

This MR study identified three blood metabolites—

octadecenedioate (C18:1-DC), glycocholenate sulfate, and the

phosphate to linoleoyl-arachidonoyl-glycerol (18:2–20:4) ratio—as

potential reducers of CHD risk. Unfortunately, there is limited

research on octadecenedioate (C18:1-DC) and its effects related

to CHD, warranting further investigation into this association.

Glycocholenate sulfate, a specific bile acid metabolite, has limited
frontiersin.org
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direct studies examining its relationship with CHD. However,

disorders in bile acid metabolism can disrupt cholesterol

homeostasis, a critical factor in the development of

atherosclerosis—an important CHD risk factor (34). Regarding

glycocholenate sulfate, Alonso et al. (35, 36) reported that it may

increase atrial fibrillation (AF) risk in a community cohort with

atherosclerosis risk. The association between the phosphate to

linoleoyl-arachidonoyl-glycerol (18:2/20:4) ratio and coronary

heart disease has not been previously reported in the literature.

However, clinical studies indicate a significant association

between phosphate levels and the risk of cardiovascular events in

patients with coronary heart disease undergoing percutaneous

coronary intervention (PCI) (37). Linoleoyl-arachidonoyl-glycerol

(18:2/20:4) (2), a diacylglycerol (DAG) comprising linoleic and

arachidonic acids, plays a role in lipid metabolism and signaling

pathways. DAG pathways are believed to influence metabolic

disorder risk and play a key role in lipid-induced insulin

resistance. Nevertheless, the precise biological mechanism of

DAG in CHD has yet to be fully elucidated (38).

We also confirmed that higher levels of 1-oleoyl-2-

arachidonoyl-GPE (18:1/20:4), 1-palmitoyl-2-arachidonoyl-GPE

(16:0/20:4), linoleoyl-arachidonoyl-glycerol (18:2/20:4) (2), 1-

stearoyl-2-arachidonoyl-GPE (18:0/20:4), N-acetylasparagine, and

octadecenedioate (C18:1-DC) are detrimental to CHD. To date,

there have been no reports linking 1-oleoyl-2-arachidonoyl-GPE

(18:1/20:4), 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4), and 1-

stearoyl-2-arachidonoyl-GPE (18:0/20:4) with CHD. Only one

MR study has demonstrated a positive association between 1-

stearoyl-2-arachidonoyl-GPE (18:0/20:4) and smoking, along with

its mediation of the BMI-increasing effect (39). It is well-known

that smoking and increased BMI are significant risk factors for

coronary heart disease. 1-oleoyl-2-arachidoniyl-GPE (18:1/20:4),

1-palmitoyl-2-arachidoniyl-GPE (16:0/20:4), linoleoyl-

arachidoniyl-glycerol (18:2/20:4) (2), and 1-stearoyl-2-

arachidoniyl-GPE (18:0/20:4) are specialized forms of

phosphatidylethanolamine (PE), containing arachidonic acid,

which participate in various biological functions, including cell

membrane structure and signal transduction, and are associated

with cardiovascular diseases (40). Arachidonic acid, a type of ω-6

polyunsaturated fatty acid, has a controversial role in coronary

heart disease. High levels can promote inflammation, a critical

factor in cardiovascular diseases like atherosclerosis and

thrombosis (41). Therefore, the specific impact of

phosphatidylethanolamine (PE) on heart health, as mentioned,

will relate to its effects on membrane dynamics and cellular

signaling pathways. N-acetylasparagine, an amino acid derivative

highly expressed in breast cancer, may enhance preoperative

diagnostic efficiency by detecting specific serum metabolites (42).

Compared to other amino acids and their derivatives, N-

acetylasparagine has received less attention in mainstream

cardiovascular research. However, N-acetylation, a common form

of amino acid modification, can significantly affect protein

function and metabolism. The role of N-acetylated amino acids

in cardiovascular health might relate to their impact on protein

activity, signaling pathways, and cytoprotective mechanisms (43).

No literature reports on Octadecenedioate (C18:1-DC) have been
Frontiers in Cardiovascular Medicine 09
retrieved to date. Octadecenedioate is a monounsaturated

dicarboxylic acid, and the link between monounsaturated fatty

acids (MUFAs) and cardiovascular health remains controversial.

It is generally believed that MUFAs can improve lipid profiles,

yet prospective evidence regarding the relationship between

MUFA intake and CHD risk remains limited and controversial

(44, 45). Dicarboxylic acid is a typical byproduct of fatty

acid oxidation. Elevated levels of dicarboxylic acid may

indicate altered lipid metabolism, a recognized trigger for

atherosclerosis and CHD (46). Furthermore, dicarboxylic acid

may play an indirect role in the pathogenesis of these

conditions, with endothelial dysfunction and inflammation

being vital factors in the development of atherosclerosis and

CHD (47). Both monounsaturated fatty acids (MUFAs) and

dicarboxylic acids are related to these pathogenic processes. In

summary, while these metabolites are closely associated with

CHD, their specific effects warrant detailed exploration under

experimental conditions.

This study has notable strengths. Primarily, it stands as one of

the most extensive and systematic investigations into the causal

association between CHD and circulating metabolites, analyzing

1,400 blood metabolites. Additionally, a thorough MR analysis

was conducted to mitigate the limitations seen in prior research,

such as reverse causation and confounding factors. In particular,

diverse methods were employed to derive persuasive estimates

that address potential violations of MR assumptions. The

consistency and sensitivity analyses conducted across four MR

studies regarding the directionality affirm the stability of our

findings. Moreover, the inclusion of supplementary GWAS data

in the replication and meta-analyses provides additional evidence

supporting the robustness of our conclusions. While the

outcomes of the replication analysis are not exclusively ascribable

to differences in sample size, they reveal a directionality aligning

with the primary analysis, thus reducing the likelihood of chance

findings. Co-localization analysis was also undertaken, reinforcing

the credibility of our results. Furthermore, bidirectional MR

analysis was utilized to more thoroughly explore the causal link

between metabolites and CHD, as well as the roles of metabolic

anomalies in the pathogenesis and progression of CHD.

The primary limitation of this study is the limited number of

SNPs applied in the whole-genome exposure assessment. To

overcome this constraint, we applied a slightly relaxed threshold

for MR analysis, a common practice in analogous studies.

Importantly, all selected SNPs exhibited F-statistics exceeding 10,

indicating the robustness of our IVs. It is worth highlighting that

the Steiger test results, which support a consistent causal

direction, enhance the credibility of our approach with the

relaxed threshold. Secondly, to address racial disparities, our

MR analysis predominantly utilized GWAS data from

individuals of European ancestry. This approach raises the

question of whether our findings are applicable to other

populations, warranting further exploration and validation. A

third limitation involves the exclusion of certain key

metabolites and pathways that are not identified or annotated

in the pathway database. Therefore, these unexplored

metabolites require in-depth investigation. Furthermore,
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although MR analysis offers valuable etiological insights,

validating our findings through rigorous randomized controlled

trials and basic research before clinical application is crucial.
5 Conclusion

In summary, this MR study elucidated the causal role of eight

blood metabolites in CHD. These discoveries provide valuable

insights into CHD’s early screening, prevention, and therapeutic

strategies, as well as the design of forthcoming clinical studies.

Furthermore, this integrated MR analysis, which combines

genomics and metabolomics, serves as a guiding framework for

investigating the etiology and pathogenesis of CHD.
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