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Inflammation and dyslipidemia are critical inducing factors of atherosclerosis.
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated
transcription factors and control the expression of multiple genes that are
involved in lipid metabolism and inflammatory responses. However,
synthesized PPAR agonists exhibit contrary therapeutic effects and various side
effects in atherosclerosis therapy. Natural products are structural diversity and
have a good safety. Recent studies find that natural herbs and compounds
exhibit attractive therapeutic effects on atherosclerosis by alleviating
hyperlipidemia and inflammation through modulation of PPARs. Importantly,
the preparation of natural products generally causes significantly lower
environmental pollution compared to that of synthesized chemical
compounds. Therefore, it is interesting to discover novel PPAR modulator and
develop alternative strategies for atherosclerosis therapy based on natural
herbs and compounds. This article reviews recent findings, mainly from the
year of 2020 to present, about the roles of natural herbs and compounds in
regulation of PPARs and their therapeutic effects on atherosclerosis. This
article provides alternative strategies and theoretical basis for atherosclerosis
therapy using natural herbs and compounds by targeting PPARs, and offers
valuable information for researchers that are interested in developing novel
PPAR modulators.
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activator protein 1; Apo, apolipoprotein; ATGL, adipose triglyceride lipase; CPT, carnitine palmitoyl
transferase; CRP, C-reactive protein; CVD, cardiovascular disease; DSS, dextran sulfate sodium; FABP,
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liver disease; NF-κB, nuclear factor kappa B; PGC, peroxisome proliferator-activated receptor gamma
coactivator; PI3K, Phosphoinositide 3-kinase; PPAR, peroxisome proliferator-activated receptor; RXR,
retinoid X receptor; SREBP, sterol response element-binding protein; STAT, signal transducer and
activator of transcription; TC, total cholesterol; TCM, traditional Chinese medicine; TG, triglyceride;
TLR, toll-like receptor; TNF-α, tumor necrosis factor-alpha.
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1 Introduction

Cardiovascular disease (CVD) has become the number one

cause of human death due to changes in lifestyle, especially high-

fat and high-caloric diet, and aging of population. It is estimated

that approximately 170,000 people die from CVD each year (1).

Of note, atherosclerosis is an important cause of CVD events (2).

In the year of 2020, nearly 2 billion people suffered from carotid

atherosclerosis in the world including 270 million people in

China (3, 4). Atherosclerosis is a chronic inflammatory and

degenerative process that primarily occurs in large- and medium-

sized arteries. This disease is characterized by accumulation of

fatty and fibrous materials and calcium minerals in the intima

layer of arteries (5, 6).

Inflammation drives all phases of atherosclerosis including

initiation, metaphase, advanced phase, and rupture or

regression (6). Thus, inflammatory factors, such as C-reactive

protein (CRP), interleukin (IL)-6, and tumor necrosis factor-α

(TNF-α), are consistently elevated in atherosclerosis.

Furthermore, receptors and other molecules involved in

inflammation, such as toll-like receptor (TLR), particularly,

TLR2 and TLR4, are augmented in human atherosclerotic

plaques (7, 8). Dyslipidemia, characterized by high levels of

total cholesterol (TC) and triglyceride (TG) and low levels of

high-density lipoprotein (HDL) cholesterol (HDL-c), is equally

or even more dangerous for the onset and development of

atherosclerosis. It is acknowledged that low-density lipoprotein

(LDL) cholesterol (LDL-c) or LDL particles and

hypertriglyceridemia or TG-rich lipoproteins are leading

inducing factors of atherosclerosis (9, 10).

Peroxisome proliferator-activated receptors (PPARs) are

recognized as promoters of peroxisome proliferation more than

40 years ago (11). Due to their various functions, research on

PPARs has grown exponentially in recent years. Notably, the

distribution and function of PPARs exhibit organ- and cell-

specificity. PPARα is chiefly expressed in heart, liver, skeletal

muscle, and cardiovascular system; PPARβ/δ is widely distributed

in the body; and PPARγ is highly expressed in white adipose

tissue (12–14). The roles of PPARs in physiological and

pathological conditions have been reviewed recently by distinct

groups (14–16). Mechanistically, PPARs heterodimerize with

retinoid X receptor (RXR) and bind to specific DNA regions of

target genes (AGGTCAXAGGTCA, with X being a random

nucleotide) that are termed as peroxisome proliferator hormone

response elements. Ligand activation triggers conformational

changes of PPAR-RXR and finally activate the transcription of

target genes. Notably, PPARs regulate multiple genes associated

with cellular lipid metabolism and inflammation in

cardiovascular system (14). Downregulation of PPARα is found

to decrease hepatic de novo lipogenesis, while PPARα agonists

restore lipid homeostasis in the liver (17). Mechanistically,

PPARα induces the expression of genes involved in fatty acid

uptake, conversion, and catabolism through β-oxidation pathway,

leading to reductions in fatty acid and TG synthesis and hepatic

very low-density lipoprotein production. Similar to PPARα,

PPARβ activates carnitine palmitoyl transferase (CPT), which
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facilitates fatty acid transport across mitochondrial membrane

and the subsequent β-oxidation (18). Furthermore, PPARβ

activation enhances energy expenditure through upregulation of

heat-producing enzymes including uncoupling protein 1 and 3

in brown adipose tissue, thereby protecting against obesity and

fatty liver. On the contrary, PPARγ agonists, such as

rosiglitazone, cannot decrease TG and fatty acid levels.

Mechanistically, PPARγ increases glucose utilization, thereby

decreasing glucose–fatty acid cycle and the subsequent

upregulation of the genes involved in fatty acid synthesis and

uptake (19).

Moreover, activated PPARs can interact with other

transcription factors that are involved in inflammation, such as

activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB),

resulting in transcriptional repression (14, 20). For instance,

PPARα activation suppresses inflammatory responses in different

cells by inhibiting TLR4/NF-κB and AP-1 signaling pathways

(14, 17–22). PPARβ is demonstrated to decrease inflammation

via activation of AMP-activated protein kinase (AMPK) and

inactivation of mitogen-activated protein kinase (MAPK)

signaling pathways. However, deletion or repression of PPARβ

expression in myeloid cells also decreases atherosclerosis and

inflammatory molecules by modulating the PPARβ/B cell

lymphoma 6 axis (14, 23). Moreover, PPARγ activation has been

demonstrated to inhibit release of inflammatory factors via

activating AMPK and suppressing multiple signaling pathways

including TLR4, MAPK, and WNT/β-catenin (14). Therefore,

PPARs are considered as important targets for CVD therapy and

other diseases.

In a previous article, we reviewed PPARs’ regulation and

their roles in atherosclerosis as well as synthesized PPAR

agonists and antagonists (14). Although synthetic PPAR

modulators exhibit attractive potential in atherosclerosis

therapy, these compounds induce various side effects and show

contrary therapeutic effects in different participants and animal

models. Notably, phytochemical compounds show therapeutic

effects in different diseases by modulation of PPARs (24, 25),

and they are considered as preventive agents for metabolic

syndrome including nonalcoholic fatty liver disease (NAFLD)

by targeting PPARs (26, 27). Given multiple diseases,

particularly NAFLD, diabetes, obesity, and fibrosis, are closely

associated with the onset and development of atherosclerosis

(28–32), compounds with the activities of ameliorating the

above diseases are useful for atherosclerosis therapy.

Importantly, the majority of natural products exhibit good

therapeutic efficacy and safety compared to synthetic

medications (15, 33). These properties suggest that natural

products are potential candidate molecules for atherosclerosis

therapy. This article reviews the roles of natural herbs and

compounds in treatment of atherosclerosis through activation

of PPARs by focusing on lipid metabolism and inflammation.

Recent literatures, mainly from 2020 to present, published in

PubMed, Web of Science, and Google Scholar were screened

out using traditional Chinese medicine (TCM), flavonoid, acid,

alkaloid, terpenoid, phenolic compound, and carbohydrate in

combination with PPAR as key words.
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2 TCM in regulation of PPARs

2.1 TCM prescription and lipid metabolism

TCMs have been used for treatment of metabolic disorders and

CVDs for hundreds of years. Recent studies have demonstrated

that TCMs ameliorate hyperlipidemia and atherosclerosis through

modulation of PPARs (Figure 1). Huo-Xue-Qu-Yu formula

(HXQY, 活血祛瘀方) ameliorates lipid profiles including

apolipoprotein (Apo) B and ApoA1 in rats with NAFLD via

upregulating the expression of PPARα and CPT-1 in the liver,

thereby improving symptoms of NAFLD (34). Similarly, heart-

protecting musk pill (麝香护心丸) is found to attenuate
FIGURE 1

Mechanisms of action of TCM prescriptions and natural bioactive molecules
receptors (PPARs). TCM prescriptions and natural bioactive molecules in
compounds mainly decreases lipid accumulation by activating AMP-acti
including PPARα/carnitine palmitoyl transferase (CPT)-1 and acyl-CoA oxida
receptor (LXR) α/ATP-binding cassette transporter (ABC) A1/ABCG1-mediat
high-density lipoprotein (HDL) particles, thereby decreasing foam cell form
decrease cluster of differentiation (CD) 36-mediated lipid absorption via su
Notably, TCM prescriptions and natural molecules primarily ameliorate in
nuclear factor kappa B (NK-κB) and phosphoinositide-3 kinase (PI3K)/prot
PPARγ. Furthermore, these natural compounds can inhibit Toll-like recep
pathway and promote macrophage shift to an anti-inflammatory M2 type t
PPARγ coactivator (PGC)-1β–estrogen related receptor α to activate PPAR
signaling pathway to upregulate PPARα in the liver. Except for NF-κB, n
modulatory effects of PPARs on anti-inflammation. These beneficial effect
IKK: inhibitor of nuclear factor κB kinase subunit; IL: interleukin; TNF-α: tum
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atherosclerosis partially via activating PPARα/CPT-1α signaling

pathway in ApoE-deficient mice (35). TCM believes that “phlegm

stasis interjunction (痰瘀互结)” is an important inducing factor

in the occurrence and development of atherosclerosis. Dan-Lou

prescription (丹蒌方) has been demonstrated to reduce phlegm,

repair diseased blood vessels, and eliminate hyperlipidemia, thus

ameliorating atherosclerosis. Notably, this prescription enhances

cholesterol efflux by activating PPARα/ATP-binding cassette

transporter (ABC) A1 signaling pathway (36).

In addition to activating PPARα signaling, many TCM

prescriptions stimulate PPARγ–liver X receptor (LXR)

α–ABCA1/ABCG1 signaling pathways, thereby ameliorating lipid

profiles and atherosclerosis through upregulation of reverse
in atherosclerosis therapy by targeting peroxisome proliferator-activated
cluding flavonoids, natural acids, alkaloids, terpenoids, and phenolic
vated protein kinase (AMPK) and the subsequent signaling pathways
se 1 (ACOX1)-mediated fatty acid β-oxidation in liver and PPARγ/liver X
ed cholesterol efflux from macrophages to apolipoprotein (Apo) A1 and
ation. Moreover, some TCM prescriptions and natural molecules may
ppressing PPARγ, thereby reducing lipid accumulation in macrophages.
flammation by suppressing mitogen-activated protein kinase (MAPK)/
ein kinase B (AKT/PKB)/NK-κB signaling pathways through activation of
tor (TLR)4/myeloid differentiation factor 88 (MyD88)/NF-κB signaling
hrough activation of PPARα. Notably, natural compounds may stimulate
β/PPARγ signaling pathways and enhance protein kinase A (PKA)/AMPK
uclear transcription factor activator protein 1 (AP-1) is involved in the
s of TCMs are supposed to retard the development of atherosclerosis.
or necrosis factor α.
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cholesterol transport (RCT). Qi-Huang-Zhu-Yu Formula (QHZY,

岐黄茱萸方) enhances cholesterol efflux by activating PPARγ–

LXRα–ABCA1/ABCG1 signaling pathways (37). Notably, Qing-

Xue-Xiao-Zhi formula (QXXZ, 清血消脂方), Si-Ni decoction

(四逆汤), Qi-Shen-Yi-Qi Pill (芪参益气丸), and Yin-Xing-Tong-

Mai decoction (银杏通脉汤) have been demonstrated to

attenuate hyperlipidemia and atherosclerosis by facilitating

RCT through upregulation of PPARγ–LXRα–ABCA1/ABCG1

signaling pathways (38–41). Moreover, Dang-Gui-Shao-Yao-San

(当归芍药散), a well-known Chinese medicine formula, improves

lipid metabolism and inhibits neuroinflammation by activating

LXR–PPARγ signaling pathway (42). However, Hua-Tan-Jiang-

Zhuo decoction (化痰降浊汤) alleviates TC and TG levels

mainly by inhibiting the gene expression of PPARγ, cholesterol

7-α-hydroxylase A1, and sterol response element-binding protein

(SREBP)-1c in hyperlipidemic rats (43).
2.2 TCM prescription and inflammation

TCMs also suppress inflammation by modulating PPAR

signaling pathways (Figure 1). Shen-Tong-Zhu-Yu decoction

(参通逐瘀汤) reduces secretion of pro-inflammatory

cytokines, such as IL-1β, IL-6, and TNF-α in rheumatoid

arthritis fibroblast-like synoviocytes. Mechanistically, this

decoction inhibits phosphorylation of p38 MAPK and activates

PPARγ, thereby modulating the p38-MAPK/PPARγ signaling

pathway (44). Shen-Hong-Tong-Luo Formula (参红通络方)

has been used in clinic for more than 30 years in China. This

formula inhibits reactive oxygen species (ROS) accumulation

and reverses lipopolysaccharide (LPS)- and oxidized LDL-

induced inflammation and lipid accumulation in macrophages

by activating PPARγ/LXRα/ABCA1 pathway (45). Schisandra

sphenanthera improves liver steatosis and inflammation via

activating PPARα/γ signaling in C57BL/6J mice with NAFLD

(46). Compound Dan-Shen Dripping Pill (CDDP, 复方丹参滴

丸) or QHZY alleviates inflammation via modulating PPARγ/

NF-κB p65 signaling pathway (37, 47). The major anti-

atherosclerotic components of Compound Dan-Shen formula

are ginsenoside Rg1, notoginsenoside R1, and protocatechuic

aldehyde; these molecules inhibit endothelial cell damage via

suppressing focal adhesion kinase (FAK)-phosphatidylinositol

3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling

pathway (48). In ApoE-deficient mice, QXXZ inhibits

inflammation by suppressing TLR4-myeloid differentiation

factor 88 (MyD88)-NF-κB signaling pathway (38). Notably,

Bu-Shen-Kang-Shuai formula and Tan-Yu-Tong-Zhi formula

ameliorate atherosclerosis potentially via promoting

macrophage polarization towards an M2 phenotype

through activation of PPARγ and downregulation of NK-κB

(49, 50). However, Gynostemma pentaphyllum, a TCM that is

generally used to treat hypercholesterolemia and inflammation,

has been demonstrated to reduce obesity and obesity-

related inflammation by down-regulating PPARγ signaling

pathway (51).
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3 Natural compounds in regulation
of PPARs

3.1 Flavonoids in regulation of PPARs

Plants-derived flavonoids have been demonstrated to improve

lipid metabolism and inflammation by modulating PPAR

signaling pathways (Figures 1, 2). These natural flavonoids

provide a new therapeutic direction for treatment of

atherosclerosis. The anti-inflammatory and anti-allergic potential

as well as the basic structure of some dietary flavonoids have

been reviewed recently by Rakha et al. (52). Moreover, the CVD-

protecting effects of myricetin have been summarized in the

literature (53).
3.1.1 Flavonoids and lipid metabolism
Citrus flavonoids play an important role in treatment of

dyslipidemia and atherosclerosis. The roles of Citrus fruits-

derived compounds in modulation of metabolic diseases have

been reviewed recently by Aslan et al. (54). Nobiletin is an active

component of citrus peel. This molecule increases the expression

of PPARγ but not PPARα. Furthermore, it activates AMPK, thus

promoting the expression of ABC transporters including ABCA1

and ABCG1. Notably, the LXRα–PPARγ loop amplifies its action

(55). Rosa rugosa Thunb- and Rosa davurica Pall. fruits-derived

flavonoids upregulate the expression of PPARα and its

downstream genes that are involved in lipid metabolism (56, 57).

Genestein improves lipid metabolism by upregulating PPARα

and activating estrogen receptor β-AKT-mammalian target of

rapamycin (mTOR) signaling pathway (58). Hesperidin decreases

TG levels by enhancing PPARα and suppressing PPARγ and

other lipogenic genes including SREBP-1, fatty acid synthesis

(FAS), and stearoyl-CoA desaturase; it reduces TC by

suppressing cholesterol absorption through downregulation of

fatty acid binding protein (FABP) and retinol binding protein (59).

Flavonoids are found to improve RCT by activating PPARγ/

PPARα–ABC transporter pathway. For example, sea buckthorn

flavonoids improve hyperlipidemia by up-regulating PPARα/

CPT-1α and PPARγ/ABCA1 signaling pathways (53). Total

flavonoid extract obtained from Psoralea corylifolia L. seeds

alleviates oxidized-LDL-induced foam cell formation via

enhancing PPARγ–ABCA1/ABCG1 signaling pathways in vitro

and in LDLR-deficient mice (60). In line with these findings,

other compounds including mangiferin, quercetin, astragalin, and

biochanin A have been demonstrated to ameliorate atherosclerosis

via enhancing macrophage cholesterol efflux and RCT through

activation of the PPARγ–LXRα–ABCA1/ABCG1 signaling

pathways (61–66). Similarly, S. baicalensis-derived flavonoids and

baicalein regulates glucose and lipid homeostasis through

upregulation of AMPK/PPARγ/LXRα signaling pathway (67, 68).

Homoeriodictyol and hesperidin-7-O-β-D-glucopyranoside are

found to significantly increase the level of PPARγ protein,

providing new candidates for treatment of atherosclerosis (69).

Interestingly, amentoflavone prevents oxidized-LDL-induced lipid

accumulation by suppressing PPARγ/cluster of differentiation
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FIGURE 2

Chemical structures of some bioactive flavonoids with potential anti-atherosclerotic effects.
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(CD) 36-mediated lipid uptake (70). It is worth noting that several

flavonoids exhibit powerful lipid-lowering effects in clinical studies

as reviewed recently Gouveia et al. (71).

3.1.2 Flavonoids and inflammation
Accumulating evidence have demonstrated that some

flavonoids reduce inflammation by regulating PPAR signaling

pathway (Figure 1). Formononetin, an Astragalus-derived

isoflavone, inhibits inflammation by reducing the release of

proinflammatory cytokines (72). Furthermore, it reduces

oxidized-LDL-induced endothelial injury by stimulating PPARγ

signaling pathway, contributing to its anti-atherosclerotic effects

(9). Biochanin A activates PPARγ/LXRα/ABC transporter and

PPARγ/heme oxygenase 1 signaling pathways to suppress

hyperlipidemia-induced inflammation in ApoE-deficient mice

(65). Similarly, astragalin stimulates PPARγ–LXRα–ABCA1/

ABCG1 signaling pathways, which in turn suppress TLR4/NF-κB

signaling pathway, thereby inhibiting inflammation in foam cells

(64). Propolis-derived flavonoids reduce inflammatory cytokines

and endoplasmic reticulum (ER) stress by activating PPARγ in a

myocardial infarction model (73). Saikosaponin A and

anthocyanins decrease the release of pro-inflammatory cytokines

by activating PPARγ, thereby suppressing the NF-κB signaling

pathway (74, 75). However, genistein reverses Ang II-induced

downregulation of PPARγ to inhibit the expression of CRP and

matrix metalloproteinase 9 in vascular smooth muscle cells

(VSMCs), thereby reducing inflammatory responses in

atherosclerosis (76).
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3.2 Natural acids in regulation of PPARs

3.2.1 Natural acids and lipid metabolism
The structure of some bioactive natural acids and their

mechanisms of action are shown in Figures 1, 3. The widely

distributed chlorogenic acid and caffeine acid are demonstrated

to benefit health and cardiovascular system (77). The anti-obesity

properties of chlorogenic acid have been recently reviewed by

Kumar et al. (78). Notably, chlorogenic acid and caffeine acid

may act synergistically on reducing lipid deposition in

macrophages via inhibiting PPARγ signaling pathway (77).

Furthermore, 5-aminolevulinic acid-mediated sonodynamic

therapy improves cholesterol efflux via activating PPARγ–LXRα–

ABCA1/ABCG1 signaling pathways, enhancing efferocytosis and

cholesterol efflux, and eventually ameliorating atherosclerosis (79).

Oleic acid prevents intracellular lipid accumulation in human

macrophages through modulation of PPARs and down-regulation

of ApoB48 receptor, suggesting the role of monounsaturated fatty

acid in regulation of postprandial TG-rich lipoprotein/ApoB48

receptor axis (80). Dodecahexaenoic acid (DHA) ameliorates

postprandial hyperlipidemia potentially by upregulating PPARα

and the genes involved in fatty acid β-oxidation and down-

regulating TG and ApoB secretion (81). Furthermore, ω-3

polyunsaturated fatty acids (PUFAs) attenuate hepatic steatosis

through upregulation of PPARα/CPT-1α signaling pathway (82).

Supplement of DHA-rich fish oil increases PPARγ activity in

peripheral blood mononuclear cells of the participants (83).

However, administration of DHA rapidly increases the production
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1372055
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 3

The structure of some bioactive acids with potential anti-atherosclerotic effects.
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of cyclic adenosine monophosphate inside cilia, and finally activates

PPARγ to initiate adipogenesis in preadipocytes (84).

Hydroxypentaenoic acid reduces LDL-c levels and increases

HDL-c levels in atherosclerotic animal models, leading to

reductions in aortic atherosclerotic plaques (85–87).

Mechanistically, this molecule acts as a PPAR ligand and elevates

LXRs–ABCA1/ABCG1 signaling pathways (85, 88). Similarly,

12-Hydroxyeicosapentaenoic acid reduces foam cell formation

and atherosclerosis via activation of PPARγ–ABCA1/ABCG1

signaling pathways (89, 90). 8-hydroxyeicosapentaenoic acid is a

pan PPAR activator and has beneficial effects against dyslipidemia

and atherosclerosis (86). However, medium-chain structured lipids

ameliorate high-fat diet-induced atherosclerosis potentially by

reducing the expression of PPARγ (91). It seems that carbon

number of fatty acids plays a role in regulation of PPARγ.
3.2.2 Natural acids and inflammation
Notably, arachidonic acid acts as an activator of PPARα

(92) and has a therapeutic effect on atherosclerosis (93). Taurine

is one of the most abundant arachidonic acid in animals.

It counteracts chronic inflammation in adipose tissues

potentially via promoting macrophage polarization toward

an anti-inflammatory M2 phenotype (94). Similarly,

12-Hydroxyeicosapentaenoic acid promotes macrophage shift

towards an anti-inflammatory M2 phenotype (90, 95), thereby

inhibiting atherosclerosis (96). β-aminoisobutyric acid protects

against vascular inflammation via upregulating PPARγ

coactivator (PGC)-1β–estrogen related receptor α–PPARβ/

PPARγ signaling pathways (97). As reviewed recently, amino

acid derivatives may alleviate inflammation and improve

energy expenditure and obesity by targeting PPARs (98).
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Furthermore, PUFAs are involved in resolution of

inflammation (99, 100). Dietary ω-3 and ω-6 PUFAs

upregulate gene expression of PPARs, thereby suppressing

inflammation and lipid accumulation (101). For instance, both

PPARγ and PPARα can be activated by ω-3 PUFAs (102).

Unfortunately, ω-3 PUFAs show limited effects on CVD

events in clinical trials (9).
3.3 Alkaloids in regulation of PPARs

3.3.1 Alkaloids and lipid metabolism
Some natural alkaloids and their derivatives are reported to be

PPAR modulators (Figures 1, 4). For instance, (S)-tryptophan-

betaxanthin and berberrubine are demonstrated to be leading

compounds of pan PPAR activators based on a screening of

30,000 TCM candidates (103). Berberine, an isoquinoline

alkaloid, has been used for treatment of CVDs as reviewed

recently by Song et al. (104). In diabetic atherosclerosis,

berberine stimulates Krüppel-like factor 16/PPARα signaling

pathway, thereby improving lipid metabolism (105). In adipose

tissue, berberine activates AMPK/Sirtuin 1 axis, an energy

metabolic sensing pathway, increasing PPARγ deacetylation,

thereby promoting adipose tissue remodeling and thermogenesis

through upregulation of uncoupling protein 1 (106). In liver,

berberine treatment increases lipid oxidation by upregulating

PPARα and its downstream genes including CPT-1α and acyl-

CoA oxidase 1 (ACOX1) (107). In vitro, berberine and its major

metabolite berberrubine attenuate lipid accumulation in HepG2

cells via upregulating PPARα signaling pathway (108). Similarly,

the protective effect of theobromine against NAFLD is partially

attributed to its upregulation of PPARα and CPT-1α (109).
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FIGURE 4

Structure of some bioactive alkaloids with potential anti-atherosclerotic effects.
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Furthermore, nuciferine improves hepatic steatosis by activating

PPARα/PGC-1α pathway in diabetic mice (110). Betaine

attenuates hyperlipidemia by activating PPARα and PPARγ and

their downstream gene LXRα (111). Hericerin, an indolinone

meroterpenoid alkaloid, has been defined as a strong PPARγ

agonist with potential hypoglycemic and hypolipidemic effects

(112). Coffee-derived trigonelline, an alkaloid derivative of niacin

(vitamin B3), alleviates hyperlipidemia by increasing PPARα and

decreasing PPARγ expression (113). Additionally, capsaicin may

suppress obesity by suppressing PPARγ signaling pathway (42, 114).
3.3.2 Alkaloids and inflammation
Berberine treatment suppresses systemic inflammation by

reducing the production of inflammatory factors including TNF-

α and LPS through activation of PPARα and its potential target

thyroid hormone responsive (107). The anti-inflammatory

mechanisms of betaine are associated with inhibition of TLR4/

NF-κB signaling pathway and regulation of PPARs (115).

Furthermore, betaine alleviates high-fat diet-induced

inflammation by modulating silent information regulator 1/

SREBP1/PPARα signaling pathway, thereby suppressing the

expression of NF-κB (116). Capsaicin inhibits oxidized-LDL-

induced ROS generation and VSMC phenotypic switching by

activating PPARα (117), and ameliorates diabetic retinopathy by

suppressing PPARγ–poldip2–NADPH oxidase 4 signaling

pathway (118). Interestingly, the anti-inflammatory effect of

capsaicin is LXRα–PPARγ dependent (119). Moreover, trigonelline

exhibits antioxidant and anti-inflammatory effects partially by

activation of PPARα (113, 120), piperine inhibits cardiac fibrosis

via activating PPARγ and the following inhibition of AKT/
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glycogen synthase 3β signaling pathway (121), and nuciferine

suppresses myocardial injury by upregulating PPARγ in mice (122).
3.4 Terpenoids in regulation of PPARs

3.4.1 Terpenoids and lipid metabolism
Terpenoids are found to ameliorate hyperlipidemia by

targeting PPARs (Figures 1, 5). Eugenol, a phenolic

monoterpenoid, increases the expression of PPARα, partially

contributing to its hypolipidemic and antioxidant properties in

diabetic rats (123). Sweroside protects against obesity mainly by

enhancing PPARα (124). Ginsenoside Rg1, baicalin, and Resina

Commiphora-derived terpenoids also improve lipid metabolism

and atherosclerosis through upregulation of PPARα and its target

genes including CPT-1 and ACOX1 (125–127). Saikosaponin D

and diosgenin serve as PPARα agonists, promoting PPARα-

mediated fatty acid oxidation and inhibiting CD36-mediated fatty

acid uptake and SREBP-1c-mediated de novo lipogenesis

(128, 129). Oleanolic acid, a pentacyclic triterpenoid, and (E)-β-

caryophyllene, a bicyclic sesquiterpene hydrocarbon, act as dual

activator of PPARα and PPARγ, decreasing hyperglycemia and

lipid accumulation (130, 131). Furthermore, Saikosaponin A and

ginsenoside 20(R/S)-Rg3 act as natural PPARγ activators,

ameliorating hyperlipidemia and atherosclerosis (72, 132).

However, ginsenoside Rg1 inhibits lipid uptake via

downregulation of PPARγ (125), Ganoderic acid A suppresses

oxidized-LDL-induced lipid accumulation in THP-1-derived

macrophages by inhibiting Notch1-PPARγ-CD36 signaling

pathway (111), and D-limonene, decreases lipid anabolism by

decreasing the expression of PPARγ and SREBP-1c, and
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FIGURE 5

Structure of some bioactive terpenoids with potential anti-atherosclerotic effects.
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activating the AMPK signaling pathway in high-calorie diet-

induced obese rats (133).

Sea cucumber saponins reduce lipogenesis and promote fatty

acid β-oxidation via inhibiting SREBP-1c and enhancing the

expression of PPARα and ACOX1, respectively, thereby

improving lipid deposition in rodents (134–137). In combination

with eicosapentaenoic acid-enriched phospholipids, sea cucumber

saponins further reduce hepatic TG partially by enhancing the

expression of PPARα as reviewed by Lin et al. (137).

Interestingly, sea cucumber saponin treatment induces changes of

lipid metabolism-related genes including PPARα in rhythm,

suggesting saponin may modulate lipid metabolism by regulating

the clock genes, such as CLOCK and BMAL1 (137, 138). The

major bioactive component of saponin, echinoside A, also

regulates the expression of some key genes that are involved in lipid

metabolism in a diurnal manner (139). The marine-derived PPAR

activators have been reviewed recently by D’Aniello et al. (140).

3.4.2 Terpenoids and inflammation
PPARγ plays a vital role in anti-inflammatory mechanisms of

action of terpenoids (Figure 1). Saponin notoginsenoside Fc

ameliorates inflammatory response in high glucose-induced

endothelial cell injury partly by activation of PPARγ (141).

Stevioside attenuates inflammation by upregulating PPARγ,

thereby activating PI3K/AKT signaling pathway in a middle

cerebral artery occlusion/reperfusion rat model (142).

Ginsenoside Rg3 represses FAK-mediated expression of vascular

cell adhesion molecule (VCAM)-1 and intercellular cell adhesion
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molecule (ICAM)-1 through activation of PPARγ (143).

Saikosaponin A or britannin decreases inflammation potentially

by activating PPARγ, thereby downregulating NF-κB signaling

pathway (74, 144). Furthermore, lycopene, β-carotene, and

oridonin may act as PPARγ modulators (145, 146). Interestingly,

geraniol, an acyclic mono-terpenoid alcohol, decreases LPS/

interferon γ-induced NLRP3 inflammasome activation and

macrophage M1-type polarization through inhibiting PPARγ

methylation (147). However, Akebia saponin D is reported to

ameliorate high-fat diet-induced gut barrier injury via repressing

PPARγ-FABP4 signaling pathway (110). Additionally, β-elemene

augments the mRNA expression of PPARβ and CPT-1α and sirtuin

3, thereby blocking lipid-induced inflammatory pathways (148).
3.5 Phenolic compounds in regulation of
PPARs

3.5.1 Phenolic compounds and lipid metabolism
Phenolic compounds are widely distributed bioactive

compounds, they are found to exert lipid-modulatory and anti-

inflammatory functions by regulating PPARs (Figures 1, 6).

Resveratrol ameliorates hepatocyte steatosis via activating protein

kinase A/AMPK/PPARα signaling pathway (149). It abolishes

intestinal fatty acid and monoglyceride accumulation via

activation of PPARα/PPARγ and their downstream ABCA1 and

ABCG1 transporters in atherosclerotic mice (150). Furthermore,

it is found to promote fatty acid β-oxidation by enhancing
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FIGURE 6

Structure of some bioactive phenolic compounds with potential anti-atherosclerotic effects.
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MAPK/PPAR signaling pathway (151). Polydatin, the glucoside of

resveratrol, activates PPARβ signaling pathway to improve lipid

metabolism (152). Raspberry ketone increases phosphorylation of

AMPK to improve fatty acid oxidation through upregulation of

PPARα and CPT-1 (153).

Ellagic acid has anti-atherogenic and cardioprotective

properties, suggesting its role in atherosclerosis therapy (154).

Mechanistically, ellagic acid regulates the genes that are mainly

correlated with PPAR signaling pathway, thereby ameliorating

lipid metabolism (155). Hydroxytyrosol, a polyphenol, decreases

the expression of FAS, SREBP-1c, and PPARγ, ameliorating TC

and TG levels and hepatic steatosis in ethanol-induced HepG2

cells (156). In addition, methyl brevifolincarboxylate, a

polyphenolic compound, improves hepatic lipid accumulation

through upregulation of AMPKα/PPARα signaling pathway and

the target genes of PPARα including CPT-1 and ACOX1 in free

fatty acid-treated hepatocytes (157). Sesamol, a phenolic

compound derived from sesame oil, activates PPAR signaling

pathway, leading to enhanced fatty acid oxidation, cholesterol

efflux, and catabolism, thus accelerating lipid consumption and

reducing intracellular lipid accumulation in HepG2 cells (158).

3.5.2 Phenolic compounds and inflammation
Proanthocyanidin A2 and ellagic acid exhibit anti-

inflammatory properties potentially by upregulating PPARγ

signaling pathway (159, 160). Cannabidiol, a nonpsychoactive

cannabinoid, inhibits inflammation through downregulation of

TLR4/NLRP3/Caspase-1 signaling pathway in a PPARγ-

dependent manner in Caco-2 cells (161). Furthermore,

cannabidiol might exert anti-inflammatory effects by either

directly or indirectly modulating PPARγ/NF-κB/nuclear factor
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erythroid 2-related factor 2 signaling in urothelial cells (162).

Honokiol dramatically reduces production of proinflammatory

cytokines in mice with ulcerative colitis that is induced by

dextran sulfate sodium (DSS) partially via upregulating PPARγ

and suppressing TLR4/NF-κB signaling pathway (163). The

activation of PPARγ by honokiol is also associated with its

effects on preventing against hyperglycemia and CVD (20).

Furthermore, resveratrol suppresses hepatic inflammation via

activation of PPARγ and downregulation of ER stress-mediated

apoptosis (164). Forsythiaside A regulates PPARγ/RXR-α

complex, inhibiting TLR4/MAPK/NF-κB and NF-κB/MLCK/

MLC2 signal pathways, thus suppressing LPS-induced

inflammation and epithelial barrier damages. However,

forsythiaside A enhances the expression of PPARγ/RXR-α

complex in lung and inhibits this complex in colon, suggesting

its cellular-specific effects (165). Additionally, proanthocyanidin

alleviates liver ischemia/reperfusion injury by suppressing

autophagy and apoptosis through regulation of PPARα/PGC-1α

signaling pathway (166). Mechanisms of action of phenolic

compounds in regulation of inflammation is concluded in Figure 1.
3.6 Carbohydrates in regulation of PPARs

Polysaccharides are a kind of carbohydrate polymers that are

generally consisted of more than ten monosaccharides through

glycosidic linkages in linear or branched chains. Given

polysaccharides generally have low toxicity and various biological

activities, such as antioxidant, anti-inflammatory, and anti-

atherosclerosis, some polysaccharides have been used in medical

and biochemical areas as reviewed by different groups (137, 167–
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FIGURE 7

Mechanisms of action of carbohydrates in atherosclerosis therapy. Carbohydrates prevent against lipid accumulation by enhancing PPARα/PPARγ–
liver X receptor (LXR)–ABC transporter and PPARα–mediated fatty acid β-oxidation. Alternatively, some polysaccharides alleviate lipid accumulation
by suppressing fatty acid synthesis-related genes including PPARγ, fatty acid synthase, and sterol response element-binding protein (SREBP)-1c
potentially through up-regulation of AMP-activated protein kinase (AMPK) in the liver. Furthermore, they inhibit phosphoinositide-3 kinase (PI3K)/
protein kinase B (AKT/PKB)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NK-κB)
signaling pathways to suppress inflammation. In the small intestine, carbohydrates decrease cholesterol absorption and increase cholesterol
excretion by decreasing the level of Niemann-Pick C1-like 1 protein and enhancing the LXR/ABCG5/8 signaling pathway, respectively. Moreover,
carbohydrates suppress inflammation by inhibiting Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88)/NF-κB and modulating
PPARγ/NK-κB signaling pathway.
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169). Notably, carbohydrates are found to exert their function via

activating PPAR signaling pathways (Figure 7).
3.6.1 Carbohydrates and lipid metabolism
Different groups have demonstrated that brown seaweed

fucoidans attenuate hyperlipidemia and atherosclerosis by

modulating PPARs in different animal models (170). For

instance, Kjellmaniella crassifolia-derived fucoidan ameliorates

hyperlipidemia by improving PPARα-mediated fatty acid

β-oxidation in Wistar rats (171). Similarly, Saccharina sculpera-

derived fucoidans improve hyperlipidemia potentially by

enhancing the gene expression of PPARα and PPARγ in Wistar

rats (172). Cladosiphon okamuranus-derived fucoidan improves

hyperlipidemia and atherosclerosis partially by elevating the

expression of PPARα and inhibiting SREBP-1 (173). Except for

PPARα, PPARγ activation also stimulates LXR/ABC transporter

signaling pathways, thereby accelerating lipid transport and

excretion (14). However, Ascophyllum nodosum-derived fucoidan

is found to inhibit the expression of PPARγ and elevate the
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expression of PPARα, thereby attenuating hyperlipidemia and

atherosclerosis in ApoE-deficient mice (174).

Besides brown seaweeds, sea cucumber-derived polysaccharides

improve lipid metabolism in different models (137). For instance,

Isostihopus badionotus-derived fucosylated chondroitin sulfate

(4,300 Da) exhibits a hypolipidemic effect in mice partially by

down-regulating the expression of FAS and PPARγ (175).

Acaudina molpadioides-derived fucoidan inhibits adipocyte

proliferation and differentiation via enhancing Wnt/β-Catenin

signaling pathway and suppressing the expression of SREBP-1c

and PPARγ (176, 177). Glycosaminoglycans isolated from sea

cucumber Holothuria leucospilota are found to ameliorate

hyperlipidemia in male BALB/c mice by improving the

expression of PPARα and ameliorating gut microbiota (137, 178).

Polysaccharides isolated from plants and fungi also exhibit

powerful lipid-lowering effects as reviewed recently by distinct

groups (179, 180). Cyclocarya paliurus-, Saussurea involucrata-,

Astragalus membranaceus-, and Cordyceps militaris-derived

polysaccharides exert therapeutic effects in hyperlipidemic rats

partially via upregulating PPARα/CPT signaling pathway
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(181–184). A water-soluble polysaccharide from Morchella

esculenta alleviates obesity and liver injury mainly by restoring

Firmicutes/Bacteroidetes ratio and increasing SCFA production.

However, it decreases hepatic gene expression including PPARα

and PPARγ (185). Similarly, Liriope spicata var. prolifera- and

Platycodon grandiflorus-derived polysaccharides exhibit strong

lipid-lowering and hepatoprotective effects potentially by

downregulating the expressions of PPARγ in vivo (186).

Interestingly, P. grandiflorus-derived polysaccharides may control

PPAR signaling by increasing the production of SCFAs including

acetate, propionate, and butyrate in the gut through upregulation

of SCFAs-producing gut bacteria (187). Similarly, Pueraria

lobata- and Pueraria thomsonii-derived polysaccharides show

therapeutic effects in type 2 diabetes mellitus through regulation

of PPAR signaling pathway. Mechanistically, P. lobata-derived

polysaccharides increase the abundance of Romboutsia bacteria to

reduce serum concentration of taurocholic acid, thereby

regulating the PPAR signaling pathway, such as inhibiting

PPARγ. P. thomsonii-derived polysaccharides reduce the

abundance of Klebsiella bacteria to decrease the serum levels of

uric acid, thereby regulating PPAR signaling pathway to exert a

therapeutic effect on insulin resistance (188). Lycium barbarum

polysaccharide and Astragalus polysaccharide ameliorate lipid

disorders by decreasing the gene expression of PPARγ, CD36,

and FAS, and ameliorating gut microbiota (189, 190). Moreover,

C. militaris-derived polysaccharide CM3-SII is demonstrated to

inhibit the level of Niemann-Pick C1-like 1 protein, suggesting

this polysaccharide may decrease cholesterol absorption (184).

Except for polysaccharide, monosaccharide and

oligosaccharide have been demonstrated to modulate lipid

metabolism by targeting PPARs. For instance, D-psicose regulates

lipid metabolism via stimulating AMPK2α/PPARα signaling in

rats (191). D-mannose promotes fatty acid oxidation via

enhancing PPARα (192). Our group demonstrates that

N-acetylneuraminic acid reduces TC and particularly TG

partially by enhancing PPARα in ApoE-deficient mice (193, 194).

Aging enhances the expression of SREBP-1c and decreases the

expression of PPARα. Interestingly, oral intake of trehalose

reverses these changes in aged liver, suggesting trehalose

decreases lipogenesis and boosts fatty acid β-oxidation (195).

Fructose is considered as a lipogenic nutrient. It suppresses

transcriptional activity of PPARα and its target gene CPT-1α,

potentially via modulating PGC-1α acetylation and CPT-1α

acetylation (196).

3.6.2 Carbohydrates and inflammation
In a comparative study, fucoidans obtained from Undaria

pinnatifida, F. vesiculosus, Macrocystis pyrifera, A. nodosum, and

Laminaria japonica reduce production of pro-inflammatory

cytokines in a dose-dependent manner in LPS-induced cells

(197). Mechanistically, fucoidans suppress MAPK/NF-κB, Janus

kinase/signal transducer and activator of transcription-1/3, and

TLR/MyD88/NF-κB signaling pathways (198). Furthermore, sea

cucumber Apostichopus japonicus-derived fucoidan decreases

LPS-induced inflammation by suppressing phosphorylation of

p38-MAPK and the downstream NF-κB and AKT/mTOR
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pathway (176). Moreover, Sargassum horneri-derived fucoidan is

found to suppress inflammation by inhibiting phosphorylation of

p38-MAPK, c-Jun amino-terminal kinases (JNK), and

extracellular signal-regulated kinase (ERK) (199). As PPAR

activation modulates inflammation-related signaling pathway

(14), fucoidans may suppress inflammation partially by

regulating the expression of PPARs as mentioned above.

Notably, L. japonica-derived fucoidan decreases intestinal

inflammation potentially by upregulating PPARα and improving

gut microbiota (200), S. involucrata polysaccharide alleviates

ultraviolet radiation-induced inflammatory responses by activating

PPARα (183). Furthermore, L. barbarum polysaccharide inhibits

LPS-induced inflammation by upregulating PPARγ and

suppressing phosphorylation of p38-MAPK, JNK, and ERK,

suggesting this polysaccharide alleviating inflammatory reactions

through modulation of PPARγ/MAPK/NF-κB signaling pathway

(201). Similarly, Moringa oleifera leaf polysaccharide ameliorates

DSS-induced colitis by enhancing PPARγ and decreasing

TLR/MyD88/NF-κB signaling pathway (202). Interestingly,

polysaccharides may suppress hyperlipidemia-induced inflammation

by decreasing PPARγ in hyperlipidemic animals. For instance,

Tibetan burnip polysaccharide reduces the expression of ICAM-1,

VCAM-1, IL-6, IL-1β, and TNF-α partially by downregulating

PPARγ in hyperlipidemic rats (203). Moreover, intake of low dose

sucrose (7.5 mg/ml) is found to activate PPARγ via restoring

microbial dysfunction and upregulating SCFAs levels, thereby

suppressing MAPK/NF-κB signaling pathway, while high dose

sucrose (30 mg/ml) exacerbates DSS-induced colitis (204).

Additionally, Astragalus polysaccharide inhibits protein kinase A/

p38 MAPK signaling pathway and the expression of PPARγ and

PGC-1α, suppressing inflammation in heart failure rats (190). These

data suggest that polysaccharides may control inflammatory

response by differently regulating the expression of PPARγ based on

the actual situation. Given polysaccharides with big molecular

weight and great hydrophilic property are hard to be absorbed,

their microbiota-derived metabolites including SCFAs may play a

key role in regulation of PPARs and atherosclerotic therapy.
4 Concluding remarks and future
directions

TCMs, especially TCM prescriptions, and natural compounds

including flavonoids, acids, alkaloids, terpenoids, phenolic

compounds, and carbohydrates are effective in suppression of

dyslipidemia and inflammatory responses with good safety by

targeting PPARs, thereby retarding the progression of

atherosclerosis. Notably, these natural molecules exhibit equivalent

effects compared to chemically synthetic compounds but the

former exhibit less harmful side effects (15). Furthermore, TCMs

have been used for atherosclerosis therapy for hundreds of years

in Asia, especially in China. Importantly, several natural

compounds, such as anthocyanins, resveratrol, hesperidin,

quercetin, epicatechin, and genistein, have been promoted to

clinical trials (71). In this study, we also listed some clinical trials
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TABLE 1 Clinical trials related to anti-atherosclerotic effects of natural medicines.

Compound Patients and dosage Effects and potential mechanisms
Anthocyanin 90 patients with prediabetes and 70 newly diagnosed diabetes;

twice daily for a total of 320 mg for 12 weeks.
Increases adiponectin in newly diagnosed diabetes potentially by activation
of AMPK-PPARα signaling pathway (205).

Anthocyanin 176 subjects aged 35–70 years with dyslipidemia; 40 mg/day, n =
45; 80 mg/day, n = 42; 320 mg/day, n = 43) for 12 weeks.

Ameliorates dyslipidemia, lowers plasma ceramide 16:0 and ceramide 18:0,
and increases HDL-c, ApoA-I, and cholesterol efflux capacity potentially by
activation of PPAR-ABCA1/G1 signaling pathways (206, 207).

Hesperidin 49 patients with metabolic syndrome; twice daily for a total of
500 mg for 12 weeks.

Decreases fasting glucose level, TG, blood pressure and inflammatory factors
including TNF-α potentially by activation of PPARs (208).

Glucosyl hesperidin Subjects with high-TG type (>150 mg/dl); 500 mg for 24 weeks. Decreases TG, ApoB, and ApoC particles potentially by improving VLDL
metabolic abnormality (209).

Flaxseed power and/or
hesperidin

98 patients with metabolic syndrome; flaxseed powder 30 g daily,
or hesperidin 1 g daily, or a combination for 12 weeks.

Decreases systolic blood pressure, serum TG and insulin potentially by
activating PPARα and regulating ApoB100 secretion (210).

Genistein 45 participants with homeostasis model assessment index >2.5
and body mass index ≥30 and ≤40 kg/m2; 50 mg daily for 2
months.

Increases β-oxidation and decreases inflammatory symptoms and insulin
resistance potentially by modulating gut microbiota and activating AMPK-
PPARs signaling pathway (211).

Omega-3 fatty acid (fish oil) 102 patients with PPARγ gene polymorphisms, LDL-c 70–
190 mg/dl and TG≥ 400 mg/dl; 2 g daily for 3 months.

Decreases LDL-c and TG in carriers of PPARγ polymorphisms, suggesting
genetic-driven personalization of cardiovascular interventions (212).

DHA-rich fish oil Fifty patients with type 2 diabetes mellitus aged 30–70 years;
2,400 mg/d for 8 weeks.

Increases PPAR-γ activity in peripheral blood mononuclear cells (83).

Conjugated linoleic acid 15 healthy human; 90 g daily for 2 or 4 weeks. Improves n-3 highly unsaturated fatty acids potentially via activating PPARα
(213).

Epigallocatechin gallate Obese subjects older than 18 years; 150 mg daily for 8 weeks. Decreases plasma TG, blood pressure and kisspeptin levels without
impacting PPARγ (214).

Colchicine 4,745 patients recruited within 30 days after a myocardial
infarction; 0.5 mg daily.

Decreases risk of ischemic cardiovascular events (215).

Resveratrol Meta-analysis of 21 randomized clinical trials; 0.1–1.5 g daily for
4–24 weeks.

Decreases TC levels and may increase HDL-c (216).

Ginsenoside Rg1 Random crossover trial (112 type 2 diabetic patients); 41 mg
daily for 2 weeks.

Decreases TC, TG, and blood glucose levels potentially by activating PPARγ
(217).

Lycopene 126 healthy men; 6 mg (n = 41), or 15 mg (n = 37) daily for 8
weeks.

Decreases inflammatory factors and increases antioxidant activities (218).

Glucomannan, inulin,
psyllium and apple fibre

100 overweight or obese participants; dietary fibres for 8 weeks. Decreases body mass index, body weight, TC, LDL-c, TG, and C-reactive
protein (219).

Barley β-glucan Fifteen healthy subjects; a soup containing high-molecular-
weight barley β-glucan with great viscosity.

Decreases diet-induced thermogenesis and glycaemic response by delaying
gastric emptying (220).

Ascophyllum nodosum 43 healthy subjects (19 men, 24 women), aged 21–63 years; 0.9 g
daily for 6 weeks.

Decreases body weight, body mass index, and potentially TG (221).

Lycium barbarum
polysaccharide

50 patients with non-alcohol fatty liver disease; twice daily for a
total of 0.6 g for 3 months.

Results are not available at present (222).

Polysaccharide peptide of
Ganoderma lucidum

37 high risk and 34 stable angina patients; three times daily for a
total of 0.75 g for 90 days.

Decreases atherosclerosis potentially by decreasing circulating endothelial
cells and endothelial progenitor cells, and oxidation as well as
malondialdehyde contents (223).

Trehalose 15 patients with history of myocardial infarction and evidence of
systemic inflammation; intravenous trehalose (15 g once weekly)
for 12 weeks.

No significant reduction in arterial wall inflammation, larger studies are
needed (224).
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as shown in Table 1. Collectively, natural compounds are useful for

atherosclerosis therapy by regulation of PPARs.

However, the research in this field has several limitations. First,

although prescription/formula is a characteristic of TCM, it is

necessary to clarify the key active ingredients and their

mechanisms of action to enable TCM to enter the international

market. In this aspect, artemisinin is a very good example.

Secondly, seldom natural compounds have been applied in clinic.

It seems that researchers are impelled to explore modified natural

compounds to improve their novelty, bioavailability, and

commercial value of interested molecules. These chemical

modifications are sure to induce further environmental pollution.

Therefore, researchers need to balance the beneficial and harmful

aspects during drug discovery. Thirdly, as the distribution and

action of PPARs show tissue-specificity, it is interesting to
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investigate the combined effects of interested compounds based

on their pharmacokinetic characteristics and tissue distribution.

Fourth, both activation and inactivation of PPARβ and

particularly PPARγ may achieve similar therapeutic effects,

suggesting some complex regulatory mechanisms are involved in

PPARs’ therapy of atherosclerosis. For instance, PPARγ

activation is demonstrated to suppress inflammation via

inhibiting NF-κB signaling pathway and decrease lipid

accumulation via enhancing RCT through upregulation of LXRs–

ABCA1/G1 signaling pathways; while PPARγ inactivation is

indicated to decrease lipogenesis and CD36-mediated lipid

uptake, thereby suppressing lipid accumulation and

hyperlipidemia-induced inflammation. To elucidate the detailed

mechanisms of action of an interested compound, it is necessary

to investigated the above-mentioned mechanisms in one study in
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the future. Last but not least, rodents have distinct lipid profiles and

lifestyles compared to our human, it is necessary to explore

humanized models for drug screening in future to improve the

potential translation of interested compounds.
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