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Cardiotoxicity can be defined as “chemically induced heart disease”, which can
occur with many different drug classes treating a range of diseases. It is the
primary cause of drug attrition during pre-clinical development and
withdrawal from the market. Drug induced cardiovascular toxicity can result
from both functional effects with alteration of the contractile and electrical
regulation in the heart and structural changes with morphological changes to
cardiomyocytes and other cardiac cells. These adverse effects result in
conditions such as arrhythmia or a more serious reduction in left ventricular
ejection fraction (LVEF), which can lead to heart failure and death. Anticancer
drugs can adversely affect cardiomyocyte function as well as cardiac
fibroblasts and cardiac endothelial cells, interfering in autocrine and paracrine
signalling between these cell types and ultimately altering cardiac cellular
homeostasis. This review aims to highlight potential toxicity mechanisms
involving cardiomyocytes and non-cardiomyocyte cells by first introducing the
physiological roles of these cells within the myocardium and secondly,
identifying the physiological pathways perturbed by anticancer drugs in
these cells.
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1 Introduction

Cardiovascular toxicity can be defined as “chemically induced heart disease”. Drug

discovery and development has improved significantly over recent years, particularly

with respect to cancer therapeutics, altering the landscape for modern cancer therapy.

The established chemotherapy drugs, developed in the 1950s–1970s, have been

reinforced with the advent of molecular targeted cancer therapy and the recent

development of immune checkpoint therapy providing an unprecedented arsenal of

anti-cancer therapies. However, as cancer patients survive longer, often following

treatment with multiple anticancer drugs for relatively longer periods of time, drug-

induced organ toxicity, and in particular cardiotoxicity, is now becoming a major

problem (1). Combined with an aging population, often with pre-existing cardiovascular

problems, the cardiac safety of anticancer drugs is now necessitating the clinical
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implementation of the new field of cardio-oncology to manage and

moderate cardiovascular toxicity (2, 3).

Ultimately the problematic endpoint of drug-induced

cardiotoxicity is the inability of the heart to efficiently pump

blood around the body. The specific mechanisms of drug-

induced cardiovascular toxicities are not well understood and can

occur via direct interactions of the drug with cardiomyocytes or

indirectly through interactions with other components of the

cardiovascular system. Direct actions can be functional or

structural changes to the cardiomyocytes. Functional changes

include inducing arrhythmias or QT prolongation by dysregulating

cardiomyocyte contractility (4), while structural changes, such as

cardiomyocyte hypertrophy or loss of viability can occur, which

lead to an eventual decline in cardiac function. Drugs may also

directly affect non-cardiomyocyte cells such as fibroblasts,

macrophages and vascular muscle cells, adversely affecting their

physiology (5, 6). Evidence suggests interactions between these cell

types are essential to the metabolism, growth, contractile

performance and rhythmicity of the myocardium.
2 Cardiac development and cardiac
cell physiology

The cardiovascular system is the first functional organ to

develop during human embryonic development (7). During

gastrulation, a single-layered blastula is re-organized into three

germ layers: a dorsal ectoderm, a ventral endoderm and a

mesoderm layer. From the mesoderm germ layer myocardial

progenitor cells differentiate into cardiomyocytes and non-

cardiomyocytes (endothelial cells, postnatal cardiac progenitor

cells and vascular smooth muscle cells) (8). These myocardial

progenitor cells migrate to form a bilateral cardiogenic plate

composed of two endocardial tubes. These tubes fuse to form a

primary heart tube (9). At the cellular level the endocardial tubes

originate from the mesoderm germ layer, which during cardiac

embryogenesis differentiates into mesothelium, endothelium and

myocardium enabling the development of both cardiomyocytes

and non-cardiomyocytes (Figure 1). The primary heart tube

consists of an inner endocardial layer and an outer myocardial

layer separated by an extracellular matrix (11). This tubular heart

further differentiates via folding and looping into the truncus

arteriosus, bulbus cordis, primitive ventricle, primitive atrium

and the sinus venosus forming a primitive heart containing the

origins of cardiomyocytes and non-cardiomyocytes within

different morphological arrangements (12). This primitive heart

continues to elongate and loop anatomically arranging the cell

populations into chambers and major vessels. This results in the

aorta and pulmonary trunk originating from the truncus

arteriosus, the right ventricle from the bulbus cordis, the left

ventricle from the primitive ventricle, the left and right atria

from the primitive atrium and SA node and coronary sinus from

the sinus venosus. Further septa and valves develop separating

the left and right sides of the heart and the major vessels

from the heart, respectively, in conjunction cells of cardiac neural

crest and proepicardium origin migrate. This cell migration
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enables the separation of outflow tracts and formation of the

epicardium. The proepicardium cells are also the origin for

coronary vasculature cells and cardiac fibroblasts (8). However,

recent data have suggested that the coronary vasculature may be

derived from multiple sources such as the proepicardium, the

sinus venosus and ventricular endocardium and circulating

endothelial progenitor cells (13). Ultimately, these developmental

processes result in the formation of the myocardium consisting

of the heart, coronary vascular and microvascular network. The

developed heart is comprised of 30% cardiomyocytes and 70%

non-cardiomyocyte cells including cardiac fibroblasts, endothelial

cells and pericytes (14). Both endothelial cells and pericytes

form a microvascular network surrounded by an extracellular

matrix known as intramyocardial capillaries. This extensive

microvascular network enables efficient perfusion of the heart

delivering nutrients such as free-fatty acids and oxygen and

facilitates cellular signaling (14).

Cardiomyocytes are the contractile competent muscle cells

responsible for the coordinated contractile force required to eject

blood from the left and right ventricles during systole (15).

During pre-natal heart growth, cardiomyocytes show a high

proliferation rate (16). After birth, the cardiomyocyte

proliferation rate declines rapidly and remains at ∼1% in adult

humans (17). This decline in proliferation is caused by cells

exiting the cell cycle before cytokinesis causing cardiomyocytes to

become binucleated and polyploid (18). The subsequent postnatal

increase in cardiac volume occurs almost exclusively by

hypertrophy of cardiomyocytes (19). Both binucleated and

polyploid cardiomyocytes are generally believed to be terminally

differentiated and unable to contribute to cardiomyocyte renewal

during cardiac homeostasis and injury, which has profound

implications for drug-induced cardiotoxicity. In contrast, the small

remaining population of diploid, mononucleated cardiomyocytes

is thought to still have the capacity to proliferate (20–22).

The cardiac microvascular endothelial cells are present both

within the endocardium that forms the inner lining of the heart

chambers and in intramyocardial capillaries. Their primary

function is to supply cardiomyocytes with free-fatty acids and

oxygen to meet their high metabolic demands. Other roles of

cardiac endothelial cells include aiding the adherence of

immune cells, allowing inter-cellular signalling factors to be

communicated and to impede thrombus formation. Recent

evidence suggests that cardiac microvascular endothelial cells are

present at a higher abundance than previously reported, and have

been estimated to be the most prominent cell type in

the myocardium accounting for 40% of the cells (23).

Cardiomyocyte-endothelial cell cross talk results in paracrine

signalling to coordinate cellular responses within the myocardium.

Cardiomyocytes secrete VEGF-A and angiopoetin-1 (Ang-1)

which support angiogenesis and vessel maturation respectively

(24). Cardiac endothelial cells are known to secrete proteins such

as neuregulin-1 (NRG-1), which binds to and activates the

receptor tyrosine kinase ErbB4 (HER4) on cardiomyocytes,

allowing dimerization with ErbB2 (HER2) (25). This activates an

intracellular signalling cascade in cardiomyocytes that suppresses

apoptosis and stimulates a cardioprotective effect (24, 26).
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FIGURE 1

Origin and lineage relationship of cardiac cell types. (A) Contribution of three embryonic heart progenitor populations—cardiogenic mesoderm (red),
cardiac neural crest (purple), and proepicardial organ (yellow)—to various heart compartments during cardiac morphogenesis. Cardiogenic mesoderm
progenitors first appear beneath the head folds (HFs) at embryonic day 7.5 (E7.5) in the mouse embryo, then migrate ventrally to the midline (ML),
forming the linear heart tube, which subsequently develops into the four heart chambers. Following heart tube looping (E8.5), cardiac neural crest
progenitors migrate from the dorsal neural tube to the aortic arch arteries, differentiating into vascular smooth muscle cells of the outflow tract
(OFT) by E10.5. Concurrently, proepicardial organ precursors contact the heart’s surface, forming the epicardial mantle and later contributing to
the coronary vasculature. By foetal stage E14, the heart chambers undergo septation and establish connections to the pulmonary trunk (PT) and
aorta (Ao). (B) Cardiac cell types arising from the lineage diversification of the three embryonic precursor pools in the mouse heart. AA, aortic
arch; IVS, interventricular septum; LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle. Adapted with permission from (10).
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Pericytes are also present in these cardiac capillaries, on average

each endothelial cell is associated with two to three pericytes (27).

These pericytes are contractile cells which wrap themselves around

the microvasculature and support the normal functioning of the

endothelial cells. They play many physiological roles from barrier

function, regulation of homeostasis, facilitation of angiogenesis to

initiation of coagulation (28).

Cardiac fibroblasts (CFs) are spindle shaped connective tissue

cells that do not form a basement membrane but are responsible

for the majority of the extracellular matrix (ECM) proteins found

in the myocardium. During embryonic development, CFs arise

from multiple sources. The epicardium is considered the major

source of CFs found in the ventricular myocardium (29), with

epicardial cells undergoing an epithelial-to-mesenchymal

transition requiring expression of Tcf21 to generate CFs (30).
Frontiers in Cardiovascular Medicine 03
Another significant population of CFs is derived from the

endocardium at the time of endocardial cushion formation by an

endothelial-to-mesenchymal transition (29, 31) and endocardial

cells are generated in part from the second heart field progenitors

(SHFPs). Lastly, a small fraction of fibroblasts are derived from

neural crest lineages (32). Situated between cardiomyocytes, their

close proximity teamed with the capacity to influence ECM

composition provides fibroblasts with the ability to influence the

phenotype of cardiomyocytes (33). Cardiac fibroblasts are

essential for proper electrical conduction in the heart as they

regulate calcium homeostasis through myocyte:fibroblast coupling

(34, 35). In addition, cardiac fibroblasts help maintain tissue

structure by regulating the deposition and remodelling of collagen

and other ECM components (36, 37). Beyond their important

role in maintaining normal myocardial function, CFs also
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contribute to adverse cardiac remodelling during pathological

conditions, such as hypertension, myocardial infarction, and heart

failure (38) and are involved in arrhythmia initiation and

maintenance by affecting electrical propagation (39).
3 Cardiotoxicity

Drug-induced cardiovascular toxicity is defined as a severe and

potentially fatal adverse reaction to certain drugs. Cardiotoxicity is

a major cause of attrition in preclinical and clinical drug

development (40–42). Drug-induced cardiovascular toxicity can

affect all components and functions of the cardiovascular system

and can be functional, causing alteration of the mechanical

function of the heart and vasculature and/or structural, causing

morphological changes to cardiomyocytes, endothelial cells,

cardiac fibroblasts, ultimately adversely affecting heart and

vascular function and culminating in the development of

conditions such as arrhythmia, LV systolic dysfunction,

cardiomyopathy, myocardial infarction and heart failure (43)

(Figure 2). Historically, pre-clinical in vitro strategies for the

detection of drug-induced cardiovascular toxicity have primarily

focused on detecting functional cardiotoxicity with a particular
FIGURE 2

Distinction between functional and structural toxicity. Drug-induced cardiov
cardiovascular system. Functional toxicity can occur in the heart causin
contraction. Functional toxicity can also occur in the blood and vascular sy
Structural toxicity can cause morphological changes in the heart with ef
resulting in a range of pathologies such as necrosis, fibrosis, cardiomyop
also occur in the blood and vascular system with adverse effects on e
vasculitis and vascular remodelling. Structural and functional toxicity withi
development of arrhythmia, LV systolic dysfunction, cardiomyopathy, myoc
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focus on electrophysiology and electrocardiogram (ECG)

abnormalities detected by high-throughput screening of key ion

channels, for example, hERG, implicated in functional

cardiotoxicity (44, 45). However, cardiovascular functional

abnormalities can also arise through impaired left ventricular

function characterized by changes in cardiomyocyte contractility.

Structural cardiotoxicity can occur with a wide range of drugs

and is a concern with several classes of anti-cancer agents

ranging from classical chemotherapy agents such as

anthracyclines, to the more modern molecular targeted therapy

aimed at inhibiting specific protein kinases that play a role in cell

proliferation in cancer cells (46). These kinases are often

expressed in a range of normal cell types in addition to cancer

cells, meaning that inadvertent effects in cardiac cells can result

in structural changes to specific cardiac cell types over time,

which can ultimately render the patient sensitive to the

development of cardiac problems including: heart muscle injury

with cardiomyopathy and heart failure, complications of

coronary artery disease leading to myocardial ischaemia,

arrhythmias, hypertension and thromboembolism (47, 48).

Whilst doxorubicin remains one of the most widely studied

cardiotoxic drugs, adverse drug effects can occur across a range

of different anti-cancer drugs (Table 1) and affect multiple
ascular toxicity can potentially affect all components and functions of the
g effects on cardiomyocyte electrophysiology and rate and force of
stem with adverse effects on blood pressure, oedema and thrombosis.
fects on cardiomyocytes, valvular endothelial cells, cardiac fibroblasts
athy, myocarditis, hypertrophy and valvulopathy. Structural toxicity can
ndothelial cells and smooth muscle cells resulting in vasculopathies,
n the cardiac and vascular system ultimately clinically manifests in the
ardial infarction and heart failure.
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TABLE 1 Cardiovascular toxicities associated with anticancer drugs.

Drug Class Adverse cardiovascular event Incidence of LVD &
HF (%)

Incidence of general
ADRs (%)

Reference

Chemotherapy
Anthracyclines
Doxorubicin (Adriamycin®) Arrhythmia, LVD, HF 7–26 (49–51)

Alkylating agents
Cyclophosphamide (Cytoxan®) Arrhythmia, LVD, HF, 7–28 (52)

Anti-metabolites
5-Flurouracil (Adrucil®)

Coronary vasospasm, Cardiomyopathy & LVD,
Arrhythmia 4–12 (53)

Platinum based therapy
Cisplatin, Carboplatin (Paraplatin®) Arterial vascular disease, hypertension (54)

Microtubule binding drugs
Docetaxel (Taxotere®), Paclitaxel (Taxol®)
Vincristine (Oncovin®) Arrhythmias, LVD, HF 2–8 (52)

Molecular Targeted Therapy
Her2 inhibitors
Trastuzumab (Herceptin®)
Lapatinib (Tyverb®)

LVD, HF
LVD, HF

2–28
1.6

(51)
(55)

VEGF pathway inhibitors
Bevacizumab (Avastin®)
Sunitinib (Sutent®)

Hypertension, LVD, HF
Hypertension, LVD, HF

2–4
3–8 (56)

Bcr-Abl inhibitors
Imatinib (Glivec®)
Dasatinib (Sprycel®)

LVD, HF
Hypertension, Arrhythmia LVD, HF

0.7–1.1
2–4

(51, 57)

BRaf inhibitors
Vemurafenib (Zelboraf®) Hypertension, QT prolongation, LVD 9 (58)

MEK inhibitors
Trametinib (Mekinist®) Hypertension, LVD 5.2 (59, 60)

Immune Checkpoint Inhibitors (ICIs)
CTL4 inhibitors
Ipilimumab (Yervoy®)

General cardiac ADRs: pericarditis, myocarditis,
conduction abnormalities

1–1.8 (61)

PD1 inhibitors
Pembrolizumab (Keytruda®)
Nivolumab (Opdivo®)

General cardiac ADRs: myocarditis, pericardial
disease, conduction abnormalities

1.99
2.23

(62)

PDL1 inhibitors
Atezolizumab (Tecentriq

®)
General cardiac ADRs: myocarditis, pericardial
disease, conduction abnormalities

2.59 (62)

ADRs, adverse drug reactions; HF, heart failure, LVD, left ventricular dysfunction.
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cardiac cell types leading to pathological changes that ultimately

reduce cardiac function in patients (Figure 3).
3.1 Adverse effects on endothelial cells

Endothelial cells line the blood vessels of the coronary

microcirculation, arteries and veins regulating the permeability

and tone (63). Furthermore, endothelial cells also regulate

immune cell adhesion and suppress thrombosis. Endothelial

cells are in intimate contact with the blood and xenobiotics,

and can be adversely affected by cancer drugs in a number of

ways (Figure 3).
3.1.1 Increased vascular permeability
Vascular toxicity in response to chemotherapy often reflects

endothelial dysfunction with loss of vasorelaxant effects and

suppressed anti-inflammatory and vascular reparative functions

(64). These effects can exacerbate underlying conditions of

hypertension, thrombosis and atherosclerosis. Furthermore,

chemotherapy can also promote coagulation of platelets due to
Frontiers in Cardiovascular Medicine 05
reduced nitric oxide bioavailability (65). Vascular permeability

regulates the movement of solutes, xenobiotics and immune cells

from the circulation to the underlying tissues and is critical for

normal vascular homeostasis. Vascular permeability is regulated

by endothelial tight junctions and adherens junctions (66).

In vivo studies in a rat model of doxorubicin injury have shown

increased cardiac capillary permeability following doxorubicin

treatment (67). In vitro studies using bovine pulmonary artery

endothelial cells have shown that doxorubicin can increase

endothelial permeability (68). Recent in vitro data have shown

that the anti-cancer drugs doxorubicin and trastuzumab

(Herceptin) can adversely affect human cardiac microvascular

endothelial cell barrier function by reducing expression of the

tight junction protein ZO-1, leading to increased drug

permeability (69, 70).
3.1.2 Apoptosis
Apoptosis is a form of programmed cell death that occurs in

multicellular organisms (71). Whilst the exact mechanism of

doxorubicin induced cardiotoxicity is still unknown, studies in

rats have shown that doxorubicin is able to induce both
frontiersin.org
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FIGURE 3

Drug-induced cardiovascular toxicity can affect multiple cells within the myocardium. Diagram showing the adverse effects of anti-cancer drugs on
cardiac endothelial cells, vascular pericytes, cardiac fibroblasts and cardiomyocytes resulting in a range of morphological changes in these cells,
ultimately contributing to the clinical manifestation of cardiac toxicity. These adverse effects are discussed in detail in the text.
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cardiomyocyte and endothelial cell apoptosis (72). Organ culture of

rabbit mesenteric arteries treated with doxorubicin revealed

endothelial apoptosis and impairment of endothelium dependent

relaxation (73). Recent data from a mouse model of doxorubicin-

induced cardiotoxicity has shown that doxorubicin-induced

endothelial cell apoptosis and cardiotoxicity are alleviated by

treatment with VEGF-B, which acts primarily on its cognate

receptor, VEGFR-1, expressed on vascular endothelial cells (74).

This novel study shows that specifically targeting the

endothelium could be a potential therapeutic strategy to

protect against doxorubicin induced cardiotoxicity. Clinical

data from children receiving doxorubicin, in addition to other

chemotherapy, has shown reduced brachial artery vasomotor

reactivity months after treatment ended (75). Primary

endothelial damage is the mechanism of cardiotoxicity of

tubulin-binding drugs, such as vinblastine and vincristine,

which have been shown to increase mitotic arrest and

endothelial cell apoptosis (76).
3.1.3 Dysregulated angiogenesis
Angiogenesis is the formation of new blood vessels from pre-

existing vasculature and is important for efficient cardiac

vascularization (77). In vitro experiments using rat cardiac

microvascular endothelial cells have shown that doxorubicin
Frontiers in Cardiovascular Medicine 06
stabilises hypoxia inducible factor 1-α (HIF-1α) levels resulting

in the increased transcription of VEGF mRNA and release of

VEGF-A and down-regulation of VEGFR-2 levels (78). Recent

data has also shown that doxorubicin is also able to down-

regulate VEGFR-2 levels and cause cellular senescence in

endothelial cells (79).
3.1.4 Disrupted vascular tone/hypertension
Vascular tone refers to the degree of constriction experienced

by a blood vessel relative to its maximally dilated state. All

arterial and venous vessels under basal conditions exhibit some

degree of smooth muscle contraction that determines the

diameter, and hence tone, of the vessel. Vascular tone is

determined by many different competing vasoconstrictor and

vasodilator influences acting on the blood vessel. These

influences can be separated into extrinsic factors such as the

sympathetic and parasympathetic nervous system, and intrinsic

factors that originate from the vessel itself or the surrounding

tissue such as adenosine and nitric oxide (NO) (80, 81). NO is a

natural vasodilator, acting on smooth muscle cells to promote

vasodilation. Angiogenesis inhibitors targeting the vascular

endothelial growth factor (VEGF) signaling pathway have been

important additions in the therapy of various cancers, especially

renal cell carcinoma and colorectal cancer. Bevacizumab
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(Avastin) targets the VEGF-A ligand whereas TKis such as

sunitinib, sorafenib, pazopanib and regorafenib target VEGFR-2

and other RTKs. All of these anti-angiogenic drugs lead to

hypertension, which is thought to occur by loss of VEGF-

mediated NO synthase activity, reducing the level of NO

production in the walls of arterioles, ultimately increasing

vascular tone (56). A marked increase in systemic hypertension

results in significant increases in the afterload of left ventricle

and myocardial oxygen demand leading to myocardial injury/

infarction and LV systolic dysfunction in vulnerable patients. The

incidence of hypertension has been estimated at 15%–47% with

sunitinib and 17%–42% in patients treated with sorafenib (82).

Cyclophosphamide is thought to suppress NO production

via a different mechanism to anti-angiogenic drugs, by

generating free radicals which react with NO to produce

peroxynitrite (ONOO−), thus reducing the level of free NO

(83). Vasospasm refers to an acute condition in which an

arterial spasm leads to vasoconstriction. Coronary artery

vasospasm can lead to reduced blood flow and ischaemia. 5-FU

can worsen or aggravate vascular spasm, resulting in acute

coronary syndrome, peripheral arterial disease, cerebrovascular

disease, or stress-induced cardiomyopathy (84).

3.1.5 Leukocyte adhesion and transmigration
Leukocyte migration into the vessel wall is an early pathological

event in the progression of a number of cardiovascular pathologies

such as atherosclerosis, diabetic cardiomyopathy and heart failure

(85, 86). In response to cytokines and pro-inflammatory

mediators, the endothelial lining of the microvasculature will

increase expression of intracellular adhesion molecule 1 (ICAM-

1) and/or vascular cell adhesion molecule (VCAM-1) that

interact with leukocyte-expressed integrins allowing adhesion to

the luminal surface of endothelial cells and transmigration

through endothelial junctions to the underlying myocardium.

Immune checkpoint inhibitors (ICIs) are a recently developed

class of anti-cancer drugs, consisting of humanised monoclonal

antibodies that target T lymphocytes to prevent down-regulation

of the immune response. Iplimumab (Yervoy®) targets CTLA4,

nivolumab (Opdivo®) and pembrolizumab (Keytruda) target

PD-1, whilst atezolizumab (Tecentriq®) targets PDL-1. There is

a growing awareness that these molecules can cause adverse

cardiac effects such as atrial fibrillation, ventricular arrhythmia

and most seriously, inflammation of the myocardium, termed

myocarditis, occurring in up to 1% of patients taking immune

checkpoint inhibitors (87, 88). The exact mechanism of

myocarditis is not fully understood, however, as in viral

myocarditis, patients with ICI-related myocarditis have been

shown to have T-cell infiltration of the myocardium consistent

with inflammation (89).

3.1.6 Impaired fibrinolysis/increased thrombosis
Haemostasis is a complex biochemical response to injury

allowing the formation of a blood clot and repair of damaged

endothelium. The maintenance of the equilibrium between

coagulation and fibrinolysis is vital, as imbalance can lead to

abnormal bleeding or increased risk of thrombosis (90).
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VEGF inhibitors (bevacizumab, sunitinib, sorafenib) can cause

endothelial dysfunction and platelet function inhibition,

resulting in arterial thrombosis in approximately 4% of

patients in addition to venous thrombosis. Alkylating agents

such as cisplatin can trigger platelet aggregation (91).

Recent data has shown that cyclophosphamide can

potentially induce a prothrombotic state in endothelial cells by

upregulating the release of prostacyclin (PGI2) and

thromboxane A2 (TXA2) (92).

3.1.7 Disrupted pericyte coverage
Pericytes are mural cells which stabilise capillary blood vessels

through direct contact with endothelial cells on the abluminal

surface of the blood vessel (27). The absence of pericytes can

lead to vascular leakage and haemorrhaging (93). Sunitinib, a

TKi used to treat metastatic renal cancer, has been shown to

deplete cardiac microvascular pericytes resulting in changes in

the cardiac microvasculature coverage in a mouse study of

cardiotoxicity (94). Interestingly, coverage of skeletal muscle

pericytes was not affected by sunitinib. This effect of sunitinib on

cardiac pericytes was via inhibition of PDGFR-β signalling and

was not reproduced by doxorubicin.
3.2 Adverse effects on cardiomyocytes

Cardiac muscle contraction is a strictly regulated process which

coordinates a series of electrophysiological, biochemical and

mechanical events, resulting in the ejection of blood from the

right ventricle into the pulmonary circulation and left ventricle

into the systemic circulation. LV dysfunction induced by

cardiotoxic chemotherapies is defined by a decrease in left

ventricular ejection fraction (LVEF) of >10 percentage points to a

value <53% and is usually monitored by echocardiography (95).

To detect early myocardial damage before a change in LVEF is

evident, levels of biomarkers such as cardiac troponin-I are

monitored to detect any increase in plasma concentration.

Cardiac troponin I (cTnI) and cardiac troponin T (cTnT) are

cardiomyocyte specific proteins that form the troponin complex

with thick filaments in the contractile sarcomeres of

cardiomyocytes. Both cTnI and cTnT are released into the

bloodstream on acute myocardial injury, possibly due to necrosis

of cardiomyocytes (96). Human adult cardiomyocytes have a

restricted replicative and regenerative capacity (18, 97, 98), so

irreversible damage from xenobiotics can have an accumulative

effect over time in reducing cardiac contractile function. Damage

to the myocardial cells can occur due to reduced blood supply in

ischaemia or via direct drug-induced toxicity, leading to changes

in myocardial morphology, physiology and biochemistry.

3.2.1 Apoptosis
Cardiomyocyte cell death is thought to be regulated by a

number of mechanisms such as apoptosis and necrosis. Exposure

to doxorubicin is known to lead to cardiomyocyte cell death via

a number of different mechanisms: generation of reactive oxygen

species (ROS) leading to damage to lipids, DNA and proteins
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and topoisomerase 2 beta (TOP2B) inhibition leading to DNA

strand breaks in cardiomyocytes and mitochondrial damage (99).

Analysis of doxorubicin’s effects in studies using rat

cardiomyocytes and in vivo analysis has shown caspase 3

activation (100) and cytochrome c release (101). In vitro analysis

using human pluripotent stem cell-derived cardiomyocytes (hiPS-

CMs) has shown that doxorubicin induces apoptosis through

upregulation of death receptors (102). Other forms of regulated

cell death such autophagy, ferroptosis and necroptosis have also

been implicated in doxorubicin injury (103), suggesting that

doxorubicin has the potential to activate multiple pathways

leading to cardiomyocyte death.

Classical chemotherapy drugs have also been shown to induce

apoptosis in cardiomyocytes. Cisplatin and cyclophosphamide

can induce ROS and mitochondrial dysfunction in rat

cardiomyocytes (104, 105).

Trastuzumab (Herceptin) binds to the HER2 protein, which is

upregulated on certain breast cancer cells, but can also bind to

HER2 expressed on cardiomyocytes, interfering with the normal

NRG-1/ErbB2 signalling axis resulting in cardiomyocyte

apoptosis (106). Trastuzumab (Herceptin) induces cardiomyocyte

toxicity through a mitochondrial pathway depending on ROS

production and oxidative stress and is reversed by the

antioxidant N-acetyl cysteine (NAC) (107). HER2 inhibition by

trastuzumab is associated with an increase in expression of the

proapoptotic Bcl-xS and decreased levels of antiapoptotic Bcl-xL.

These alterations induce mitochondrial dysfunctions such as loss

of mitochondrial membrane potential (ΔΨ), and ATP depletion

with the disruption of cardiomyocyte cellular energetic and

reversible contractile impairment (108). Trastuzumab-mediated

blockade of ErbB2 signalling increases anthracycline-induced

cardiotoxicity, most probably due to the suppression of the

protective NRG-1/ErbB2 signalling axis resulting in the

augmentation of anthracycline toxicity (109).

Molecular targeting drugs inhibit RTKs present on

cardiomyocytes affecting cell survival. Sunitinib, which inhibits a

broad range of RTKs such as PDGFR, VEGFR, c-Kit, has been

shown to adversely affect mitochondrial function and cause

cardiomyocyte apoptosis in animal studies (110). Furthermore,

studies utilizing endomyocardial biopsies from two patients with

gastrointestinal stromal tumours (GIST), who had developed

severe left ventricular dysfunction during sunitinib treatment,

revealed mitochondrial structure abnormalities following TEM

analysis of cardiac sections (82).
3.2.2 Hypertrophy
Cardiac hypertrophy is an abnormal enlargement or thickening

of the heart muscle resulting from an increase in the size of

cardiomyocytes. It is an adaptive response to pressure or volume

stress as a result of hypertension or valvular disease, and can also

occur from mutations of sarcomeric proteins, or loss of

contractile mass from prior infarction (111). Anti-cancer drugs

have the potential to indirectly cause cardiac hypertrophy by

reducing cardiac performance. Sunitinib has been reported to

induce cardiac hypertrophy in mice by inducing cardiac
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remodeling and increasing cardiac glycolytic metabolism

resulting in fibrosis, increased LV mass and increased EF (112).
3.2.3 Myocarditis and immune cell infiltration
Myocarditis is an inflammatory disease of the myocardium

that can be caused by a viral or bacterial infection or an auto-

immune disease (113). The advent of immune checkpoint

inhibitor (ICI) therapy has heralded a new era in cancer therapy

with drugs targeting CTLA4 (ipilimumab) and PD-1

(nivolumab, pembrolizumab) on activated T-cells, and PD-L1

(atezolizumab) on epithelial and antigen presenting cells (APC).

However, ICI therapy is also associated with a spectrum of

immune-related adverse events (irAEs) such as colitis, hepatitis

and myocarditis. ICI-associated myocarditis occurs in

approximately 1% of patients and can be severe and life

threatening (89). It is characterized by CD4 + ve T-cell and

macrophage infiltration into the myocardium, ultimately

resulting in myocyte damage and cardiac dysfunction. Previous

genetic knockout studies in mice have shown that loss of

immune checkpoint protein function can cause cardiac

problems; deficiency of CTLA-4 in mice is associated with a

severe autoimmune myocarditis (114) whilst PD-1 or PD-L1

deficient mice are susceptible to autoimmune myocarditis (115–

117). Immune cell infiltration is thought to contribute to

cardiotoxicity observed with other anti-cancer drugs. Studies in

mouse models of doxorubicin-induced acute cardiotoxicity have

shown a significant infiltration of neutrophils into hearts 24 h

after doxorubicin treatment, which was accompanied by an

acute and late decrease in cardiac function, disruption of the

vascular endothelium, and an increase in collagen deposition,

leading to fibrosis. The depletion of neutrophils prevented

doxorubicin-induced cardiotoxicity with the preservation of

vascular structures and prevention of excess collagen deposition

(118, 119). Another mouse study has shown that doxorubicin

treatment enhanced the pro-inflammatory M1 macrophage

derived from monocytes and suppressed the reparative M2

macrophage population present within the heart (120).
3.2.4 Senescence
Cellular senescence is a phenomenon characterized by stable

cell cycle arrest, mitochondrial dysfunction and cessation of cell

division (121). Senescence is a hallmark of aging and

accumulation of senescent cells over time is associated with the

declining function of the aged cardiovascular system and many

age-related CVDs, including atherosclerosis and heart failure

(122). In vivo studies in rodents have shown that doxorubicin

can induce biomarkers of senescence in the myocardium of mice

(123) and rats (124). Analysis of LV human heart tissue from

patients with doxorubicin-induced cardiotoxicity has revealed

increased expression of a range of markers of senescence in

cardiomyocytes compared to LV tissue from healthy donors

(125). In addition to cardiomyocytes, doxorubicin-induced

senescence can potentially occur in cardiac fibroblasts and

cardiac endothelial cells (126).
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3.3 Adverse effects on cardiac fibroblasts

In response to cardiac injury, both cytokine and neurohumoral

factors are released and profound changes occur in the mechanical

strain relationships within the ventricular wall (or septum), which

together are thought to underlie fibroblast activation. In response

to various stressors, cardiac fibroblasts trans-differentiate into

myofibroblasts, which synthesize larger amounts of ECM and

gain contractile activity due to expression of α-smooth muscle

actin (α-SMA) (127).
3.3.1 Apoptosis and necrosis
The potential for cardiac fibroblasts to undergo apoptosis in

response to anti-cancer drugs has not been widely studied.

However, a recent study has shown that doxorubicin caused both

apoptosis of cardiac fibroblasts and secretion of Fas ligand, which in

turn promoted cardiomyocyte death in a paracrine manner (128).

Furthermore, conditional deletion of ataxia telangiectasia mutated

kinase (ATM) in mouse cardiac fibroblasts attenuated cardiac cell

apoptosis, Left Ventricular Dysfunction (LVD), and mortality in

response to doxorubicin, suggesting that fibroblasts are central in

the pathogenesis of doxorubicin cardiotoxicity through ATM.
3.3.2 Cardiac fibrosis and matrix remodelling
Accumulation of fibrotic tissue is one of the underlying features

of doxorubicin-induced cardiomyopathy triggered by inflammation

and free radical ROS generation. Doxorubicin has been shown to

induce ROS and TGF-β and transformation of cardiac fibroblasts

to myofibroblasts in a rat model of cardiotoxicity (129). The

myofibroblasts express contractile proteins such as α-smooth

muscle actin (α-SMA) and secrete pro-fibrotic factors such as

collagen type 1 and fibronectin. Another study in rats has shown

that doxorubicin acts on cardiac fibroblasts, independent of

cardiomyocyte injury, to produce excess collagen (130). In vitro

studies have also shown that doxorubicin induces α-SMA and

trans-differentiation in human cardiac fibroblasts. Furthermore,

induction of matrix metalloprotease-I (MMP-1) and IL-6 was also

reported indicating the potential for matrix remodelling and

inflammatory cell recruitment (131). Together, this data suggests

that adverse effects of doxorubicin on cardiac fibroblasts can result

in long-term changes in matrix remodelling, potentially disrupting

the stromal environment around cardiomyocytes leading to long-

term changes in cardiac physiology.
4 Conclusions and future perspectives

Cancer therapies have evolved remarkably from classical

chemotherapy, first developed in the 1950s–1970s to target rapidly

dividing cells, through molecular targeted therapies developed in

the 1990s to target specific signalling pathways and more recently

to immunotherapies harnessing the potential of the immune

system to target cancer cells. As patients with cancer are living

longer, the potential for drug-induced cardiovascular toxicity is also

increasing. Furthermore, patients may be treated with a
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combination of therapies which can increase therapeutic efficacy

with a concomitant increase in toxicity. Research over the last two

decades has started to reveal the complexity of cardiovascular

toxicity induced by anti-cancer drugs and highlighted the potential

to adversely affect multiple cardiac cell types. This has profound

implications for current and future approaches to pre-clinical

cardiovascular safety assessment (132). Historically, drug safety

assessment has focused on analysing electrophysiological effects in

cardiomyocytes, or ion channel expressing cell lines, with

pathological assessment of organ toxicity in rodents and dogs

(133, 134). There is a clear need for more advanced in vitro

cardiac cell models that mirror human cardiac physiology.

The advent of iPSC-derived human cardiomyocytes has

allowed the development of contractile-competent 3D cardiac

microtissues that combine cardiomyocytes, endothelial cells and

fibroblasts (135–139). These multi-cellular cardiac cell models are

amenable to plate based high content imaging and other

technologies to assess effects on contractility and cell morphology

(140, 141), allowing simultaneous assessment of both functional

and structural cardiotoxicity.

Progression in the development of suitable cardiac endothelial

and fibroblast iPSC differentiation protocols, alongside iPSC

derived cardiomyocytes containing disease relevant mutations,

will enable the formation of cardiac microtissue derived entirely

from iPSC sources. Advantages include provision of cells at scale

suitable for high volume toxicity profiling in wild type and

disease models, and the potential to derive cells from multiple

gender and ethnic backgrounds (20). This may yield cardiac

models that better translate to patients reflecting clinically

observed differences in cardiotoxicity typically revealed only

during later stage clinical trials or post marketing.

Going forward, the challenges with in vitro cardiac cell models

are to try and recapitulate haemodynamic flow, where endothelial

cells form lumen-containing vessels surrounded by cardiac

pericytes and stromal cardiac fibroblasts and cardiomyocytes. These

models will allow us to recapitulate the physiological environment

in which xenobiotics are delivered to the heart and allow more

physiologically relevant analysis of drug-induced changes in cardiac

physiology, this level of complexity is a real challenge for heart-on-

a-chip approaches. As our understanding of the multi-cellular

nature of cancer drug induced cardiotoxicity increases, so does the

potential to exploit this knowledge to identify new biomarkers of

cardiac cell injury as well as therapeutic interventions to try and

ameliorate the adverse effects of drugs on cardiac cells.
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