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The essential role of dual-energy
x-ray absorptiometry in the
prediction of subclinical
cardiovascular disease
Sisi Yang†, Qin Chen†, Yang Fan†, Cuntai Zhang* and Ming Cao*

Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
Subclinical cardiovascular disease (Sub-CVD) is an early stage of cardiovascular
disease and is often asymptomatic. Risk factors, including hypertension,
diabetes, obesity, and lifestyle, significantly affect Sub-CVD. Progress in
imaging technology has facilitated the timely identification of disease
phenotypes and risk categorization. The critical function of dual-energy x-ray
absorptiometry (DXA) in predicting Sub-CVD was the subject of this research.
Initially used to evaluate bone mineral density, DXA has now evolved into an
indispensable tool for assessing body composition, which is a pivotal
determinant in estimating cardiovascular risk. DXA offers precise measurements
of body fat, lean muscle mass, bone density, and abdominal aortic calcification,
rendering it an essential tool for Sub-CVD evaluation. This study examined the
efficacy of DXA in integrating various risk factors into a comprehensive
assessment and how the application of machine learning could enhance the
early discovery and control of cardiovascular risks. DXA exhibits distinct
advantages and constraints compared to alternative imaging modalities such as
ultrasound, computed tomography, magnetic resonance imaging, and positron
emission tomography. This review advocates DXA incorporation into
cardiovascular health assessments, emphasizing its crucial role in the early
identification and management of Sub-CVD.
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1 Introduction

Subclinical cardiovascular disease (Sub-CVD) is an early stage of cardiovascular

disease (CVD) that is frequently asymptomatic. It is commonly observed in patients with

sedentary lifestyles, hypertension, diabetes, or obesity, which are all risk factors (1–4). The

confluence of health variables and lifestyle behaviors contributes to the development of

Sub-CVD. Smoking, physical inactivity, unhealthy diet, and obesity are major

contributors to its pathogenesis. High cholesterol levels, specifically low-density

lipoprotein cholesterol, hypertension, and poor glucose control, play key roles in

developing Sub-CVD, contributing to arterial plaque formation and vascular damage

(2, 5). Numerous studies have documented how these behaviors aggravate problems such

as arterial stiffness, atherosclerosis, and metabolic abnormalities (1, 2, 6–8). Clinical

diseases, including coronary and peripheral artery diseases, can result from Sub-CVDs. At

the outset, atherosclerosis develops because of the accumulation of plaques in the arteries.
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The risk factors include hypertension, obesity, and

hypercholesterolemia. Patients may experience heart failure,

arrhythmias, valve disorders, and stroke in the later stages (7, 9).

CVD represents a major public health concern on a global scale,

leading to a great clinical disease burden, high mortality rates, and

a substantial financial burden on healthcare systems (10). Timely

diagnosis and intervention are crucial for managing and

preventing risk factors from developing into clinically apparent

cardiovascular conditions.

Recent studies have demonstrated that, besides conventional

risk factors, body composition measures such as excessive body

fat, sarcopenia, and osteoporosis significantly increase the

prevalence of Sub-CVD (11–13). Systemic inflammation and

atherogenic dyslipidemia are both effects of visceral fat excess

(14, 15). Sarcopenia, characterized by muscle loss and decreased

function, is associated with reduced physical activity and an

elevated risk of cardiovascular incidents (16, 17). Osteoporosis

and Sub-CVD have similar risk factors (12, 18, 19), and

osteoporosis may also influence arterial calcium deposition.

Furthermore, abdominal aortic calcification (AAC) serves as an

indicator of advanced atherosclerosis, which may manifest before

coronary artery calcification, be detected in young persons, and

reflects an elevated cardiovascular risk (19–24). Mounting data

underscores the necessity for further studies and integration of

these factors into clinical assessments and therapeutic strategies

for cardiovascular health.

Initially employed to determine bone mineral density (BMD),

dual-energy x-ray absorptiometry (DXA) (25) has evolved into a

valuable tool for evaluating body composition (26). The

conventional use of DXA to assess bone density may indirectly
FIGURE 1

Risk factor for subclinical cardiovascular disease (Sub-CVD) and the predictio
include lifestyle indicators such as unhealthy diet, nicotine exposure, poo
hypertension, hyperglycemia, dyslipidemia, overweight, and obesity. It
assessment of abdominal aortic calcification (AAC) and body composition,
the early prediction and management of Sub-CVD, emphasizing its expand
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indicate cardiovascular risk owing to the correlation between

osteoporosis and CVD. Recent studies have highlighted a

potential link between bone health and cardiovascular risks. The

accuracy of DXA in determining lean muscle mass and body fat

assists in detecting excessive visceral fat, a major risk factor for

Sub-CVD (27–29). The efficiency of DXA in diagnosing

sarcopenia by measuring lean muscle mass highlights its role in

cardiovascular risk assessment, given the established link between

muscle mass loss and increased cardiovascular risk (16, 30–33).

Additionally, DXA can detect AAC, a significant marker for

atherosclerosis, consequently predicting Sub-CVD (28, 34–37).

Typically, physical examinations, blood tests, and imaging

modalities are used to diagnose Sub-CVD (10). The thorough

evaluation of body fat, sarcopenia, osteoporosis, and AAC by

DXA renders it a crucial tool for predicting and assessing Sub-

CVD (37–40). DXA aids in the early detection and management

of cardiovascular risk by providing comprehensive data on

various risk factors, potentially preventing progression from

subclinical to overt CVD. The multifaceted applications of DXA

are expanding beyond bone health to include a wider spectrum

of cardiovascular risks (Figure 1).
2 Risks of subclinical CVD detected by
DXA

2.1 Body fat

Numerous studies have emphasized the significance of adipose

tissue in maintaining cardiovascular health. Systemic
n of dual-energy x-ray absorptiometry (DXA). The risk factor of Sub-CVD
r sleep, and reduced physical activity, and clinical indicators such as
further highlights the utility of DXA in providing a comprehensive
such as osteoporosis, sarcopenia, and obesity, which is instrumental in
ed role in cardiovascular risk assessment beyond bone health.
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inflammation, atherogenic dyslipidemia, and insulin resistance are

induced by excessive body fat, particularly visceral adiposity. These

well-established risk factors for CVD demonstrate a substantial

association between obesity and increased risk of Sub-CVD (13,

14, 27, 41). Moreover, DXA can distinguish excess visceral fat,

which is a significant risk factor for Sub-CVD (27, 28, 31).

Aleksandra Radecka et al. demonstrated the potential of DXA in

assessing body composition, such as in Cushing’s syndrome,

which is directly relevant to cardiovascular risk (32).

Obesity is characterized by excessive free fatty acids and

triglycerides, leading to ectopic lipid deposition in various tissues,

such as the liver, skeletal muscle, and myocardium. This

deposition results in insulin resistance, hypertension, metabolic

syndrome, type 2 diabetes mellitus, atherosclerosis, and CVD.

Obesity-related dysfunctional visceral white adipose tissue

generates oxidative stress and pro-inflammatory adipokines and

activates the renin-angiotensin-aldosterone system, thereby

increasing cardiovascular risk. Inflammation may be a potential

molecular mechanism, and systemic inflammation is induced by

excessive body fat, particularly visceral fat, by secreting pro-

inflammatory cytokines, tumor necrosis factor-α (TNF-α), and

interleukin-6 (IL-6) from adipose tissue. These cytokines

significantly influence atherosclerosis and endothelial dysfunction,

which are critical components of Sub-CVDs (14, 41, 42).

Obesity is associated with insulin resistance, which serves as a

precursor to type 2 diabetes mellitus and metabolic syndrome, both

of which are recognized risk factors for CVD. Increased

cardiovascular risk is further exacerbated by dyslipidemia and

hypertension resulting from insulin resistance. Adipose tissue

actively secretes adipokines such as leptin, resistin, and

adiponectin. Leptin and resistin upregulate oxidative stress and

pro-inflammatory cytokine production, thereby promoting

atherosclerosis and inflammation. Conversely, adiponectin has

anti-inflammatory properties; however, its levels decrease with

obesity. Lipotoxicity, caused by ectopic fat accumulation in non-

adipose tissues, leads to endothelial dysfunction and cellular

damage, significantly contributing to atherosclerosis, a precursor

of subclinical CVD (43). Furthermore, obesity and type 2 diabetes

mellitus orchestrate changes in substrate usage, tissue metabolism,

oxidative stress, and inflammation, which collectively promote

myocardial fibrosis and cardiac dysfunction (15).

The whole-body scan is performed using DXA. Discovery QDR

software (version 13.5.3.2) then differentiates between fat and lean

tissues to generate a comprehensive body fat distribution. DXA

measures total body fat with a particular focus on visceral fat,

which is closely related to cardiovascular risk.
2.2 Sarcopenia

Sarcopenia is characterized by reduced muscle mass and

dysfunction, leading to decreased physical activity. Reduction in

physical inactivity can potentially promote the progression of

atherosclerosis and insulin resistance. Ke Gao et al. demonstrated

a correlation between muscle mass loss and the rising prevalence

of CVD (17). Recent research has uncovered the molecular
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mechanisms underlying the relationship between sarcopenia and

Sub-CVD, providing evidence for this connection (16).

Sarcopenia involves a reduction in muscle mass that inhibits the

synthesis of nitric oxide (NO), an essential vasodilator. Decreased

NO levels contribute to vascular stiffness and hypertension (44).

Furthermore, muscle loss impairs glucose and lipid metabolism,

exacerbating insulin resistance, a known risk factor for CVD

(43, 45–47). Elevated levels of pro-inflammatory cytokines, such

as C-reactive protein, IL-1, IL-6, and TNF-α, in sarcopenia lead

to mitochondrial dysfunction in skeletal muscle. This dysfunction

results in increased production of reactive oxygen species, which

trigger the ubiquitin-proteasome cascade and amplify muscle

proteolysis (48–50). Similarly, IL-6 inhibits muscle protein

synthesis and activation of the Akt/mTOR pathway by inducing

insulin resistance (51–54). Sarcopenia profoundly affects

cardiovascular health, accelerates CVD progression, and increases

the risk of mortality.

DXA determines the muscle mass, particularly in the

extremities (arms and legs), which is crucial for diagnosing

sarcopenia. The evaluation involves analyzing the distribution of

lean muscle mass, with sarcopenia diagnosed using specific cut-

off values based on established guidelines. The ability of DXA to

detect sarcopenia is significantly linked to the prediction of Sub-

CVD risk (30, 38).
2.3 Osteoporosis

Cohort research from the UK biobank has suggested a possible

correlation between DXA-determined bone health and

cardiovascular risk (55). Increased cardiovascular risk is

associated with osteoporosis and decreased BMD, as reported in

epidemiological studies (56). Notable correlations have also been

identified between fragility fractures, which often result in

osteoporosis, and later onset of cardiovascular conditions,

including, but not limited to, heart failure, stroke, and ischemic

heart disease. Osteoporosis and Sub-CVD share common risk

factors, such as aging, diabetes mellitus, obesity, smoking,

sedentary lifestyle, and advancing inflammation and hormonal

changes. Additionally, the accumulation of calcium in the arterial

walls highlights osteoporosis as a potential indicator of Sub-CVD

(55, 57–59). This relationship could fundamentally alter our

understanding of osteoporosis and cardiovascular health.

Multiple mechanisms link osteoporosis to CVD, and systemic

inflammation plays a key role in both conditions. The Wnt

signaling pathway is critical for the maintenance of

cardiovascular homeostasis. Romosozumab, which inhibits

sclerostin and is used in the treatment of osteoporosis, activates

the Wnt pathway and may affect cardiovascular remodeling,

potentially increasing the risk of cardiovascular events. The

calcium paradox describes the inverse correlation between

vascular calcification and bone density. Calcium from bone

deterioration can exacerbate arterial calcification, which is a risk

factor for Sub-CVD. The RANK/RANKL/OPG pathway, essential

for bone remodeling, is also involved in vascular calcification

(60, 61). Osteoprotegerin (OPG), a RANKL decoy receptor,
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inhibits bone resorption and contributes to vascular disease

(62–65). Additionally, vitamin D deficiency and secondary

hyperparathyroidism in osteoporosis may lead to vascular

calcification and endothelial dysfunction (60, 66).

Furthermore, anti-osteoporotic medications may influence

CVD. Bisphosphonates, which inhibit bone resorption, may

impact lipid profiles and atherogenesis. Some anti-osteoporosis

drugs could have beneficial cardiovascular effects, whereas certain

vasoactive agents might positively affect bone health. The

interplay between these domains requires further research (12, 18).

DXA is considered the gold standard for measuring BMD and

is crucial for osteoporosis diagnosis. It typically scans the spine and

hip and areas where fractures are the most common. The T- or Z-

score, calculated by comparing BMD values with age- and sex-

adjusted normative data, helps to identify osteoporosis or

osteopenia. Early osteoporosis screening with DXA may also

detect Sub-CVD in its early stages (55, 56).
2.4 AAC

Calcium deposition on the walls of the abdominal aorta is a

defining feature of AAC. This process is driven by the osteogenic

transformation of vascular smooth muscle cells (VSMCs) and is

influenced by various factors such as inflammation, oxidative

stress, and dysregulated mineral metabolism. Calcification in the

aorta can reduce elasticity, cause endothelial dysfunction, impair

blood flow, and increase the risk of cardiovascular events (19, 34,

35, 67). Inflammation can stimulate VSMCs within the arterial

wall to undergo osteogenic differentiation, leading to

calcification. Matrix vesicles, which are extracellular vesicles

derived from VSMCs, play a crucial role in initiating and

propagating calcification in the arterial wall (37, 68, 69).

The molecular mechanisms underlying the role of body fat,

sarcopenia, osteoporosis, and AAC in the development of Sub-

CVD are intricate and multifaceted. These conditions are

involved in various biochemical and cellular pathways, including

inflammation, metabolic dysregulation, endothelial dysfunction,

and osteogenic transformation. This complexity underscores the

impact of these factors on cardiovascular health. The referenced

studies provide a comprehensive understanding of these

mechanisms, highlighting the importance of addressing these risk

factors in the prevention and treatment of Sub-CVD.

DXA can detect AAC, a marker of Sub-CVD (34, 67, 70, 71).

AAC was scored on a 0–24 point scale based on baseline lateral

lumbar spine x-rays. This calcification is indicative of advanced

atherosclerosis and is associated with an increased risk of

cardiovascular events (34, 70).
3 Comparison of DXA with other
non-invasive imaging tools in
predicting sub-CVD

Advances in digital imaging and biomarker technologies have

greatly enhanced our ability to phenotype populations, providing
Frontiers in Cardiovascular Medicine 04
detailed insights into the structural and functional dynamics of

the cardiac and vascular systems. Developing modern non-

invasive and invasive imaging technologies has led to significant

advancements in diagnostic imaging (72, 73). This progress is

crucial for early disease phenotyping, risk stratification, and

management of CVD. Techniques such as carotid ultrasound,

coronary cardiac computed tomography (CT), magnetic

resonance imaging (MRI), and positron emission tomography

(PET) are essential for detecting Sub-CVD risk factors, including

early atherosclerosis and myocardial perfusion anomalies (74).

Carotid ultrasound measures intima-media thickness (IMT), a

crucial early biomarker of atherosclerosis and arterial fibrosis that

helps predict future CVD risk (75–78). The correlation between

IMT and atherosclerotic histology makes it a reliable marker.

Echocardiography, another ultrasound-based technique, is crucial

for detecting and monitoring cardiac remodeling. Additionally,

ultrasound also assesses body composition by measuring

subcutaneous fat thickness and muscle echogenicity, which

indicate skeletal muscle quality (77, 79–81). Although ultrasound

may not be as comprehensive as MRI or CT for these

evaluations, its non-invasive nature, cost-effectiveness, efficiency,

and lack of radiation make it a valuable tool in clinical settings.

CT plays a crucial role in predicting CVD and evaluating body

composition (82). The coronary artery calcium (CAC) score,

obtained through CT, is an essential prognostic indicator of CVD

(83). This score quantifies calcium deposition in coronary arteries

and serves as a marker of arterial rigidity and potential

atherosclerosis. CAC scoring is vital for CVD risk stratification

(84, 85). CT angiography enhances diagnostic precision by

visualizing the coronary architecture, detecting severe stenosis, and

identifying subclinical coronary artery disease. In body

composition studies, CT is instrumental in determining total body

adipose tissue and muscle mass (86, 87). However, the use of CT

is often limited due to concerns regarding radiation exposure.

MRI is invaluable for forecasting CVD and analyzing body

composition (88–90). High-resolution MRI effectively assesses

plaque volume and composition in the carotid arteries and

abdominal aorta of patients with CVD. MRI discerns plaque

components, such as the fibrous cap, necrotic core, and areas of

hemorrhage or calcification. MRI excels in three-dimensional

(3D) assessments of adipose tissue, muscle volume, and fat

fraction across various organs when analyzing the body

composition. MRI exhibits high spatial resolution and

reproducibility, making it the clinical gold standard for

evaluating cardiac structure and function (91, 92). The ability of

MRI to identify cardiac fibrosis enhances its diagnostic capability.

However, concerns about cost and accessibility have limited their

widespread use.

PET is a sophisticated tool in cardiovascular diagnostics,

particularly for detecting microvascular dysfunction (MVD) in

patients with angina without obstructive coronary disease (93, 94).

PET assesses coronary flow and myocardial perfusion reserve and

provides information on epicardial stenosis and MVD. It

accurately quantifies myocardial blood flow, making it invaluable

for diagnosing MVD and evaluating cardiac perfusion in various

cardiac pathologies. Although PET offers improved diagnostic
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accuracy for MVD through a comprehensive analysis of myocardial

perfusion, limitations such as reduced temporal resolution and

radiation exposure must be considered (95, 96).

DXA is a multifunctional imaging modality that offers a

comprehensive assessment of body composition while minimizing

radiation exposure. It is crucial for evaluating early-stage CVD risk

factors, including osteoporosis, sarcopenia, and obesity (26, 28, 29,

31). DXA can also detect AAC, which is a precursor to coronary

artery calcification and is significantly associated with CVD

mortality, incident coronary heart disease, myocardial infarction, and

stroke (34, 37, 97). Electron beam and multidetector CT are

exceptionally precise for quantitative assessment, and the Agatston

score is used to estimate the AAC. AAC is a readily available imaging

marker that can be used to diagnose early stages of CVD. AAC can

also be identified using MRI and transesophageal echocardiography.

However, x-ray-based imaging technologies, including DXA, are

most commonly used for detecting and diagnosing AAC owing to

their accessibility and relatively low radiation exposure.

In conclusion, each imaging modality offers distinct advantages

and disadvantages for predicting Sub-CVD. DXA has been

recognized for its comprehensive assessment of body composition

and minimal radiation exposure. However, CT and MRI provide a

more direct visualization of cardiac structures and atherosclerosis,

which can be crucial for detailed diagnostics. Ultrasound presents a

balance between accessibility, safety, and functional assessment but

does not offer the same level of comprehensive risk profiling as

DXA (Table 1). The choice of imaging tool should be based on the

specific clinical scenario, available resources, and the patient’s

overall risk profile.
4 Future perspectives

With advances in artificial intelligence and modern medicine,

many researchers have investigated the critical function of
TABLE 1 Comparison of non-invasive imaging tools for predicting Sub-CVD.

Imaging technology CVD Risk factors assessed Key adv
UT Intima-media thickness

Arterial fibrosis
Cardiac remodeling
Body composition

Non-invas
Affordable
Safe

CT Coronary artery calcium score
Visualizes coronary anatomy
Body composition

High deta

MRI Plaque volume
Myocardial fibrosis
3D measurements of adipose tissue
Muscle mass
Cardiac structure/function
Myocardial fibrosis

High spati
Detailed c

PET Microvascular dysfunction
Coronary flow reserve
Myocardial perfusion reserve

High accu
Diagnostic

DXA Osteoporosis
Sarcopenia
Obesity
Abdominal aortic calcification

Comprehe
Low radia

UT, ultrasound; CT, computed tomography; MRI, magnetic resonance imaging; PET, positron e
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machine learning (ML) in predicting Sub-CVD. Numerous

studies have suggested that ML, particularly deep learning (DL),

could improve the predictive and evaluative skills of DXA for

Sub-CVD (98–101). ML models can integrate diverse datasets,

including demographic, lifestyle, and disease history data, with

detailed DXA data to more accurately forecast the progression of

Sub-CVD. The predictive potential is critical for the timely

management of Sub-CVD. By combining ML with DXA,

personalized risk profiles for cardiovascular diseases can be

developed. Algorithms that analyze individual DXA scans along

with broader clinical data can facilitate tailored risk stratification,

thereby enhancing the precision of preventive measures.

Conventional risk prediction scores are frequently employed in

cardiovascular risk assessment and are supported by several national

cardiovascular authorities, as well as by the World Health

Organization. Commonly used scores for predicting CVD, such as

the Framingham risk score, QRISK, systematic coronary risk

evaluation, UK prospective diabetes study risk engine, and

cardiovascular health score (2, 102–104), are combined with

traditional risk factors, such as age, sex, ethnicity, socioeconomic

status, family history, diet, physical activity, nicotine exposure, sleep

health, body mass index, lipid profile, blood glucose, and blood

pressure. Traditional scores, which are derived from statistical models

based on cohort studies, employ set algorithms that do not account

for the expansion of patient data. Conversely, ML operates without

predetermined rules, utilizes data dynamically, and is independent of

statistical assumptions, thereby enabling the discovery of complex

data interactions. ML, encompassing supervised, unsupervised, and

reinforcement learning, differs from traditional methods in that it

focuses on predictive accuracy over hypothesis-driven inference.

ML offers diverse and powerful techniques for predicting CVDs.

Supervised learning algorithms, such as neural networks and

decision trees, efficiently exploit annotated data to forecast CVD

by leveraging recognized risk variables. Unsupervised learning is

paramount in identifying novel risk factors by unveiling hidden
antages Limitations
ive Less detailed

High technical requirements for operators

il in body composition Radiation exposure

al resolution
ardiac function

High cost
Limited accessibility

racy in blood flow measurement
power

Reduced temporal resolution
Radiation exposure

nsive body composition analysis
tion

Limited indirect cardiac structure visualization

mission tomography; DXA, dual-energy x-ray absorptiometry.
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FIGURE 2

Machine learning model for cardiovascular risk stratification. Combining demographic data (such as age, gender, race, education, marital status and
financial status), lifestyle (such as height, weight, diet, alcohol consumption, nicotine exposure, sleep, and physical activity and clinical indicators,
hypertension, hyperglycemia, dyslipidemia, overweight, and obesity), clinical data (such as abdominal circumference, hip circumference, body
mass index, blood pressure, glycemia, and lipidemia) and the comprehensive data from dual-energy x-ray absorptiometry (DXA) to the machine
learning model. The model process these inputs to categorize individuals into three risk groups for subclinical cardiovascular disease (Sub-CVD):
low, moderate, and high risk. This predictive model aims to enhance early detection and intervention strategies for Sub-CVD.

Yang et al. 10.3389/fcvm.2024.1377299
patterns within the data. Reinforcement learning is promising for

the development of individualized treatment techniques via

iterative trial-and-error methodologies (101, 105). DL, a subset of

ML, excels in analyzing medical images and detecting complex

indicators of Sub-CVD (106, 107). ML technology can predict and

manage cardiovascular health, which is a significant advancement.

The integration of ML, particularly DL, with DXA can enhance

diagnostic precision and personalize risk assessment, thereby

making a substantial contribution to proactive and individualized

patient care in cardiology (Figure 2).
5 Conclusion

Our review highlights the distinct capacity of DXA to precisely

assess body composition, particularly body fat and lean muscle

mass, which are key indicators of cardiovascular health. Besides, its

effectiveness in detecting osteoporosis and AAC establishes it as a

vital instrument for the stratification and management of Sub-CVD.

In summary, DXA has emerged as a diagnostic tool essential in

predicting cardiovascular health (11, 38, 74). This review also

underscores the necessity of a multidisciplinary approach for

managing Sub-CVD, advocating the use of DXA alongside other

diagnostic tools and clinical evaluations. Such an integrative strategy

ensures a more comprehensive cardiovascular risk assessment,

fostering more effective prevention and management tactics.
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