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A machine learning-derived risk
score to predict left ventricular
diastolic dysfunction from
clinical cardiovascular magnetic
resonance imaging
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Introduction: The evaluation of left ventricular diastolic dysfunction (LVDD) by
clinical cardiac magnetic resonance (CMR) remains a challenge. We aimed to
train and evaluate a machine-learning (ML) algorithm for the assessment of
LVDD by clinical CMR variables and to investigate its prognostic value for
predicting hospitalized heart failure and all-cause mortality.
Methods: LVDD was characterized by echocardiography following the ASE
guidelines. Eight demographic and nineteen common clinical CMR variables
including delayed enhancement were used to train Random Forest models
with a Bayesian optimizer. The model was evaluated using bootstrap and
five-fold cross-validation. Area under the ROC curve (AUC) was utilized to
evaluate the model performance. An ML risk score was used to stratify the risk
of heart failure hospitalization and all-cause mortality.
Results: A total of 606 consecutive patients underwent CMR and echocardiography
within 7 days for cardiovascular disease evaluation. LVDDwas present in 303 subjects
by echocardiography. The performance of the ML algorithm was good using the
CMR variables alone with an AUC of 0.868 (95% CI: 0.811–0.917), which was
improved by combining with demographic data yielding an AUC 0.895 (95% CI:
0.845–0.939). The algorithm performed well in an independent validation cohort
with AUC 0.810 (0.731–0.874). Subjects with higher ML scores (>0.4121) were
associated with increased adjusted hazard ratio for a composite outcome than
subjects with lower ML scores (1.72, 95% confidence interval 1.09–2.71).
Discussion: An ML algorithm using variables derived from clinical CMR is
effective in identifying patients with LVDD and providing prognostication for
adverse clinical outcomes.
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Abbreviations

AUC, area under the curve; CAD, coronary artery disease; CI, confidence interval; CMR, cardiac magnetic
resonance; DD, diastolic dysfunction; LAEF, LA emptying fraction; LAVmax, left atrium maximum volume;
LAVmin, LA minimum volume; LGE, late gadolinium enhancement; LVEDV, left ventricular end diastolic
volume; LVEF, LV ejection fraction; LVESV, LV end systolic volume; LV mass, LV mass; LVSV, LV stroke
volume; RWMA score, number of segments with regional wall movement abnormalities; RVEDV, right
ventricular end diastolic volume; RVEF, RV ejection fraction; RVESV, RV end systolic volume; RVSV, RV
systolic volume; RWMA score, number of segments with regional wall movement abnormalities; TE, echo
time; TR, repetition time.
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1 Introduction

Left ventricular diastolic dysfunction (LVDD) is an important

risk factor for heart failure (HF) and all-cause mortality (1, 2).

Effectively and promptly identifying patients with LVDD may

decrease their associated risk of adverse outcomes, improve

survival, and reduce the heavy social and economic burden of

heart failure (3). Echocardiography is the most commonly used

modality to assess LVDD where standardized guidelines have

been established and adopted for clinical use (4).

While cardiac magnetic resonance (CMR) is highly valuable in

the evaluation of LV function and myocardial tissue properties,

integrated assessment of LVDD using available parameters

captured in routine clinical CMR examination remains challenging

(5, 6), albeit individual variables derived from clinical CMR such

as left atrial size and strain, LV mass and longitudinal strain are

closely associated with LVDD (7, 8). In addition, measurements

beyond routine CMR images have shown early promise in LVDD

evaluation (9–11). The goal of the present study was to test a

hypothesis that the machine learning (ML) risk score can

determine the probability of LVDD using CMR variables captured

in routine clinical examinations. In addition, we aimed to

investigate the prognostic value of our ML score to estimate the

risk of heart failure (HF) hospitalization and all-cause mortality.
2 Materials and methods

2.1 Study subjects

We identified consecutive patients who underwent

echocardiography and CMR as clinically indicated with gadolinium

contrast within 7 days of each other from a single center between

January 2004 and December 2014. Demographic information and

cardiovascular history were collected prospectively at the time of

CMR. A total of 702 patients were identified initially. After

excluding 96 subjects who had missing echocardiographic data for

adequate evaluation of LVDD or inadequate CMR image quality

using real time imaging due to arrhythmia, there were 606 subjects

included in the analysis. Of those, 395 were prospectively enrolled

with echocardiography and CMR obtained on the same day and

the remaining 211 were identified from the clinical patient

population. The study was approved by the St. Francis Hospital

Institutional Review Board and a waiver was granted for the

analysis of retrospective data. An additional set of subjects following

the same inclusion/exclusion criterea were identified from a

separate hospital within the same health system (30 miles apart

representing a different catchment area) and were used as an

external validation cohort. The Good Samaritan University Hospital

Institutional Review Board granted approval for our use of subjects

for the validation cohort and provided a waiver of informed

consent for retrospective data collection.

LVDD by echocardiography was characterized following ASE

guidelines (4). Details about these subjects were published in a

prior study from our group (12). The outcome of HF

hospitalization was identified from electronic medical records of the
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Catholic Health System of Long Island, NY. All-cause mortality

data was obtained from both the electronic medical records and

National Death Index between 2004 and 2018. All-cause mortality

and HF hospitalization were combined to form a composite

time-to-event outcome.
2.2 Imaging acquisition—transthoracic
echocardiography

Comprehensive echocardiographic examination was performed

using a multi-frequency transducer ultrasound system (Philips IE

33, Andover, MA) as described previously (12). Briefly, from the

apical window, pulsed wave Doppler was used to interrogate

mitral inflow from 3 to 5 cardiac cycles at the level of the mitral

valve annulus and at the mitral leaflets’ tips. Subjects with atrial

fibrillation were excluded. Tissue Doppler was applied to record

mitral annular velocities at the septal and lateral corners of the

annulus, and the results are given as an average of both from 3

to 5 cardiac cycles. Tricuspid regurgitation velocity was recorded

by continuous wave Doppler from multiple windows. Two-

dimensional measurements were performed according to

recommendations of the American Society of Echocardiography

(13) and indexed to body surface area. Echocardiograms were

utilized only for the diagnosis of presence and severity of LVDD

in our analysis. Mitral inflow early (E) and late (A) peak

velocities, early diastolic annular myocardial longitudinal velocity

(e′), tricuspid regurgitation and left atrial volume (LA) index

were measured in order to determine the DD grade. Subjects

with indeterminate DD diagnosis (N = 7) were excluded;

however, subjects with DD but indeterminate of grade following

current guidelines were included and were considered to have

DD. These subjects with DD present but indeterminate of grade

were not further classified. The scan and analysis protocols were

kept the same for the validation cohort.
2.3 Imaging acquisition—CMR

All subjects underwent CMR on a 1.5T scanner (Avanto,

Siemens, Malvern, PA) with an 8-element phased array surface

coil. Cine imaging of the long axis planes (2-, 3-, and 4-chamber

views) and a stack of 8–12 short axis planes (contiguous 8 mm

slice), starting from the mitral annulus, were acquired using

balanced steady state free precession sequence with 30 phases per

cardiac cycle. The average temporal resolution was 50 ms, with a

typical field of view of 240 mm, flip angle of 70 degrees, repetition

time (TR) of 3.1 ms and echo time (TE) 1.3 ms. Phase sensitive

inversion recovery late gadolinium enhancement (LGE) imaging

was performed 10–15 min after the administration of 0.15 mmol/

kg of gadopentetate dimenglumine on a stack of LV diastolic short

axis slices with the following parameters; TE 3.17 ms, TR = 1 × RR

interval, flip angle 25°, voxel size 1.9 mm2 × 1.4 mm2 × 8 mm3 and

FOV 360 mm2 × 290 mm2. The inversion time was selected from

TI scout imaging. CMR performed on the validation cohort

followed the same imaging protocol on a 1.5T scanner (Aera,
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TABLE 1 Baseline characteristics of the training cohort between subjects
with and without left ventricular diastolic dysfunction.
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Siemens, Malvern, PA) with an exception of using gadobutrol at

0.15 mmol/kg for LGE imaging.
All
subjects
(N = 606)

LVDD
(N = 305)

No LVDD
(N = 301)

p values

Demographic variables
Age (years) 66 ± 16 71 ± 15 61 ± 16 <0.001

Female (%) 377 (62%) 195 (65%) 182 (60%) <0.001

BMI (kg/m2) 28 ± 6 29 ± 7 28 ± 5 <0.001

Hypertension (%) 217 (36%) 149 (50%) 68 (22%) <0.001

Diabetes mellitus (%) 72 (12%) 58 (19%) 14 (5%) <0.001

Hyperlipidemia (%) 217 (36%) 137 (46%) 80 (26%) <0.001

Family history of CAD (%) 117 (19%) 57 (19%) 60 (20%) <0.001

History of CAD (%) 87 (14%) 45 (15%) 42 (14%) <0.001

CMR variables
LVEDV (ml/m2) 85 ± 26 92 ± 31 77 ± 16 <0.001

LVESV (ml/m2) 42 ± 28 52 ± 35 31 ± 13 <0.001

LVEF (%) 51 ± 14 44 ± 16 57 ± 7 <0.001

LV mass (g/m2) 62 ± 19 70 ± 22 55 ± 12 <0.001

LVSV (ml) 84 ± 42 79 ± 38 90 ± 44 0.001

RVEDV (ml/m2) 72 ± 18 71 ± 20 73 ± 17 0.075

RVESV (ml/m2) 31 ± 17 33 ± 19 29 ± 13 0.019

RVEF (%) 53 ± 10 50 ± 12 56 ± 7 <0.001

RV stroke volume (ml) 76 ± 33 70 ± 31 83 ± 34 <0.001

LAVmax (ml/m2) 42 ± 20 45 ± 22 38 ± 17 <0.001

LAVmin (ml/m2) 25 ± 19 30 ± 21 20 ± 16 <0.001

LAEF (%) 42 ± 15 36 ± 16 48 ± 12 <0.001

RWMA Score 176 (29%) 144 (48%) 32 (10%) <0.001

LGE prevalence 281 (46%) 194 (64%) 87 (29%) <0.001

LGE Infarct pattern 90 (15%) 75 (25%) 15 (5%) <0.001

LGE Non-Infarct pattern 191 (32%) 119 (40%) 72 (24%) <0.001
2.4 Image post processing

The volumetric analysis of the cine images from CMR was

analyzed using QMASS software (Version: 7.2. Medis, Leiden,

The Netherlands). LA volume was analyzed following the area

and length method using 2- and 4-chamber long axis cine

images with commercial software (Circle Cardiovascular Imaging

Inc, version: 5.11, Calgary, Canada) and indexed to body surface

area (BSA). LA maximum volume (LAVmax) was assessed at LV

end systole and LA minimum volume (LAVmin) at LV end

diastole. Regional wall motion abnormalities (RWMA) were

assessed and expressed as present vs. absent. Global LV peak

strain was measured in the longitudinal, circumferential and

radial directions by feature tracking software (Circle

Cardiovascular Imaging Inc, Calgary, Canada). The epi- and

endocardial contours were drawn manually on the end diastolic

phase of the 2-, 3-, and 4-chamber long-axis cine images for

longitudinal strain and short-axis segmented cine images for the

circumferential and radial strain and propagated automatically to

calculate global peak systolic strains. All image analyses were

performed by experienced operators. LGE was interpreted by

cardiologists who had 6–20 years of experience. LGE was

assessed as binary variable as well as characterized as either

absent, ischemic or non-ischemic fibrotic patterns.
LV peak strain variables
Longitudinal (%) −12 ± 4 −10 ± 4 −14 ± 4 <0.001

Circumferential (%) −14 ± 5 −12 ± 5 −16 ± 4 <0.001

Radial (%) 23 ± 10 18 ± 10 27 ± 9 <0.001
2.5 Machine learning algorithm and
evaluation

We explored three tree-based approaches including Random

Forest, XGBoost and AdaBoost. Random Forest was selected due

to its superior model performance, evaluated by the highest

R-squared value (data not shown).

Five Random Forest models were evaluated whose variables

included (1) demographic variables only; (2) clinical CMR variables

only; (3) clinical CMR + demographic variables; (4) clinical CMR+

LV peak systolic strain variables; (5) clinical CMR+ LV peak

systolic strain + demographic variables (list of all variables was

included in Table 1). Area under the curve (AUC) from the

Receiver Operating Characteristic analysis was used to evaluate each

model’s performance. The model with the best performance was

chosen to compute the ML risk score. The ML risk score was

defined as the model’s predicted probability of of LVDD diagnosis,

conditional on the risk factors in the selected model. The Random

Forest model was developed using python (v. 3.10.2) and its

associated libraries [Random Forest (https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestClassifier.html);

SHAP (https://github.com/slundberg/shap) and Bayesian optimizer

(https://pypi.org/project/bayesian-optimization)].

A bootstrap approach was utilized to calculate 95% confidence

intervals (CI). Each of the clinical datasets was stratified into five

folds where four folds were used as training (80%) and the
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remaining (20%) as a testing dataset. This process was repeated

four times. A nested cross-validation procedure (14, 15) was

incorporated into the ML algorithms where the training dataset

was further divided into five sub-folds and four of which were

used for sub-training and the remaining for validation. In

addition, a Bayesian optimizer was utilized to identify the best

hyper-parameters for the random forest models. The model

output for the probability of LVDD diagnosis was defined as the

ML risk score.
2.6 Model interpretation and feature
importance

We leveraged the Random Forest models with the Shapley

values (16) to explore the individual contributions of the clinical

variables to the probability of LVDD diagnosis. Briefly, we

examine the pathway each individual subject takes through the

model. The subject reaches a decision point (variable split) where

the value of each contributing variable either increases or

decreases the subject’s probability of LVDD. Each option

contributes a weight, and that weight is associated with the
frontiersin.org
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variables used to determine the decision point. By aggregating these

decision point weights, we can identify the important features

among all risk factors.
2.7 Statistical analysis

Continuous variables were summarized as mean ± SD and the

categorical variables were expressed as numbers or percentage (%).

Random forest-derived models generated scores demonstrating risk

of LVDD diagnosis. Youden’s index, (calculated as sensitivity +

specificity− 1) was used to identify the optimal threshold for the

ML risk score, which was subsequently used to stratify the

subjects into having high or low ML risk scores or higher or

lower probability of LVDD. Kaplan–Meier plots, generated using

MedCalc (v20.110, MedCalc Software Ltd, Belgium) were

developed to compare event-free survival between those with

high and low probability of LVDD based on ML risk scores

(evaluated with log-rank tests). Additionally, Cox proportional

hazards models were created in order to evaluate the prognostic

role of the probable LVDD based on our ML risk score in the

context of traditional risk factors. To validate the models, we

used an external dataset. The previously calibrated models based

on the training dataset were tested on the validation dataset.

Models were evaluated based on demographic data alone, CMR

parameters alone and the combination of demographic and CMR

parameters. AUC were used to validate the model performance.

Analyses were performed using SigmaPlot (v14, Systat Software

Inc., Palo Alto, CA). All two-sided p values <0.05 were

considered statistically significant.
FIGURE 1

Area under the ROC curves (95% confidence intervals) from random forest al
variable datasets.
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3 Results

Of the 606 subjects included, the average age was 66 ± 16 years

and 62% were female. Of those, 305 subjects were diagnosed with

LVDD by echocardiography with 113 subjects classified with grade

1, 63 grade II, 31 grade III and 98 with indeterminate LVDD

grade. Compared to the subjects with no LVDD, those with LVDD

were older and more likely to have cardiovascular risk factors such

as hypertension, diabetes mellitus and hyperlipidemia (Table 1).

In addition, the left and right ventricular ejection fractions and

stroke volumes were lower, LGE prevalence was higher (64% vs.

29%, p < 0.001) and the LV peak systolic strain values were reduced.

We tested ML model performance based on different sets of

variables. The CMR variables alone were predictive of LVDD

strongly with an AUC of 0.868 (95% CI: 0.811, 0.917) higher than

demographic variables alone, which had an AUC 0.717 (0.641,

0.787) (p for comparison <0.001) (Figure 1). Combined CMR and

demographical variables yielded improved model performance with

an excellent AUC of 0.895 (0.846, 0.939) compared with CMR or

demographical variables alone (p < 0.001). Conversely, the addition

of LV peak strain parameters did not further improve the model

performance whether in combination with CMR or with CMR

plus demographic variables (0.868 vs. 0.870, p = 0.835 and 0.895 vs.

0.893, p = 0.803, respectively).

We ranked the importance features following the Shapley values

based on the model with the best performance from the

combination of CMR and demographic variables. The top 5

important features were LVEF, age, LV mass, LAEF and LAVmin

(Figure 2). Next, we calculated a ML risk score for each subject.

Shown in Figure 3 are two examples how Shapley values of each
gorithm predicting left ventricular diastolic dysfunction based on different
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FIGURE 2

Global importance features of the random forest model.
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variable varies from subject to subject, both with normal LV

ejection fraction contributing to drastically different ML risk scores.

Subjects were divided into high-risk and low-risk groups at a

cut-point (0.4121) defined by Youden’s index. Correspondingly,

at the cut-off values, the ML risk score for identifying the LVDD

were associated with a sensitivity of 0.82, a specificity of 0.80, a

positive predictive value of 0.81, a negative predictive value of

0.79, and an accuracy of 0.80. Among those with low ML risk

score (N = 309) 65 (21%) subjects were misclassified chiefly due

to grade I (8%) or undetermined (11%) LVDD grade, which was

88% of all those misclassified. The remainder were due to

misclassification of the advanced LVDD (grade II or III).

Conversely, among those with high ML risk score (N = 297) 57

(19%) subjects with no LVDD were misclassified.

After a mean follow up of 4.8 years, 123 subjects were

hospitalized for HF, 99 died and 182 had a composite outcome

of either HF or all-cause death. Subjects with higher ML risk

scores were more likely to be hospitalized for HF, experience

all-cause mortality, or had a composite outcome than subjects

with lower ML risk scores as seen in the Kaplan–Meier curves

(Figure 4) (log-rank p < 0.001 for all 3 comparisons). Cox

proportional hazards models revealed that after adjustment for

traditional risk factors including age, gender, BMI, history of

hypertension, diabetes, coronary artery disease, as well as LVEF

and presence of scar measured on CMR, having a high LVDD

risk score was associated with a 72% increase in hazards of our

composite outcome [hazard ratio 1.72, (95% CI: 1.09–2.71)],

(Table 2). Additionally, compared to a model including the

traditional risk factors, adding the LVDD ML risk score

significantly improved model fit (likelihood ratio test p = 0.015).

For the validation cohort (N = 96) the average age was 55 ± 17,

younger than the training cohort of 66 ± 16 years. Participants were

41% female, fewer than the training cohort of 62%. Out of these

subjects, 55 were identified as having LVDD. The subjects with
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LVDD were older, and had a higher prevalence of cardiovascular

risk factors such as hypertension and hyperlipidemia (Table 3).

Additionally, the left and right ventricular ejection fractions and

stroke volumes were lower and LGE prevalence was higher.

Notably the prevalence of LGE and RWMA was higher in this

cohort than the training cohort, 57% vs. 46% and 79% vs. 29%,

respectively. Similar to the training cohort, the model

performance of the validation cohort was better using CMR

variables alone than using demographic variables, AUC of 0.786

(0.710–0.856) vs. 0.724 (0.634–0.814). Combined CMR and

demographic variables showed a stronger model performance

with AUC 0.810 (0.731–0.874).
4 Discussion

In the present study, we trained and evaluated ML algorithms

to identify patients with LVDD based on CMR variables that are

routinely captured for clinical purposes. The model using only

CMR variables was robust and was further improved when

combined with the demographic information. The addition

of myocardial strains had a neutral effect on the model

performance. The model performed well on an independent

external dataset. The ML risk score defining the probability of

LVDD diagnosis was effective at differentiating subjects at risk of

hospitalized HF and all-cause mortality.

To date, echocardiography remains the most important

modality for the diagnosis of LVDD despite the complexity

of the diagnostic algorithm and commonly undetermined

classification. On the other hand, CMR is still limited in

evaluating LVDD even though it is invaluable in assessing

cardiac systolic function and myocardial tissue properties. It is

worth noting that a few small CMR studies have demonstrated

the feasibility of using innovative imaging or post processing
frontiersin.org
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FIGURE 3

Examples of two patients with similar left ventricular ejection fraction but different machine learning scores. The first patient (A) was a 58 year-old
female with left ventricular ejection fraction of 54%. The high machine-learning score of 0.9986 was due to unfavorable left ventricular mass, body
mass index, right ventricular size and the presence of late gadolinium enhancement. The second patient (B) was a 53 year-old male with a left
ventricular ejection fraction of 54%. The low machine-learning risk score of 0.000392 was attributed to his favorable body mass index, left
ventricular mass, left and right ventricular size.
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techniques to evaluate LVDD (9–11, 17). Nevertheless, most of

those protocols require either additional image acquisitions

beyond standard clinical CMR protocols or complex post

processing in need of proprietary software. In contrast, the

LVDD diagnostic algorithm by echocardiography is developed

based on variables that are captured during routine clinical

studies. The presence or absence of LVDD can therefore be

successfully defined in most cases when image quality is

appropriate, albeit in a subset of patients in whom LVDD status

is undetermined largely due to discordant findings among the
Frontiers in Cardiovascular Medicine 06
essential variables or lack of measurement such as tricuspid

regurgitation velocity when the regurgitation is absent. In the

present study we tested the ML algorithm based on CMR

variables that are clinically acquired, similar to the

echocardiographic approach, and found the performance of the

algorithm is excellent at identifying LVDD especially after

combining CMR variables with common clinical variables

yielding an AUC 0.895 (0.845, 0.939). More importantly, the

success of the ML approach can be achieved from using variables

that are clinically acquired without the need of additional image
frontiersin.org
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FIGURE 4

The Kaplan–Meier curves showing reduced probability of event-free survival among those with high machine-learning score than those with low
score for the outcome of hospitalized heart failure (A), all-cause mortality (B) and the composite outcome (C) (log-rank p < 0.001 for all three plots).
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acquisitions or post processing. Interestingly, each of the top 5

most important features including LVEF, age, LV mass, LAEF

and LAVmin have all been previously demonstrated to be

associated with LVDD thereby supporting the validity of our ML

algorithm (4, 7, 18). To validate the algorithm we applied the

model to an independent dataset obtained from a community

hospital where echocardiography and CMR were aquired by the
TABLE 2 Hazards of composite all-cause mortality and inpatient heart
failure admission associated with machine-learning predicted probability
of LVDD.

Modela Hazard ratio (95%
confidence interval)

1. LVDD ML risk score per 10% increase 1.24 (1.18, 1.3)

1. LVDD high vs. low risk score 5.17 (3.48, 7.69)

2. LVDD ML risk score per 10% increase 1.18 (1.12, 1.24)

2. LVDD high vs. low risk score 3.08 (2.02, 4.7)

3. LVDD ML risk score per 10% increase 1.07 (1.01, 1.14)

3. LVDD high vs. low risk score 1.72 (1.09, 2.71)

aModel 1: Risk score (unadjusted).

Model 2: Risk score + age, gender, BMI, hypertension, diabetes, history of coronary

artery disease.

Model 3: Model 2 + LVEF, presence of fibrosis on CMR.
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local team for clinically referred patients, who were much more

prevalent in male gender, the presence of LGE and RWMA,

suggesting a different patient population from the training

cohort. Nonetheless, the model performed well in predicting

LVDD despite the small cohort size.

LVDD is an important condition to recognize, as it is associated

with significantly elevated risk of HF and mortality. At the present

time, the clinical diagnosis of LVDD is largely based on

echocardiographic criteria recommended by ASE guidelines and

will continue to evolve towards greater simplicity and accuracy

(19, 20), which is a shared goal for the field of CMR. In this study

we included only the most commonly assessed variables from

clinical CMR such as cardiac chamber volumes, regional and global

systolic function, and LGE, which seem to effectively support the

strong performance of the ML algorithm. In addition to common

clinical variables we have also examined the LV peak systolic

strains in the longitudinal, circumferential and radial directions

since strains have been linked to LVDD (8, 21). In our cohort, LV

strains were significantly reduced in subjects with LVDD although

strain impairment did not appear to further improve model

performance when combined with CMR assessment. We speculate

that the ML approach helps to efficiently utilize multiple clinical
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TABLE 3 Demographic characteristics of the validation cohort between
subjects with and without left ventricular diastolic dysfunction.

All
subjects
(N = 96)

LVDD
(N = 55)

No LVDD
(N = 41)

P values

Demographic variables
Age (years) 55 ± 17 60 ± 15 48 ± 17 0.005

Female (%) 39 (41%) 22 (40%) 17 (41%) 0.99

BMI (kg/m2) 30 ± 7 31 ± 7 29 ± 6 0.235

Hypertension (%) 45 (47%) 32 (58%) 13 (32%) 0.018

Diabetes mellitus (%) 16 (17%) 11 (20%) 5 (12%) 0.46

Hyperlipidemia (%) 37 (39%) 29 (53%) 9 (22%) 0.005

Family history of CAD (%) 9 (9%) 7 (13%) 2 (5%) 0.341

History of CAD (%) 8 (8%) 7 (13%) 1 (2%) 0.152

CMR variables
LV EDV (ml/m2) 101 ± 32 108 ± 35 91 ± 25 0.018

LV ESV (ml/m2) 53 ± 30 62 ± 36 41 ± 15 0.003

LVEF (%) 51 ± 13 48 ± 16 55 ± 6 0.008

LV mass (g/m2) 65 ± 21 71 ± 22 56 ± 16 0.001

LVSV (ml) 95 ± 31 95 ± 36 95 ± 24 0.943

RV EDV (ml/m2) 86 ± 31 89 ± 37 82 ± 23 0.289

RV ESV (ml/m2) 41 ± 25 44 ± 31 36 ± 12 0.143

RVEF (%) 55 ± 10 54 ± 13 57 ± 6 0.176

RV Stroke Vol (ml) 91 ± 30 91 ± 34 90 ± 24 0.839

LAV max (ml/m2) 47 ± 20 51 ± 20 43 ± 19 0.097

LAV min (ml/m2) 25 ± 23 31 ± 27 17 ± 14 0.004

LAV EF (%) 53 ± 16 48 ± 17 60 ± 12 0.0003

RWMA presence 37 (79%) 29 (50%) 8 (25%) 0.002

LGE score 4 ± 6 5 ± 6 3 ± 6 0.174

LGE presence 55 (57%) 36 (65%) 19 (46%) 0.0961
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variables simultaneously thereby maximizing the value of each

variable and consequently simplifying the evaluation. It appears

feasible based on our observation, not to mention highly desirable

to offer LVDD evaluation as part of the routine clinical CMR

examination to compliment the assessment of systolic function and

tissue characterization.

ML has often been criticized as a black box because the

output data is not always easily interpretable in a clinically

familiar manner. To ensure our findings are clinically relevant we

applied Shapley values to change this “black box” into a “glass

box” by using the explanation functions (22, 23). The Shapley

values are especially helpful when they are applied to individual

subjects (24). Such applications can be appreciated in two

examples shown in our study where Shapley values of the same

variables differed significantly between two patients, as each

value is unique to the patient. Consequently, the ML risk score

differentiated two patients having high or low likelihood of

LVDD despite the similar LVEF between them (Figure 3). While

the overall model performance of an ML algorithm is important,

the true clinical value of any ML algorithm lies in the function

of assessing individual patients for diagnostic or prognostic

purposes. Our approach of using ML risk score is promising in

assessing individual patients for the diagnosis of LVDD.

There are several limitations in the present study. The

algorithm provided dichotomized probability of having or not

having LVDD. The binary evaluation appears to be effective in

differentiating the risk of adverse clinical outcomes providing
Frontiers in Cardiovascular Medicine 08
important prognostication. However, there is lack of a grading

system to further delineate the severity of LVDD, which will

require additional validation and is beyond the scope of current

study. We did not have invasive hemodynamis available to assist

in the validation of our algorithm although LVDD may present

in individuals with normal LV end diastolic pressure. While the

overall performance of the ML algorithm is strong there are

misclassifications in the diagnosis of LVDD. In the low ML risk

score group the misclassified cases were largely made up of

subjects with grade I or undetermined LVDD grade. The current

guideline classifies LVDD for anyone who has reduced LV

ejection fraction, an approach that continues to draw debate

which may in part contribute to the misclassification. In

addition, the undetermined LVDD grade by the reference

standard of echocardiography is undoubtedly a source of

challenge and a cause of misclassification for CMR. Nevertheless,

the adverse outcome risk was significantly lower among those

with low ML risk scores than those with high scores thereby

supporting the validity of the LVDD diagnostic probability

assessment. We included the LV peak systolic strain in the

analysis. However, the diastolic strain rate would have been a

better alternative in assessing LVDD although it requires

additional post processing. To add variables in need of extensive

post-processing would have defeated our intention to make the

evaluation clinically friendly. The validation cohort size was

small and the time lapse was 30 days between echocardiography

and CMR as opposed to 7 days in the training cohort. Despite

the constrains the ML model performed well supporting the

robustness of the algorithm. Nonetheless, it is still highly

desirable to have a multi-center study design with a more diverse

patient population to test the generalizability of the ML algorithms.

To conclude, the proposed ML algorithm using variables

derived from clinical CMR is effective in identifying individual

patients with LVDD and providing important prognostic value

for adverse clinical outcome assessment.
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