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Background: This Mendelian randomization (MR) study aimed to explore the
causal relationship between the genetic predisposition to type 2 diabetes
mellitus (T2DM) and aortic dissection (AD), and to assess associations with
genetically predicted glycemic traits. The study sought to verify the inverse
relationship between T2DM and AD using a more robust and unbiased
method, building on the observational studies previously established.
Materials and methods: The study employed a two-sample and multivariable
MR approach to analyze genetic data from the DIAbetes Meta-ANalysis of
Trans-Ethnic association studies (DIAMANTE) with 74,124 cases and 824,006
controls, and the Meta-Analyses of Glucose and Insulin-Related Traits
Consortium (MAGIC) involving up to 196,991 individuals. For AD data, FinnGen
Release 10 was used, including 967 cases and 381,977 controls. The research
focused on three foundational MR assumptions and controlled for
confounders like hypertension. Genetic instruments were selected for their
genome-wide significance, and multiple MR methods and sensitivity analyses
were conducted.
Results: The study revealed no significant effect of genetic predisposition to
T2DM on the risk of AD. Even after adjusting for potential confounders, the
results were consistent, indicating no causal relationship. Additionally,
glycemic traits such as fasting glucose, fasting insulin, and HbA1c levels did
not show a significant impact on AD susceptibility. The findings remained
stable across various MR models and sensitivity analyses. In contrast, genetic
liability to T2DM and glycemic traits showed a significant association with
coronary artery disease (CAD), aligning with the established understanding.
Conclusion: Contrary to previous observational studies, this study concludes
that genetic predisposition to T2DM does not confer protection against AD.
These findings underscore the imperative for further research, particularly in
exploring the preventative potential of T2DM treatments against AD and to
facilitate the development of novel therapeutic interventions.
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1 Introduction

Aortic dissection (AD) stands as the most frequently

encountered catastrophic event afflicting the aorta (1). Hospital

records of acute aortic syndromes suggest an incidence rate of

3–5 per 100,000 individuals annually, with a spike to 35 per

100,000 in those aged 65–75 (2, 3). AD also imposes a significant

economic burden on both the patients’ families and society (4).

At present, no pharmacological intervention has been demonstrated

to be effective in the prevention of AD.

Controversy surrounds the influence of diabetic conditions on

AD. Hypertension is typically difficult to control in diabetic

patients, which leads to weakness of the medial layer of the aorta

and promotes AD. However, a paradox emerges as studies reveal

a reduced prevalence of AD in patients with type 2 diabetes

mellitus (T2DM) (5, 6). Meta-analyses corroborate this

observation, showcasing a lower AD incidence among T2DM

patients (7, 8). Observational studies often struggle to establish

causality due to the presence of potential confounders and biases.

This is in contrast to randomized controlled trials. As a result,

the findings and interpretations of the relationship between

T2DM and AD in observational studies may be skewed.

Moreover, the exact mechanisms underlying this inverse

relationship remain unclear. Current hypotheses fluctuate

between the protective role of glycated crosslinks in aortic tissue

and the beneficial effects of certain T2DM treatments (9, 10).

The pivotal question of T2DM’s intrinsic protective propensity

against AD remains unresolved.

Mendelian randomization (MR) analysis is an epidemiological

design that can strengthen causal inference by using genetic

variants as instrumental variables (IVs) for an exposure (11). The

MR design, characterized by its immunity to confounding biases

and reverse causality, owes its robustness to the random

assortment of genetic alleles at conception and their

insusceptibility to modification by diseases (12). Previous MR

studies have shown that genetic predisposition to T2DM did not

play a causal role in abdominal aortic aneurysm (AAA) but

decreases the risk of thoracic aortic aneurysm (TAA) (13, 14).

Our MR study aims to delineate the causal relationship between

T2DM genetic predisposition and AD while examining

associations with genetically predicted glycemic traits as

supplementary analyses.
2 Methods

2.1 Study design

This two-sample and multivariable MR study was designed to

explore the causal effect of T2DM and glycemic traits on the risk of

AD. The ethics committee at each institutional review board review

board authorized all participants’ written informed consent in

separate studies. Further ethical approval or consent was deemed

unnecessary. Our MR study was predicated on three foundational

assumptions: (1) the IVs are related to exposures of interest; (2)
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the IVs are not related to the confounders of the exposure-

outcome relation; (3) the IVs’ links with the outcome are only

via the exposure of interest (15). To eliminate potential

confounding factors, specifically the impact of hypertension, two

types of secondary analyses were conducted. To address potential

confounders, particularly hypertension’s influence, we conducted

two secondary analyses. First, a two-sample MR study was used

to exclude Single Nucleotide Polymorphisms (SNPs) linked to

hypertension. Then, drawing upon epidemiological information

on T2DM and AD, we conducted two-sample MR analysis to

explore factors that may influence the onset of these two

diseases. In this context, we examined factors such as blood

pressure, lipids, diet, sleep, physical activity, smoking, alcohol,

socioeconomic elements, and stress. Factors related to both

T2DM and AD were deemed confounders and included in

further multivariate MR studies to assess T2DM’s independent

role. We used coronary artery disease (CAD) as a positive

control to ensure IVs showed expected associations with a

common disease, reducing selection bias risk (16). Additionally,

the UK Biobank’s AD database served as a validation set.

Subsequent sections detail the data sources, genetic instrument

selection, and statistical analyses (Figure 1; Table 1;

Supplementary Table S1).
2.2 Exposure

We sourced genetic data for T2DM from the DIAbetes Meta-

ANalysis of Trans-Ethnic association studies (DIAMANTE)

consortium’s GWAS meta-analysis, encompassing 74,124 cases

and 824,006 controls, all of European ancestry (17). T2DM in

the original GWAS was defined by diagnostic fasting glucose

(FG), fasting insulin (FI), 2 h plasma glucose or hemoglobin A1c

(HbA1c) levels; use of glucose-lowering medication (by

Anatomical Therapeutic Chemical code or self-report); or T2DM

history from electronic medical records, self-report and varying

combinations of each, depending on the contributing cohort.

For glycemic traits like FI, FG, and HbA1c, we referred to the

Meta-Analyses of Glucose and Insulin-Related Traits Consortium

(MAGIC) data, which includes information from up to 196,991

European participants.

To confirm potential confounding factors, we included

variables such as Systolic Blood Pressure (SBP), Diastolic Blood

Pressure (DBP), Pulse Pressure (PP), High-Density Lipoprotein

cholesterol (HDL-C) (18), Low-Density Lipoprotein cholesterol

(LDL-C) (18), Total Cholesterol (TC) (18), Triglycerides (TG)

(18), dietary intakes (protein, fat, sugar, carbohydrates) (19),

socioeconomic factors [educational level (20), annual household

income, Townsend Deprivation Index (TDI)], lifestyle factors

(skipping breakfast (21), napping (22), daytime sleepiness (23),

sleep duration (24), insomnia (25), leisure screen time (26),

moderate-to-vigorous intensity physical activity during leisure

time (MVPA) (26), sedentary behavior at work (26),

environmental stress and adversity (27), smoking (smoking

initiation, daily smoking, smoking cessation, smoking initiation)

(28), drinking (weekly alcohol consumption data (28), alcohol
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FIGURE 1

Schematic representation of the Mendelian randomisation design. The traditional assumptions of Mendelian randomisation are that the genetic
instrumental variable is associated with the risk factor (assumption 1); the variants should not be associated with confounders (assumption 2); and
that the variants should influence the outcome only through effects on the risk factor under investigation (assumption 3). SNP, single nucleotide
polymorphism; LD, linkage disequilibrium; p, probability value; r2, coefficient of determination.

TABLE 1 Information of included studies and consortia.

Exposure/Outcome Traits Consortium/First author Participants Web source
Exposures Type 2 diabetes DIAbetes Meta-Analysis of Trans-Ethnic

association studies (DIAGRAM)
74,124 cases and 824,006
controls

https://diagram-consortium.org/
downloads.html

Fasting glucose
(mmol/L)

Meta-Analyses of Glucose and Insulinrelated
traits Consortium (MAGIC)

196,991 individuals https://magicinvestigators.org/
downloads/

Fasting insulin
(pmol/L)

Meta-Analyses of Glucose and Insulinrelated
traits Consortium (MAGIC)

196,991 individuals https://magicinvestigators.org/
downloads/

Hemoglobin A1c (%) Meta-Analyses of Glucose and Insulinrelated
traits Consortium (MAGIC)

196,991 individuals https://magicinvestigators.org/
downloads/

Outcomes Aortic dissection FinnGen 967 cases and 381,977
controls

https://www.finngen.fi/fi

Aortic dissection UK biobank 127 cases https://pan.ukbb.broadinstitute.org/

Coronary artery
disease

CARDIoGRAMplusC4D (Coronary ARtery
DIsease Genome wide Replication and Meta-
analysis (CARDIoGRAM) plus The Coronary
Artery Disease (C4D) Genetics) and UK biobank

63,731 cases and 276,868
controls

http://www.cardiogramplusc4d.org/data-
downloads/

Sun et al. 10.3389/fcvm.2024.1382702
abuse (29). Detailed database sources for each variable are provided

in Supplementary Table S2.

We included SNPs correlating with the selected traits at a

genome-wide significance threshold (p < 5 × 10−8). We ensured
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the avoidance of weak instrument bias by prioritizing SNPs with

F-statistics exceeding 10 (30). The absence of rsid in the

DIAMANTE’s T2DM database necessitated its determination via

SNP-nexus (https://www.snp-nexus.org/v4/) and the National
frontiersin.org
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Library of Medicine (https://www.ncbi.nlm.nih.gov/snp/?term=),

reliant on chromosome and position data. In the presence of

linkage disequilibrium (LD) (r2 > 0.001), preference was given to

the SNP boasting the strongest association, thereby safeguarding

the independence assumption. This yielded 150 SNPs for T2DM,

38 for FI, 70 for FG, and 75 for HbA1c collectively termed as

primitive groups. The proportion of variance in the exposure

factors explained by the instrumental variables for T2DM, FG,

FI, and HbA1c are 7.32%, 4.32%, 1.42%, and 5.76%, respectively

(Supplementary Table S1).

Each SNP was scanned with PhenoScanner to identify and

mitigate potential pleiotropic effects. SNPs correlating with

established risk factors of AD, including hypertension within the

European population, were filtered out utilizing a threshold of

p = 1 × 10−5 and R2 = 0.8. Consequently, 17 SNPs of T2DM, 7

SNPs of FI, 11 SNPs of FG, and 6 SNPs of HbA1c were excluded

(Supplementary Table S3). The remaining SNPs constituted the

adjustment groups.
2.3 Outcome selection

GWAS summary statistics for AD were obtained from FinnGen

Release 10, a project mapping genotype-phenotype correlations

using Finnish biobank data. This included genome and health data

from 1,069 AD individuals and 377,277 controls, characterized by

473,681 genotyped SNPs. Aortic dissection diagnosis was based on

hospital records, using ICD-10 codes I71.00, I71.01, I71.09, and

ICD-9 code 4410. Endpoint and control definitions are available at

https://www.finngen.fi/en/researchers/clinical-endpoints. The UK

Biobank database, with 127 cases, served as a validation set

(http://www.nealelab.is/uk-biobank).

The genetic data for coronary artery disease were obtained

from a meta-analysis of UK Biobank SOFT CAD GWAS

(interim release) with CARDIoGRAMplusC4D (Coronary ARtery

DIsease Genome wide Replication and Meta-analysis

(CARDIoGRAM) plus The Coronary Artery Disease (C4D)

Genetics) 1,000 Genomes-based GWAS and the Myocardial

Infarction Genetics and CARDIoGRAM Exome (31).
2.4 Statistical analysis

Statistical significance was set at a two-sided 0.05 level, if

the p-value is less than the Bonferroni-corrected threshold of

1.11 × 10−3, we consider it indicative of a strong correlation.

The selection of instrumental variables (IVs) is detailed in the

“Exposure” section. For the primary analysis, we combine Wald

ratio together in fixed effect meta-analysis, where the weight of

each ratio is the inverse of the variance of the SNP-outcome

association. The IVW method provides the most precise and

robust estimates when three pivotal assumptions regarding

instrumental variables are satisfied (32). MR-Presso, MR-Egger,

weighted median, simple mode, and Mode based estimate method

were used for sensitivity analysis. Heterogeneity in our analysis

was assessed using the Cochran Q test, with a p-value of less than
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0.05 deemed significant. A Q value substantially exceeding its

degrees of freedom indicates evidence of heterogeneity and

suggests the presence of invalid instruments (33). MR-Egger

regression was utilized to analyze potential unbalanced horizontal

pleiotropy, combining the Wald ratio into a meta-regression with

an intercept and slope parameter. This approach estimates the

causal effect while adjusting for any directional pleiotropy (34).

Leave-one-out analyses were used to verify result reliability.

Multivariable MR analyses also utilized five methods (IVW,

MR-Egger, MR-Lasso, median, and robust), which used to learn

about the causal effect of two or more exposures on an outcome

(35, 36). Statistical analyses were performed using R software

(version 4.3.1) and packages including TwoSampleMR (37),

vroom, MVMR (38), MRPRESSO (39), and others.
3 Results

3.1 T2DM and AD

Standard IVW analysis showed no convincing effect of

genetic predisposition to T2DM on AD, with an odds ratio (OR)

of 0.92 [95% confidence interval (CI), 0.80–1.04; p = 0.186]. The

MR-Egger and weighted median models, which are more robust to

directional pleiotropy, showed similar findings (MR-Egger OR =

0.90; 95%CI, 0.67–1.19; p = 0.448; weighted median OR = 0.91, 95%

CI, 0.75–1.11; p = 0.359) compared with the IVW model. This

consistency in outcomes was maintained even in the adjustment

group (IVW OR= 0.87; 95%CI, 0.75–1.00; p = 0.055). The

outcomes in the UK Biobank database were similarly concluded

(IVW p = 0.290; MR-Egger p = 0.295; weighted median p = 0.412).

The results are tabulated for further review (Figures 2, 3;

Supplementary Tables S4, S7).

Through Cochran Q test, it was found that there was no

significant heterogeneity among SNPs (Supplementary Table S5).

Through MR-Egger regression analysis, it is confirmed that there

is no significant horizontal pleiotropy in the above analysis data

(Supplementary Table S6). A comprehensive sensitivity analysis,

facilitated by the leave-one-out method, affirmed the stability of

the results, indicating that the exclusion of any individual SNP

would not materially influence the overall conclusion

(Supplementary Figure S2). For an enhanced visual

representation and interpretation of the data, scatter and funnel

plots have been provided (Supplementary Figure S1), and the

forest plots were presented in Supplementary Figure S2.
3.2 Glycemic traits and AD

Regarding FG, FI, and HbA1c levels, the standard IVW analysis

did not reveal a significant impact on AD susceptibility (FG:

OR = 0.91; 95%CI, 0.41–2.01; p = 0.821; FI: OR = 3.08; 95%CI,

0.98–9.65; p = 0.053; HbA1c: OR = 0.40; 95%CI, 0.14–1.09; p = 0.074)

(Figures 2, 3; Supplementary Tables S4, S7).

The Cochran Q test revealed significant heterogeneity within

HbA1c and the primitive group of FG, while other SNP groups
frontiersin.org
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FIGURE 2

The association between exposures and aortic dissection using the inverse variance weighted, MR-egger, weighted median, simple mode, weighted
mode method. OR, odds ratio; CI, confidence interval; p, probability value.
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displayed no notable heterogeneity (Supplementary Table S5).

Additionally, the data analysis did not indicate significant

horizontal pleiotropy (Supplementary Table S6). Sensitivity

analysis, conducted via the leave-one-out method, suggested the

overall conclusion remained stable when any given SNP was

omitted from the study (Supplementary Figures S4, S6, S8).

Comprehensive visualizations of the study’s findings, including

scatter plots and funnel plots, are depicted in Supplementary

Figures S3, S5, S7, while detailed forest plots are illustrated in

Supplementary Figures S4, S6, S8.
3.3 Confounding factors and multivariate
MR analysis

A comprehensive two-sample MR study was conducted to

identify confounding factors and it was found that SBP, DBP, PP,

TG, insomnia, napping, daytime sleepiness, leisure screen time,

and smoking initiation were positively correlated with T2DM.

Conversely, HDL-C, LDL-C, TC, educational level, annual

household income, and the TDI were negatively correlated with

T2DM. SBP, DBP, age of smoking initiation, smoking cessation,

and environmental stress and adversity were positively correlated

with AD, whereas PP and MVPA were negatively correlated with

AD (Figure 4; Supplementary Tables S4, S8).
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In light of the aforementioned findings, we conducted

multivariate MR analysis using SBP, DBP, and PP as

confounding factors alongside the exposure variables.

Considering that PP is essentially determined by both SBP

and DBP, we repeated the multivariate MR analysis using

only SBP and DBP as confounding factors with the exposure

variables. This approach was adopted to prevent the

introduction of bias.

The results demonstrated that T2DM, FG, FI, and HbA1c did

not exhibit a significant correlation with AD in both instances of

the multivariate MR studies (Figure 5; Supplementary Table S8).
3.4 T2DM, glycemic traitsand and CAD

The robustness of the IVs was further assessed against CAD to

confirm whether it yielded significant positive associations as

previously established. Genetic liability to T2DM and glycemic

traits was significantly associated with CAD under IVW models

(T2DM: OR = 1.12; 95%CI, 1.08–1.16; p < 0.001; FG: OR = 1.26;

95%CI, 1.04–1.53; p = 0.018; FI: OR = 1.91; 95%CI, 1.31–2.79;

p < 0.001; HbA1c: OR = 1.44; 95%CI, 1.09–1.90; p = 0.010)

(Supplementary Table S4). Comprehensive visualizations of the

study’s findings, including scatter plots and funnel plots, are

depicted in Supplementary Figures S9, S10.
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FIGURE 3

The association between exposures adjustment groups and aortic dissection using the inverse variance weighted, MR-egger, weighted median, simple
mode, weighted mode method. OR, odds ratio; CI, confidence interval; p, probability value.
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4 Discussion

Our MR study suggests that there is no significant association

between the genetic predisposition to T2DM and AD. Even after

adjusting for potential confounders, such as hypertension, the

results were steadfast, underscoring the robustness of our

conclusions. In the realm of FG, FI, and HbA1c levels, our study

did not identify any causal relationships with AD incidence.

These findings present a stark contrast to previous observational

studies, which have consistently indicated a substantial negative

correlation between T2DM and AD.

T2DM, known for increasing the risk of peripheral, coronary, and

cerebrovascular diseases, has paradoxically been linked with a lower

risk of aortic aneurysm and dissection. The first evidence of this

inverse relationship appeared in 1997, showing fewer cases of AAA

in diabetic individuals (40). Despite differences between thoracic

and abdominal aortic diseases, this finding sparked interest in the

diabetes-aortic disease link. Prakash’s analysis of the Nationwide

Inpatient Sample (NIS) data confirmed diabetes’s association with

reduced AD hospitalizations (41), a conclusion echoed by recent

studies (5, 6, 42–44). However, these studies often rely on self-

reported T2DM data and focus predominantly on hospitalized

patients, which may introduce selection bias and obscure the true

prevalence of T2DM in AD patients. The inherent limitations

in observational studies, like residual confounders, challenge

establishing a clear causal link between these diseases. This
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highlights the value of MR studies in delineating the causal

relationships between T2DM and aortic diseases.

Aortic disease is distinctly divided at the ligamentum arteriosum.

Above this, the aorta in aneurysm disease typically shows a smooth,

non-calcified surface with a strong genetic predisposition. Below it,

the aorta often presents an irregular, calcified, arteriosclerotic profile,

influenced by traditional risk factors (45). Atherosclerosis and

hypertension are key factors in descending thoracic aortic aneurysm

and AAA development (46, 47). Conversely, ascending thoracic

aortic aneurysm and dissection are frequently linked to genetic

factors like Marfan’s syndrome (45), as well as Ehlers-Danlos

syndrome, Loeys-Dietz syndrome, bicuspid aortic valve, and familial

AD (48). Given these distinctions, it’s crucial to recognize that aortic

diseases are heterogeneous. Thoracic, descending, and abdominal

aortic diseases each have unique physiological and genetic

characteristics. Therefore, applying mechanisms of T2DM’s influence

on abdominal aortic lesions to AD may not be accurate. A nuanced,

comprehensive approach is needed to understand the complex

interactions and causal relationships in these varied aortic conditions.

Previous clinical and basic research suggest that diabetes may affect

the occurrence and progression of AD through several mechanisms.

T2DM may modify the aortic wall’s biological structure, as

hyperglycemia promotes collagen cross-linking in the aortic media,

enhancing resistance to proteolysis and reducing matrix

metalloproteinases (MMPs) secretion, key factors in aortic aneurysm

development. Additionally, T2DM’s inhibition of plasmin, an MMP
frontiersin.org
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FIGURE 4

An overview of the Mendelian randomization study results on risk factors such as blood pressure, blood lipids, diet, sleep, physical activity, smoking,
alcohol consumption, socioeconomic factors, and environmental stress in relation to type 2 diabetes and aortic dissection. The analysis methods
include inverse variance weighted, weighted median, and MR-PRESSO analysis. IVW, inverse variance weighted; p, probability value; HDL, high
density lipoprotein; LDL, low density lipoprotein; MVPA, moderate to vigorous intensity physical activity during leisure time; TDI, townsend
deprivation index.
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activator, could lessen aortic wall degradation (49), aligning with

observations of thicker aortic walls in diabetics (46). However, some

studies report increased MMP activity, particularly MMP-1, MMP-2,

and MMP-9, with higher blood glucose levels, which could counteract

any protective effect of diabetes against AD (50). Advanced glycation

end products (AGEs) accumulation, another consequence of high
Frontiers in Cardiovascular Medicine 07
glucose levels, leads to cross-linking in the extracellular matrix,

stiffening the aortic wall, which could be protective against AD (9,

51–53). On the other hand, increased AGEs and their receptors

(RAGEs) may promote inflammation, contributing to aortic disease

(54). In complex pathophysiological environments such as lesioned

aortic walls, not all data can be expected to be consistently concordant.
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FIGURE 5

In the multivariable MR study, the association between exposure and aortic dissection was investigated using methods such as inverse variance
weighted, MR-egger, MR-lasso, median, and robust. Blue line: Exposures include type 2 diabetes, systolic blood pressure, diastolic blood pressure,
pulse pressure; Red line: Exposures include type 2 diabetes, systolic blood pressure, diastolic blood pressure. OR, odds ratio; CI, confidence
interval; p, probability value.

Sun et al. 10.3389/fcvm.2024.1382702
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Beyond diabetes-induced hyperglycemia, other factors may affect

AD occurrence. Diabetes medications, like thiazolidinediones and

metformin, could protect against AD due to their role in reducing

MMP expression in the aortic wall (55, 56). Insulin resistance (IR)

is another potential risk factor. Clinical studies, mouse models,

and cellular research indicate that IR triggers vascular smooth

muscle cells to switch from contractile to synthetic phenotypes,

contributing to AD development (57). In older adults without

diabetes, IR has been linked to aortic stiffness, a condition that

might alter hemodynamics and promote AD (58). Furthermore,

diabetic patients often are subject to heightened attention to blood

pressure management and other secondary preventive strategies.

Each of the above factors has the potential to influence the

occurrence of AD independently.

We note that Weizong Zhang et al. conducted a MR study on

the association between T2DM and AD (59). This study utilized 26

diabetes datasets to confirm that there is no causal relationship

between the genetic susceptibility to T2DM and AD. Compared

to the aforementioned study, our research has the following

advantages: Given the significant racial differences in genetic

characteristics, our data set consists exclusively of individuals of

European ancestry, with a sample size larger than that in the

previous study. For outcome data, we validated our findings

using the UK Biobank data of non-Finnish individuals and used

coronary heart disease data from CARDIoGRAMplusC4D as a

positive control to verify the reliability of our instrumental

variables. Furthermore, to enhance the comprehensiveness of our

analysis, we also included important biomarkers such as FG, FI,

and HbA1c as exposures to analyze their impact on aortic

dissection. It is important to note that even in MR studies, it is

challenging to avoid confounding factors. Therefore, we analyzed

29 variables, including hypertension, which could introduce

confounding bias, and conducted multivariable Mendelian

randomization to exclude potential interferences. However, the

study also faces limitations. Privacy concerns and the lack of

detailed data in public GWAS databases impeded our ability to

differentiate AD patients by gender, type, or syndromic status.

Additionally, the relative rarity of AD limits the categorization of

these factors in public GWAS databases, impacting our analysis.

A key limitation is our reliance on genetic data, posing

challenges in discerning specific impacts of late-onset exposures

and their compensatory effects. Assessing the impact of diabetes

metabolic products and hypoglycemic treatment on AD is

difficult. While MR reduces confounding effects, unidentified

physiological pathways in AD’s complex pathology could

introduce biases. The robustness of MR depends on large sample

sizes and comprehensive genetic data, yet the infrequency of AD

in the general population limits data availability. Moreover, as

our study is based on a European demographic, the findings

might not be universally applicable.
5 Conclusion

In summary, this MR study indicates that the genetic

susceptibility to T2DM does not confer a protective effect against
Frontiers in Cardiovascular Medicine 09
AD. These findings contrast with previous observational

evidences, which suggest a protective effect of T2DM. This

discrepancy underscores the need for further comprehensive

research, particularly focused on exploring the potential

preventative role of common T2DM treatment modalities in AD.

Unraveling the intricate relationships between T2DM and AD is

a crucial step that not only enriches our understanding of AD’s

complex pathobiology but also paves the way for innovative

therapeutic interventions for this elusive disease.
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