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Introduction: Ultrasound is well-established as an imaging modality for diagnostic
and interventional purposes. However, the image quality varies with operator skills
as acquiring and interpreting ultrasound images requires extensive training due to
the imaging artefacts, the range of acquisition parameters and the variability of
patient anatomies. Automating the image acquisition task could improve
acquisition reproducibility and quality but training such an algorithm requires
large amounts of navigation data, not saved in routine examinations.
Methods: We propose a method to generate large amounts of ultrasound images
from other modalities and from arbitrary positions, such that this pipeline can later
be used by learning algorithms for navigation. We present a novel simulation
pipeline which uses segmentations from other modalities, an optimized
volumetric data representation and GPU-accelerated Monte Carlo path tracing
to generate view-dependent and patient-specific ultrasound images.
Results: We extensively validate the correctness of our pipeline with a phantom
experiment, where structures’ sizes, contrast and speckle noise properties are
assessed. Furthermore, we demonstrate its usability to train neural networks for
navigation in an echocardiography view classification experiment by generating
synthetic images from more than 1,000 patients. Networks pre-trained with our
simulations achieve significantly superior performance in settings where large
real datasets are not available, especially for under-represented classes.
Discussion: The proposed approach allows for fast and accurate patient-specific
ultrasound image generation, and its usability for training networks for
navigation-related tasks is demonstrated.
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1 Introduction

Ultrasound (US) is pivotal in the diagnosis, treatment and follow-up of patients in

several medical specialities such as cardiology, obstetrics, gynaecology and hepatology.

However, the quality of acquired images varies greatly depending on operators’ skills,

which can impact diagnostic and interventional outcomes (1).

Providing guidance or automation for the image acquisition process would allow for

reproducible imaging, increase both the workflow efficiency and throughput of echo
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departments and improve access to ultrasound examinations. This

requires an intelligent system, capable of acquiring images by

taking into consideration the high variability of patient anatomies.

Several works are investigating US acquisition automation but

commercially available systems do not go beyond teleoperated

ultrasound (2). Recent research towards autonomous navigation

has used imitation learning (3) and deep reinforcement learning

(4, 5). While these methods achieve varying degrees of success,

they struggle to adapt to unseen anatomies, can only manage

simple scanning patterns or are tested on small datasets.

The main advantage of a simulation environment is the ability

to generate views that occur when operators navigate to a given

standard view or anatomical landmark but are not saved in

clinical routine. These datasets, which we call navigation data,

can also contain imaging artefacts (e.g. shadowing caused by

ribs). Hence, recent ultrasound image synthesis methods using

neural networks (6, 7) face significant challenges in generating

these views due to the necessity of comprehending ultrasound

physics and the unavailability of large-scale datasets of complete

ultrasound acquisitions. Besides, learning-based approaches for

navigation (5) require a large number of images for training,

including non-standard views, which are not available in classical

ultrasound training datasets.

Using a simulation environment to train such a system would

have several benefits. The trained model could learn while being

exposed to a varying range of anatomies and image qualities,

hence improving its robustness, and the training could be done

safely, preventing the wear of mechanical components and

potential injuries. This simulation environment should be:

(1) Fast, to enable the use of state-of-the-art reinforcement

learning algorithms. (2) Reproduce patients’ anatomies with high

fidelity. (3) Recreate attenuation artefacts such as shadowing.

Moreover, exposing the system to a wide range of anatomies
FIGURE 1

Simulation Pipeline. Using input segmentations from other modalities, transd
NanoVDB volume (B.1) for ray tracing on the GPU. (B.2) shows a volume rend
geometry. We model the sound waves as rays and perform ray tracing to sim
and compute the RF lines (C.3). Time-gain compensation and scan conver
shown for qualitative comparison (E).
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requires large-scale data generation capabilities, meaning the pre-

processing of data must be streamlined.

This paper presents an ultrasound simulation pipeline using

Graphical Processing Unit (GPU) based ray tracing on NVIDIA

OptiX (8), capable of generating US images in less than a

second. By combining networks capable of segmenting a wide

range of tissues and a volumetric data representation, we

overcome the scene modelling limitations of previous mesh-based

simulation methods, enabling efficient processing of numerous

datasets from different modalities. Our pipeline, described in

Figure 1 takes as input segmentations of the organs of interest

and, coupled with user-defined transducer and tissue properties,

generates a simulated US by combining Monte Carlo path

tracing (MCPT) and convolutional approaches.

Our contributions are the following:

• Our pipeline is able to generate images from a large number of

datasets from other modalities. Using an efficient GPU

volumetric representation that allows for the modelling of

arbitrary patient anatomies, and a Monte Carlo path tracing

algorithm, we are able to synthesize more than 10,000 images

per hour using a NVIDIA Quadro K5000 GPU. Furthermore,

we demonstrate scalability by generating images from 1,000

CT patient datasets in our experiments. In contrast, existing

ray tracing methods limit their experiments to datasets one or

two orders of magnitude smaller.

• We extensively validate the ability of our pipeline to preserve

anatomical features through a phantom experiment by looking at

distances and contrast between structures. Ultrasound image

properties are further assessed by looking at first-order speckle

statistics.

• We demonstrate the usability of our pipeline in training neural

networks for transthoracic echocardiography (TTE) standard
ucer and tissue acoustic properties (A), we convert the segmentation to a
ering of the ray tracing scene with various organs and the transducer’s fan
ulate their propagation (C.1). We then generate a scattering volume (C.2)
sion are performed to yield the final simulation (D). A real ultrasound is
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view classification, a task critical in ultrasound navigation

guidance. The neural networks were initially pre-trained on

synthetic images and subsequently fine-tuned using varying

amounts of real data. With around half of the real samples,

fine-tuned networks reach a performance level comparable to

those trained with all the real data. We also report an

improved classification performance when using pre-trained

networks, particularly for under-represented classes.

This paper is organised in the following way: In Section 2.1, we

provide an overview of relevant ultrasound simulation methods

and highlight their limitations in terms of suitability as

simulation environments. The next subsections in Section 2.

detail our simulation implementation. Experimental results using

a virtual phantom and a view classification network are shown in

Section 3. This is followed by a discussion and a conclusion.
2 Methods

2.1 Related work

Early methods were attempting to simulate the US image

formation process by solving the wave equation using various

strategies (9–13). While being accurate, these methods take a

substantial amount of time to generate images [in the order of

several minutes to hours (9–12)], which is not scalable for large-

scale training.

The COLE Algorithm developed by Gao et al. (14) is at the core

of Convolutional Ray Tracing (CRT) methods. This approach allows

for a fast simulation of ultrasound images with speckle noise by

convolving a separable Point-Spread Function (PSF) with a

scatterer distribution. Methods in (15–17) replace the ray casting

by ray tracing and combine it with the COLE algorithm to

simulate images on the GPU. These methods follow a similar

methodology where the input volumes are segmented and acoustic

properties from the literature are assigned to each tissue. Scatterers

amplitude are hyperparameters chosen such that the generated

ultrasounds look plausible. Ray tracing is used to model large-scale

effects at boundaries (reflection and refraction) and attenuation

within tissue. Finally, the COLE algorithm is applied to yield

the final image. The method developed in Mattausch et al. (17)

distinguishes itself by employing Monte-Carlo Path Tracing

(MCPT) to approximate the ray intensity at given points by taking

into account contributions from multiple directions.

CRT methods enable fast simulations and the recreation of

imaging artefacts. Methods in (15, 17) both make use of meshes

to represent the boundaries between organs. However, using

meshes comes with a set of issues as specific pre-processing and

algorithms are needed to manage overlapping boundaries. This

can lead to the erroneous rendering of tissues, hence limiting the

type of scene that can be modelled, as reported in Mattausch

et al. (17). A further limitation of CRT methods lies in tissue

parameterization, where scatterers belonging to the same tissue

have similar properties, preventing the modelling of fine-tissue

variations, and thus limiting the realism of the images.
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Another line of work generates synthetic ultrasound images by

directly sampling scatterers’ intensities from template ultrasound

images and using electromechanical models to apply cardiac

motion (18, 19). These are different from our line of work as

they require pre-existing ultrasound recordings for a given

patient, while we generate synthetic images from other

modalities, which also enables us to simulate different types of

organs other than the heart.

Finally, as deep learning has become increasingly popular,

the field shifted towards the use of generative adversarial

networks (GAN) or diffusion models for image synthesis.

These generative models have been used in several ways for

image simulation: Either for generating images directly from

segmentations (6, 7, 20), calibrated coordinates (21), or for

improving the quality of images generated from CRT

simulators (22–24). However, using GANs comes with several

challenges: For instance, authors in Hu et al. (21) report mode

collapse when generating images for poses where training data

was not available and authors in Gilbert et al. (6) report

hallucination of structures if anatomical structures are not

equally represented in datasets. This suggests generative neural

networks would struggle in generating out-of-distribution

views or with image artefacts such as shadowing. This would

be problematic for ultrasound navigation guidance as out-of-

distribution views are frequently encountered before reaching a

desired standard view.

Methods taking as input low-quality images from CRT

simulators seem the most promising, but several works report

issues in preventing the GANs from distorting the anatomy (24)

or introducing unrealistic image artefacts (22). While CRT

methods are limited in realism, they match our requirements

(speed, artefacts recreation, anatomical fidelity through accurate

geometry) to train navigation/guidance algorithms.
2.2 Pre-processing pipeline

This section presents our novel pre-processing pipeline, shown

in Figure 1, which enables large-scale data generation by avoiding

technical pitfalls caused by the use of meshes (17), thus allowing us

to model any anatomy. Besides, the use of segmentations is

essential to implement constraints on the environment for

navigation tasks.

Input volumes (Figure 1A) are segmentations obtained from

either CT or Magnetic Resonance Imaging (MRI) datasets, which

are processed by a four chamber (25) and multi-organ

segmentation algorithm (26). The segmentation output contains

all the structures relevant for echocardiography, e.g. individual

ribs, sternum, heart chambers, aorta, and lungs.

During ray tracing, voxels need to be accessed at random. The

access speed is highly dependent on the memory layout of the data.

This problem has been addressed by OpenVDB (27) with its

optimized B+ tree data structure and by its compacted, read-only

and GPU-compatible version, NanoVDB (28). Data in Open/

NanoVDB are stored in grids. These grids can be written

together into a single file, which we call an Open/NanoVDB
frontiersin.org
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FIGURE 2

Overview of the pre-processing pipeline. A segmentation volume containing N labels (one for each organ) is converted to a NanoVDB volume (iii) for
use on the GPU. On the one hand, S is directly converted to a grid containing all the labels (iii-1). On the other hand, for each label, an OpenVDB grid (i)
containing only voxels belonging to the given label is created. In (ii), the SDF w.r.t the organ boundary is computed and used later during traversal to
obtain surface normals. The blue and red bands represent negative (resp. positive) values of the SDF. (v) The final NanoVDB volume contains for each
label, the corresponding voxel (iii-2) and SDF (iii-3) grids. Pointers to each grid are stored in the Shader Binding Table for access on the GPU (iv).

TABLE 1 List of properties assigned to tissues.

Property Description Domain
Impedance (Z) Tissue-specific acoustic impedance in kg/

(m2 � s)
–

Attenuation
coefficient (a)

Tissue-specific attenuation in dB/(cm �Hz) –

Sound speed ðcÞ Sound speed in a given tissue, in m � s�1 –

m0; s0; m1 Scatterer distribution parameter, from (15).
m0; s0 control the scatterer amplitude
while m1 controls the probability of a
scatterer being generated

m0; s0 [ [0; 1]

t Coefficient used to specify whether a
reflection is more diffuse or specular,
as in (15)

t [ [0; 3]

g Coefficient used to amplify small
reflections, as in (15)

g [ [� 2; 2]

Domain values are indicated for hyperparameters. Please refer to Tables A1, A2 in the

Appendix for the impedance and attenuation coefficient values per tissue.

TABLE 2 List of parameters used to configure the transducer.

Property Description
Center frequency Transducer center frequency (in Hz)

Sampling frequency Signal sampling frequency (in Hz)

Amadou et al. 10.3389/fcvm.2024.1384421
volume. We convert the segmentation volumes into NanoVDB

volumes (Figure 1B) as described below.

A detailed overview of the pre-processing pipeline is shown in

Figure 2. Firstly, the segmentation volume with all labels is

converted to a NanoVDB grid (Figure 2iii-1). This grid is used

during ray tracing to access a label associated with a given voxel.

Then, for each label in the segmentation volume, a narrow-band

signed distance function (SDF) is computed such that the distance

from voxels in the neighbourhood of the organ to its boundary is

known (Figure 2ii). Blue (resp. red) bands represent the voxels

with negative (resp. positive) distance to that boundary, i.e. inside

(resp. outside) it. The SDF grids are written to the output volume

(Figure 2iii-3) and are later used during traversal to compute

smooth surface normals by looking at the SDF’s gradient (Figure 2v).

A separate grid containing only the voxels associated with the

current organ is also saved (Figure 2iii-2) in the output volume.

Hence, the final NanoVDB volume (Figure 2iii) contains the

original voxel grid and, for each label, two grids: the SDF grid as

well as the voxel grid. In practice, the pre-processing takes less

than five minutes per volume and we use several worker

processes to perform this task on multiple volumes in parallel.
Element width Width (in mm) of an element

Element height Height (in mm) of an element

Kerf Spacing between two elements (in mm)

Number of elements Number of elements making up the matrix array

Scan geometry Type of scan geometry (e.g. linear, phased)
2.3 Scene setup

Similarly to previous work (15–17), the sound wave is modelled

as a ray. The simulation is done using OptiX (8), which is a CUDA/

C++ general-purpose ray tracing library providing its users with fast

intersection primitives on the GPU. The previously generated

NanoVDB volume is loaded and the voxel grids corresponding to

each label (Figure 2iii-2) are represented as Axis-Aligned Bounding

Boxes (AABB) which are grouped together to create the

Acceleration Structure (AS) used by OptiX to compute

intersections. We assign acoustic properties from the literature (29)

to each organ. A summary of all the assigned properties is listed

in Table 1. Values for m0; m1; s0 are detailed in Table A1 in the

Appendix. To retrieve data during traversal, OptiX uses a Shader

Binding Table (SBT). We populate it with tissue properties,

pointers to the organs’ SDFs and a pointer to the original voxel
Frontiers in Cardiovascular Medicine 04
grid (Figure 2iv). Finally, a virtual transducer is positioned in the

scene. Transducer parameters are listed in Table 2.
2.4 Simulation module

The goal of the simulation module (Figure 1C) is to generate

view-dependent US images. This module is made of two parts.

The first part performs the ray tracing using OptiX. The goal of

this module is to model large-scale effects (reflections, refractions

and attenuation). This is done by computing, for each point

along a scanline, the intensity I sent back to the transducer. The
frontiersin.org
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second part generates the US image by convolving the point spread

function (PSF) with the scatterer distribution while taking into

account the corresponding intensity IðlÞ along the scanline.

2.4.1 Background
2.4.1.1 Ultrasound physics
Here we first describe the phenomena happening during ray

propagation: The wave loses energy due to attenuation following

IðlÞ ¼ I0e�lfa, with I0 the initial wave intensity and l the distance

travelled in a given medium with attenuation a at frequency f .

When it reaches a boundary, it is partially reflected and transmitted

depending on the difference in impedance between the two media.

The reflection and transmission coefficients R and T are written

following Equations 1, 2:

RðZ1; Z2; u1; u2Þ ¼ Z2 cosðu2Þ � Z1 cosðu1Þ
Z2 cosðu2Þ þ Z1 cosðu1Þ

� �2

(1)

TðZ1; Z2; u1; u2Þ ¼ 1� RðZ1; Z2; u1; u2Þ (2)

cosðu1Þ ¼ n!� v! (3)

cosðu2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z1

Z2

� �2

ð1� cos2ðu1ÞÞ
s

(4)

Where Z1 and Z2 are the impedances of the media at the boundary.

u1 computed following Equation 3, is the angle between the incident

ray v! and the surface normal n!. Finally, u2 is the refracted angle and

computed following Equation 4.

2.4.1.2 Rendering equation
When the wave propagates in tissue, it can encounter several

boundaries and bounce multiple times, depending on the scene

geometry. Hence, retrieving the total intensity at a given point P

requires taking into account contributions coming from multiple

directions. The field of computer graphics has faced similar

challenges to compute global illumination.

We take inspiration from the rendering equation (30):

LP!n ¼ OP!n þ
ð
V

fP;v!nLP v cosðuÞdv (5)

where:

• V is the surface hemisphere around the surface normal at point P.

• LP!n is the amount of light leaving point P in direction n.

• OP!n is the light emitted at P in direction n.

• fP;v!n is a Bidirectional Scattering Distribution Function (BSDF)

giving the amount of light sent back by a given material in

direction n when it receives light from direction v at point P.

• LP v is the amount of light received by P in direction v.

• Finally, u is the angle between the surface normal at P, nP
�! and

the incoming light direction v.

2.4.2 Model derivation
Several modifications are made to adapt Equation 5 to US

physics. Firstly, the term OP!n is zero in our case as scatterers

do not emit echoes.
Frontiers in Cardiovascular Medicine 05
We can then refer to the intensity sent back to the transducer

from P as ITr . This term depends on the intensity IðPÞ arriving at P,
expressed following Equation 6:

IðPÞ ¼
ð
V

IP0!vAP0!Pdv (6)

This represents the accumulation of echoes reaching P along

directions v from several points P0 located on other boundaries

in the scene. This is illustrated in Figure 3 where contributions

from P3 and P2 are gathered at P. IP0!v is the intensity leaving

P0 in direction v and AP0!P is the attenuation affecting the wave

from P0 to P along v (denoted as � a� in Figure 3). IP0!v

depends in turn on the intensity accumulated at P0 (illustrated by

incident rays at P1 � � � P3 in Figure 3) following Equation 7:

IP0!v ¼ IðP0ÞfP0;v0!v cosðu0Þ (7)

With u0 the angle between the incident ray v0 and nP0
�!, and

fP0 ;v0!v ¼ RðZ1; Z2; v
0; vÞbTðZ1; Z2; v

0; vÞ1�b where b is a

binary variable equal to one when the ray is reflected, and zero

otherwise. We randomly choose whether to reflect or refract a

ray and b ¼ 1 when u , RðZ1; Z2; u1; u2Þ, with u � Uð0; 1Þ,
otherwise b ¼ 0. Here f is analogous to the BSDF in rendering

and the corresponding loss of energy is represented at

boundaries by j � j in Figure 3.

As we now have an expression for IðPÞ, we can compute ITr .

This term depends on whether or not P lies on an organ’s

surface. The two cases are described below:

• Similarly to Burger et al. (15), on a boundary, the intensity

reflected to the transducer ITrðPÞ ¼ IRðPÞ is written following

Equation 8:

IRðPÞ ¼ Z2 � Z1

Z2 þ Z1

� �2

IðPÞt cosðuÞg (8)

• Otherwise, it is simply equal to I(P) as shown in Equation 9:

ITrðPÞ ¼ IðPÞ (9)

For a given point along a scanline with radial, lateral and

elevation coordinates ðr; l; eÞ, the expression for the received

echo is described by Equation 10:

Eðr; l; eÞ ¼ ITrðr; l; eÞrðr; l; eÞ � Tðr; l; eÞ (10)

where rðr; l; eÞ is a cosine modulated PSF and Tðr; l; eÞ the

scatterer distribution. Their expressions are given in Equations

11, 12, respectively.

rðx; y; zÞ ¼ exp � 1
2

r2

s2
r
þ l2

s2
l

þ e2

s2
e

� �� �
cosð2pfrÞ (11)

Tðr; l; eÞ ¼
XN
q¼1

wqaqdðr � rqÞ (12)
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FIGURE 3

(A) A summary of the Monte Carlo path tracing logic: For a given point P in the scene, we integrate the contributions from multiple waves reaching P
over its surface hemisphere. (B) A visualisation of the sampling pdf at intersections. The black arrow is analogous to the main beams in (A). Directions
close to the main beam (e.g. ray leaving P1 in (A) have a higher chance of being sampled (thick red arrow) than the ones far from it (thick blue arrow,
e.g. ray leaving P3 in (A). (A) Path tracing logic and (B) Ray distribution at intersection.
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N is the number of scatterers, aq is the tissue-dependent scatterer

amplitude, computed similarly to (15–17). Each scatterer is

projected onto the scanline and associated with the closest

radial sample rq. Finally, wq is used to weight the contribution

of a scatterer depending on its distance to the scanline.

Let’s write DL and DE ¼ e� eS as the lateral and elevational

distances of a scatterer to a scanline. Then wq can be computed

in two ways:

• Using an analytical beam profile, defined by a gaussian PSF with

lateral and elevational variance sL; sE and expressed in

Equation 13:

wq ¼ exp � 1
2

D2
L

s2
L
þ D2

E

s2
E

� �� �
(13)

• Using a pulse echo field generated from Field II (offline) with

the desired transducer configuration. The field is sampled

based on DL and DE and the scatterer’s radial depth.

The computation of E is done using the fast implementation of

the COLE algorithm from Storve et al. (31).
2.4.3 Monte Carlo path tracing
By substituting IðP0Þ in Equation 7 by its expression in

Equation 6, it is easy to see the recursive nature of the

integral, which makes the problem hard to solve. Hence, we

resort to Monte-Carlo integration, which is a useful tool to

approximate high-dimensional integrals.
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This allows us to express I(P) following Equation 14:

IðPÞ ¼ 1
N

XN
i¼1

IðPiÞfPi ;v0!viAPi!P cosðuiÞ
pðviÞ (14)

Unlike in Mattausch et al. (17), we explicitly weight the pdf’s

contribution, pðviÞ, which is the probability of generating a

sample in direction vi. Indeed, at boundaries, rather than

randomly varying the surface normal to choose a direction to

trace reflected/refracted rays, we choose a random direction by

sampling in a cone around the reflection/refraction directions,

represented by the black arrow in Figure 3B. Indeed, when the

wave hits large spherical scatterers, the reflected wavefront is a

replica of the shape of the intersected area, which would take a

conic shape in the case of spherical scatterers (29).

We generate random directions by sampling in spherical

coordinates. More precisely, we have u � Uð0; 2pÞ and

f � cðs; m; a; bÞ where cðs; m; a; bÞ is a truncated normal

distribution. f is sampled using inverse transform sampling. The

joint distribution is pðu; fÞ ¼ cðs; m; a; bÞ
2p and is illustrated in

Figure 3B, where directions close to the reflection/refraction

direction have a higher chance of being sampled (red colour)

than the ones far from it (blue colour).

Finally, since we are working with solid angles, the distribution

needs to be converted accordingly, with:

pðvÞ ¼ pðu; fÞ
sinðuÞ ¼

cðm; s; a; bÞ
2p sinðuÞ (15)
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When propagating, the sampled ray deviates from its main

beam (blue, red and yellow rays in Figure 3A, yielding a reduced

echo intensity. Thus, in addition to the attenuation due to

propagation through tissue, the sampled rays’ intensities are

further reduced by weighting them with a factor wR

corresponding to the beam coherence (BC) as done in Mattausch

et al. (17). For each point P0 along the sampled ray, the

amplitude is weighted by wR ¼ C0
C0þdðP; P0Þ, where C0 is a user-

defined constant and dðP; P0Þ is the distance between P0 and its

projection on the main beam P, as illustrated in Figure 3A. We

typically use C0 values in the range [0; 1].
2.4.4 Traversal
Rays are sent from the virtual transducer depending on its scan

geometry. The intersection with the volume is computed and from

that point, we march stepwise along the ray using a hierarchical

digital differential analyser (HDDA) (32). At each step, the ray is

attenuated and once a boundary is reached, we randomly reflect

or refract the ray. We repeat the process until a maximum

number of collisions is reached.

Once the RF scanlines are computed, we apply time-gain

compensation, log compression, dynamic range adjustment and

scan conversion to obtain the final simulated US.
3 Experiments

In the following sections, we begin by presenting qualitative

results, where we examine the impact of different parameterizations

and evaluate the pipeline’s ability to replicate image artefacts and

patient anatomies (Section 3.1).

Subsequently, we detail our phantom experiments, which serve

as a validation of essential aspects of our simulation pipeline for its

role as a learning environment. We assess its capability to

reproduce anatomical structures by measuring physical distances

and assessing contrast, using a calibration phantom as a

reference. We further investigate its aptitude in generating a

fully-formed speckle pattern, as speckle is an inherent property

of ultrasound images (Section 3.2).

Lastly, we showcase the utility of these simulations in training a

neural network for cardiac standard view classification, a critical

task for ultrasound navigation guidance (Section 3.3).
3.1 Qualitative results

Figure 4 shows examples of simulated echocardiograms with

various parameterizations: Firstly, the number of rays traced is

critical in allowing the Monte Carlo process to converge and

reveal the anatomy in the scene. Indeed, the left atrium is hardly

visible in Figure 4B without MCPT, as rays reflect in

deterministic directions, thus not propagating in the whole scene.

Using MCPT with a greater number of rays improves the

visibility of the anatomical structures as demonstrated in

Figures 4C,D. The beam coherence value C0 impacts the
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intensity of the rays deviating from the main beams. This is

illustrated in Figure 4E where a higher C0 reveals the aorta as

deviating rays are less attenuated. Additionally, we report the

Kernel Inception Distance (KID) (33) for each synthetic image,

where the features are extracted from the penultimate layer of a

neural network trained on real images for view classification (see

Section 3.3 for network and training details) and compared to

features from unseen real apical two chamber (A2C) images. The

reported values for each image are obtained after averaging KID

values from 100 random resamplings on the real features,

following the methodology in (33). For our experiments and for

future use as a training environment, the preferred simulation

outcome would be similar to Figure 4E, as critical structures for

identifying the view are clearly visible and the KID is the lowest.

Figures 4F,G show an amplification of myocardium reflections

in two ways using g and t: The reflection intensities in Figure 4F

are angle-dependent while in Figure 4G all reflections are

amplified. When using an analytical profile in Figure 4H, the

axial distance of the scatterers along the scanline is not taken

into account in wq, meaning their amplitude is not attenuated

with depth, yielding a brighter image in the far field.

Figure 5 shows real acquisitions (left column) apical 5, 4, 3

chamber views (top to bottom) alongside simulations (right

column). The chambers appear clearly in the images but the

simulations lack fine tissue detail, as this information is lost

when segmenting the input data. This is highlighted by the

orange box in the four-chamber view, where the papillary

muscles and valve leaflets in the real left ventricle acquisition

make the ventricle’s border fuzzier than in our simulation.

Nevertheless, this shows the potential of the pipeline in

generating any type of view.

Figure 6 demonstrates post-acoustic enhancement and

shadowing artefacts using a virtual sphere placed in a

propagating medium. Post-acoustic enhancement is demonstrated

in Figure 6A, similar to artefacts caused by fluid-filled cystic

structures in clinical settings. When using a highly reflective and

attenuating sphere, a shadow is cast as in Figure 6B. Figures 6C,D

illustrate acoustic shadowing in a more complex scene, where a rib

is in front of the transducer. The advantage of our pipeline lies in

its ability to produce such views, which are neither routinely saved

nor available in open-source ultrasound datasets.
3.2 Phantom experiments

We use a commercial calibration phantom (Multi-Purpose

Multi-Tissue Ultrasound Phantom, model 040GSE, Sun

Nuclear, USA) to perform the validation. Real acquisitions with

a SiemensTM Healthineers ACUSON P500TM system (P4-2

phased transducer) are taken for lesion detectability comparison

with the simulated images. To generate our simulations, a

virtual phantom is built following the technical sheet describing

the arrangement of structures in the phantom. Each type of

structure is assigned a label and a segmentation volume is built.

We simulate three different views, with each containing a

different set of targets and perform various measurements on
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FIGURE 4

Illustration of the influence of the MCPT, beam coherence C0 value, scatterer weighting strategy, t and g terms. All simulations use MCPT, 2,500 rays, a
pulse-echo field from Field II with a focus at 60mm, C0 ¼ 0:1 and the myocardium properties are t ¼ 2:0 and g ¼ 0:1 unless stated otherwise. The
values in parentheses indicate the Kernel Inception Distance (KID) for each image, computed w.r.t real A2C images from the test dataset. Features for
KID computation were extracted from a network trained on real images. (A) is an input segmentation map for an A2C view, where the orange label is
associated with the aorta. In (E), the orange box denotes the aorta, showing the simulations reproduce patient-specific anatomy with fidelity. (A)
Segmentation. (B) No MCPT (1.494). (C) 500 rays (1.490). (D) 2,500 rays (1.493). (E) C0 ¼ 0:2 (1.488). (F) g ¼ �1:8 (1.493). (G) t ¼ 2:8 (1.492) and (H)
sL ¼ 1:5�3ð1:492Þ.

Amadou et al. 10.3389/fcvm.2024.1384421
each synthesized view. As we perform a comparison of lesion

detectability in simulated and real images, we set the image

pixel spacing of our simulations to the same value as the real

acquisitions, i.e. at 0.23 mm. All simulations are done using a

Desktop computer equipped with an NVIDIA Quadro

K5000 GPU.

3.2.1 Experiment parameters
The transducer, simulation and post-processing parameters

for phantom and view classification experiments are listed in

Table 3. For the phantom experiment, the transducer is

parameterized similarly to the real one following the parameters
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listed in Table 2. The parameters for the truncated normal

distribution f are m ¼ 0; s ¼ p
4 ; a ¼ 0; b ¼ p

2.

3.2.2 Distance measurements
We sampled pixels along a 1-D line going through nylon

targets. The coordinates of the line were automatically

computed given the technical phantom sheet. A 1-D signal

was extracted from this line and peaks (corresponding to the

centre of nylon wires) were identified. Knowing the virtual

transducer’s position as well as the peaks’ location along the

line allowed us to compute a Target Registration Error (TRE)

between the expected and simulated nylon wire positions.
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FIGURE 5

Real (left column) and simulated (right column) Apical 5, 4, 3 chambers views (top to bottom, not paired). The orange box denotes papillary muscles
and fine cardiac structures which are not captured by the simulations, making the ventricles’ borders sharper in the synthetic images.
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Examples of targets used in this experiment are shown by

the orange box in Figure 7D. A detailed summary of the error

per view and per target group is given in Table 4. An error

of 0:20+ 0:32 mm was reported when measuring the TRE

from 60 targets.

A pattern emerges from Table 4, where the error increases with

depth (Horizontal Distance Groups 1 and 2). This is due to beam

divergence in the far field, which decreases the lateral resolution.

This agrees with experimental measurements.

3.2.3 Lesion detectability and contrast
Having an accurate contrast between background and

surrounding structures is critical in ultrasound as it allows users
Frontiers in Cardiovascular Medicine 09
to discriminate between tissues. Thus, we investigate the ability

of our pipeline to simulate structures of various contrast. To this

end, we compare anechoic and hyperechoic lesions from our

virtual phantom to the same lesions from real acquisitions.

In addition to classical metrics such as Contrast to Noise Ratio

(CNR) and contrast, we reported the generalized Contrast-to-Noise

Ratio (gCNR) (34), a metric robust to dynamic range alterations

and with a simple interpretation. Since our post-processing

pipeline differs from the P500’s as it is a commercial system, this

metric would provide a way to compare the lesion detectability

independently of post-processing differences.

We computed gCNR, CNR and contrast between lesions

and background using two views. The background patch size
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FIGURE 6

Our pipeline is able to recreate some artefacts such as (A) post-acoustic enhancement and (B) shadowing. Spheres filled with fluid (A) and with high
attenuation (B) were used to recreate the artefacts. (C) shows segmentation labels of a scene with a rib in front of the transducer (white label) and (D) is
the corresponding simulated image, demonstrating acoustic shadowing. (A) Post-acoustic enhancement. (B) Acoustic shadowing. (C) Segmentation
map and (D) Rib shadowing.
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was calculated to have a sample size similar to the lesion

patch. Real and simulated acquisitions, as well as histograms

of the lesions and background distributions, are illustrated

in Figure 7.

A summary of the scores between real and simulated images is

indicated in Table 5. Overall, gCNR, CNR and contrast values

between real and simulated values are close, suggesting our

pipeline reproduces lesions with fidelity. Contrast values for the

second and third anechoic lesions differ as in the real

acquisition, the far field is more hypoechoic compared to the

focus area in the centre of the image.

3.2.4 Speckle pattern analysis
In this section, we analyze the capability of our simulator to

generate a fully-developed speckle pattern. To this end, we

conduct a comparative analysis similar to Gao et al. (35), where

random scatterers at a density of 600 mm�2 and fixed amplitude

of 1 are distributed in a 40� 40 mm2 volume. It is known for
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such an experiment that the envelope detected signal follows a

Rayleigh distribution and its signal-to-noise ratio (SNR) reaches

a value of 1.91 (36). The experiment is repeated 10 times to take

into account its stochastic nature. Here, we use an analytical

beam profile with DE; DL ¼ 2:0 mm. For each run, the SNR is

computed and the sum-of-squared errors (SSE) w.r.t a fitted

Rayleigh distribution is calculated. An example histogram and

fitted distribution from a run is shown in Figure 8.

We obtain a mean SSE of 1:81e�5 and SNR of 1:89+ 0:01,

which is in the ranges reported in the literature (14, 16, 35). This

suggests that our pipeline is able to create a fully developed

speckle pattern.
3.3 View classification

Our last experiment assesses the usability of simulated images

to train neural networks for view classification. This task is intrinsic
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TABLE 4 Target Registration Error (TRE) between expected and simulated
wire positions (mean + std).

Structure TRE per view in mm

Target groups View 1 View 2 View 3
Vertical distance 0:03+ 0:03 0:09+ 0:07 0:12+ 0:09

Horizontal distance 1 (near-field) 0:05+ 0:04 0:16+ 0:14 0:28+ 0:05

Horizontal distance 2 (far-field) 0:34+ 0:33 0:25+ 0:59 0:33+ 0:37

TABLE 3 Parameters used in the experiments.

Property Value in experiment

Phantom View classification
Transducer parameters

Sampling frequency (MHz) 50

Center frequency (MHz) 3.6 3.6

Field II pulse echo field focus (cm) 5 6.5

Analytical profile std (DL; DE) (mm) N/A 1.0

Simulation parameters

Max num. collisions 7 10

Beam coherence C0 0.1 [0.01, 0.05, 0 075, 0.1]

Num. rays per element 1,000 [1,000, 2,000, 3,000, 5,000]

Post-processing parameters

Dynamic Range (dB) 75 [65, 75, 85, 95]

Time-Gain compensation (dB/cm) 1.5

Reject threshold (dB) 40 [35, 45, 50, 60]

t 1.0 2.0

g 0.7 0.1

For the view classification experiment, brackets indicate the range of values sampled.
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to navigation as a network must be capable of identifying when a

target view has been reached. We train networks to classify real

apical views (A2C, A3C, A4C, A5C) and investigate the impact

of fine-tuning with real data on the networks’ performance, as

networks trained in the simulation environment would likely be

fine-tuned to adapt to real scenarios. Synthetic and real dataset

generation are described in Sections 3.3.1 and 3.3.2. Furthermore,

we conduct an ablation study where we evaluate the impact of

parameters we believe impact the image quality the most,

namely: the use of MCPT and the weighting method when

projecting scatterers, i.e. with an analytical function or using a
FIGURE 7

Examples of real and simulated views used in the lesion detectability and co
lesion area and distribution (red) and the background area and distributio
histograms [resp. (E,F)] associated with the hyperechoic lesion. (C,D) Rea
(G,H)] associated with the anechoic lesion. In the histograms, e0 denotes
error when classifying pixels as belonging to the lesion or the background
distance assessment.
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pulse echo field from Field II. The experimental setup is detailed

in Section 3.3.3, followed by the results in Section 3.3.4.
3.3.1 Simulated TTE dataset
Chest CTs and Cardiac CTs from 1,019 patients from the

FUMPE (37) and The Cancer Imaging Archive (38) [LIDC-IDRI

(39)] datasets were used to generate simulated images. The

volumes were automaticall segmented using (40) and pre-

processed according to the pipeline described in Figure 2 and

several landmarks were automatically obtained (apex,

the centre of the heart chambers…) and used to find the

appropriate transducer orientations and positions to acquire the

standard views.

For each view, we generate multiple synthetic samples by

varying simulation parameters as described in Table 3. We

generated more synthetic samples for the A5C view to

compensate for the low number of datasets where we were able

to automatically obtain a suitable view. The final dataset

distribution is 30%, 30%, 30% and 10% resp. for the A2C, A3C,

A4C and A5C classes.

All the samples from the simulated dataset are used for

training. The average simulation time per image was 300
ntrast experiment, alongside the corresponding histograms showing the
ns (blue). (A,B) Real and simulated acquisitions and the corresponding
l and simulated acquisitions and the corresponding histograms [resp.
the optimal intensity threshold found that minimizes the probability of
(34). The orange box in (D) denotes examples of targets used for the
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TABLE 5 gCNR, CNR and contrast (in dB), values from lesions in real and
simulated US acquisitions (mean + std).

Lesion Metric Real Sim
Hyperechoic (þ6 dB) gCNR 0.19 0:22+ 0:08

CNR 0.27 0:29+ 0:1

Contrast 4.72 4:88+ 1:82

Hyperechoic (þ15 dB) gCNR 0.88 0:89+ 0:02

CNR 0.74 0:77+ 0:03

Contrast 16.07 16:97+ 2:30

Anechoic 1 gCNR 0.80 0:82+ 0:03

CNR 0.64 0:70+ 0:05

Contrast �14:17 �13:38+ 1:89

Anechoic 2 gCNR 0.87 0:78+ 0:04

CNR 0.72 0:70+ 0:04

Contrast �16:61 �13:38+ 1:34

Anechoic 3 gCNR 0.71 0:71+ 0:06

CNR 0.66 0:69+ 0:06

Contrast �19:41 �13:69+ 2:43

Simulations were generated 10 times to take in account the stochasticity of the MCPT and the

scatterers’ generation in TðxÞ.

FIGURE 8

Rayleigh distribution fit. The histogram shown is from a random run
out of 10. We obtain a mean sum-of-squared Errors of 1:89e�5 w.r.t
the fitted Rayleigh distribution and a SNR of 1:89+ 0:01, which is in
the ranges reported in the literature (14, 16, 35).
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milliseconds. This number includes only the simulation step

(i.e. Figure 1C).

Finally, to conduct the ablation study, 3 different simulated

datasets are created.

• sim NOMCPT, where MCPT was disabled. Thus all samples are

generated with deterministic raytracing.

• sim þMCPT, where MCPT was enabled and an analytical beam

profile used.

• sim þ MCPT þ FIELD, where MCPT was enabled and a pulse

echo field from Field II was used to weight the scatterers’

contributions.
3.3.2 Real TTE dataset
We used real US acquisitions to train and test the view

classification network. The video sequences came from Siemens
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and Philips systems. During training, we sample randomly one

frame from a given sequence and add it to the training batch.

The real training dataset is also imbalanced, where the sample

distribution in each fold for A2C, A3C, A4C and A5C classes is

around 21%, 18%, 51% and 10%.

3.3.3 Evaluation methodology
For this experiment, we used a Convolutional Neural Network

(CNN) with a DenseNet architecture (41) to classify views. The

network architecture is kept fixed for all experiments. Random

weighted sampling is used to fight class imbalance. We divide

the real dataset into 5 folds for cross-validation but always use

the same synthetic dataset for pre-training.

In each fold, we create subsets dr of the real training dataset

Dreal with varying amounts of real data. For each dr , we train

four networks: One network on dr only, to establish a baseline

and then we pre-train 3 other networks on each one of the

simulated datasets and fine-tune them on dr . Validation and

testing are always done on the same real datasets, independently

of dr ’s size.

When pre-training, we employ the following data

augmentations on the synthetic samples to match the variations

observed in the real dataset: Cropping/zooming (e.g. to mimic

real sequences where there’s a zoom on a chamber or a valve),

Gaussian smoothing, brightness and contrast jittering (to

replicate varying texture qualities), fan angle variation (for real

sequences where the fan angle is changed by the operator). No

augmentations are applied to the real data.

When evaluating, for each video sequence, we perform a

majority vote on the network’s predictions on each frame to

determine which label to assign to the sequence.

3.3.4 Results
We report averaged F1-score and accuracy for all the classes in

Figures 9A,B and F1-score for the A5C and A4C classes in

Figures 9C,D.

Figure 9 suggests pre-trained networks achieve a performance

level comparable to networks trained on all real datasets when

fine-tuned with at least half of the real data.

Fine-tuned networks show significant improvements over their

counterparts trained on real data (when dr , 800). This trend is

accentuated for the A5C class, which is the most under-

represented in the dataset. Using simulated data for pre-training

still benefits the dominant A4C class, as shown in Figure 9D.

Results for networks trained on simulated data only are not

reported as they overfitted easily and performed poorly on the

real test dataset.

Confusion matrices for dr ¼ 450 are reported in Figure 10 for

the baseline trained on real data only (Figure 10A) and the network

pre-trained on sim þ MCPT (Figure 10B). There is a noticeable

improvement in the results, highlighted by a reduction in

confusion between the A5C and A4C classes.

Finally, no statistically significant differences were found when

comparing the results of the networks pre-trained on sim þMCPT

and sim þMCPT þ FIELD (p . 0:05). This suggests the choice of

the weighting method for scatterers has little influence on neural
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FIGURE 9

Results of the view classification ablation study averaged over 5 folds. Networks pre-trained with simulations and then fine-tuned on real samples were
compared to networks trained on real data only. The x-axis indicates the size of the subset of real data dr . (A,B) report the F1-score and accuracy over
the 4 classes while (C,D) report the metrics for the (most-represented) A4C and (under-represented) A5C classes. For a given dr , a star is displayed on a
graph if the p-value from a right-tailed Wilcoxon signed rank-test is , 0:05.
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network training on this task. Results were statistically different

between sim NO MCPT and sim þ MCPT when dr , 450 and

only different between sim NO MCPT and sim þ MCPT þ
FIELD when dr , 150.
4 Discussion

In this section, we first discuss experimental results from the

view classification experiment in Section 4.1. We then address

the limitations of our proposed simulation pipeline in Section 4.2

and finish by expanding on potential applications of the pipeline

and future work in Section 4.3.
4.1 View classification

In Figure 9, pre-trained networks show improved performance

compared to the ones trained on real data only, meaning the

simulations can be used to generate data when large datasets are
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not readily available or to target a sub-population which is less

prevalent. This suggests our pipeline could be used to generate

data for other tasks, given some improvements are made to

circumvent the limitations caused by using segmentations. We

expand on this in Section 4.2.

Moreover, networks pre-trained without MCPT achieved in

some cases performances similar to their counterparts trained with

MCPT. While MCPT allows for a better visibility of the anatomical

structures as demonstrated in Figure 4, the discriminating features

between views (i.e. heart chambers) are still present in the images

without using MCPT. This would explain why the networks can

still learn from such images. However, we believe using MCPT

might be more critical in applications where all structures need to

be clearly observable, such as image segmentation.

We limited the view classification experiment to four views as

apical views were the only ones we could obtain robustly in an

automatic way. Even then, we were not always successful in

obtaining correct transducer orientations for each apical view in

every patient dataset, especially for the A5C view. Indeed, view

planes for each patient are obtained by finding landmarks using
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FIGURE 10

Confusion matrices for dr ¼ 450 in the view classification experiment. (A) Confusion matrix for the baseline trained on real data only. (B) Confusion
matrix for the network pre-trained on simulated data with MCPT enabled. An analytical beam profile was used. The network pre-trained on simulated
data (B) notably reduces the confusion between A5C and A4C classes.
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segmentations and morphological operations and then fitting a

plane. Our automated method failed to consistently find a plane

where the aorta and the four chambers were visible in the

simulations. This is related to the fact that we obtain our

segmentations from CT data, where the patients are lying supine,

and it is known that finding A5C views when patients are in the

supine position is complicated in clinical settings as the imaging

plane is suboptimal (42). This explains the synthetic training data

distribution in the view classification experiment. However, using

an algorithm capable of navigating between views (which is what

we intend to develop using the simulator), we could potentially

generate datasets with a greater number of standard views.

Finally, in Figure 10, there is a confusion between A2C and A4C

classes. Our data is annotated such that all frames in a video

sequence have the same label. However, there are multiple A4C

sequences in which some frames resemble A2C views (due to

suboptimal probe positioning or cardiac phase) but are labelled as

A4C, which introduces confusion for the network during training.
4.2 Proposed simulation pipeline

While this pipeline allows for the fast simulation of arbitrary

anatomies from a large number of patient datasets, it presents

limitations:

(1) Similarly to other raytracing methods, we cannot simulate

non-linear propagation. This prevents us from using

techniques such as tissue harmonic imaging. Furthermore,

we cannot reproduce reverberations. These could be

simulated by summing the ray contributions temporally (i.e.

by keeping track of the distance travelled by a ray) rather

than spatially. However, this requires a careful weighting of

the contribution of the randomly sampled rays with the

beam coherence, so as to not yield incorrect results.
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(2) As seen in Figure 5, the border with the blood pool is sharp and the

inhomogeneities of tissues are not represented in the simulations.

This is due, respectively, to smaller cardiac structures (e.g. papillary

muscles, trabeculae …) which are difficult to annotate and

segment, and to the assumption of homogeneity within the

tissue (i.e. all scatterers’ intensities in a given medium follow the

same distribution) since the intensity variation between pixels is

lost with the segmentations. Additionally, the segmentation

algorithm can also produce inaccurate labels. The impact of

these factors depends on the downstream tasks.

A quantitative evaluation of segmentation errors could be made

using a CTwith accurate segmentation labels and then altering the

labels with geometric and morphological operations to assess the

impact of inaccuracies on the outcomes. Furthermore, given

pairs of registered CT and real ultrasound images, one could

assess the ability of the pipeline in simulating pathological cases,

as in Figures 6A,B.

The impact of the tissue homogeneity assumption was

illustrated in our attempt to train networks solely on simulated

data for the view classification experiment, but the performance

was poor. We noticed the network quickly overfitted the data.

While the range of anatomies simulated is wide (þ1,000
patients), the lack of fine-tissue detail seems to limit the diversity

of generated samples. We believe a potential solution to this

challenge would be a combination of our pipeline with

generative models, to improve the realism and quality of

simulations. This could enable the generation of large and

realistic ultrasound datasets, with readily available anatomical

labels.

(3) While we do not address the topic of cardiac motion in this

manuscript, it is possible to generate such sequences with

our pipeline, given input volumes for each timestep of the

cardiac cycle.

(4) We recognize that the pressure applied by sonographers on

the patient’s chest during TTE examinations can impact the
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image quality. We plan to address this in future work by

incorporating a volumetric deformation model over the

anatomical volume. Nevertheless, we note that the proposed

framework would still be sufficient for training navigation

algorithms for transesophageal imaging, where the impact

on images of such anatomical shape deformations due to

the ultrasound probe would be significantly smaller.
4.3 Applications and future work

We aim to use our pipeline as a simulator to train navigation

algorithms, similar to Li et al. (5). While the motivation behind

the development of our pipeline is autonomous navigation, its

capabilities could enable numerous downstream applications.

Large dataset generation from segmentations could allow for the

training of neural networks for tasks such as view classification,

image segmentation or automated anatomical measurements.

In addition to the proposed use for automated acquisition, the

method could be used for training or guidance of a semi-trained or

novice ultrasound operator. Typically, guidance methods use 2D

images from a pre-acquired 3D dataset. However, a simulation

method would enable larger adjustments to the probe position.

While we focus on cardiac TTE imaging in this paper, other

organs or modalities such as Transoesophageal Echocardiography

(TEE) or Intracardiac Echocardiography (ICE), in 2D or 3D,

could be simulated as a result of the built-in flexibility of our

pipeline. Our future work will investigate both the use of the

simulation pipeline as an environment to train deep

reinforcement learning agents for autonomous navigation and

the use of generative networks to improve the realism and train

networks for several downstream tasks.
5 Conclusion

We have presented an ultrasound simulation pipeline capable

of processing numerous patient datasets and generating patient-

specific images in under half a second. In the first experiment,

we assessed several properties of the simulated images (distances,

contrast, speckle statistics) using a virtual calibration phantom.

The geometry of our simulations is accurate, the contrast of

different tissues is reproduced with fidelity and we are able to

generate a fully developed speckle pattern.

We then synthesized cardiac views from more than 1,000 real

patient CT datasets and pre-trained networks using simulated

datasets. The pre-trained networks required around half the real

data for fine-tuning to reach a performance level comparable to

networks trained with all the real samples, demonstrating the

usefulness of simulations when large real datasets are not available.

The main limitation lies in the use of segmentations, unable

to capture smaller cardiac structures or intensity variations

between neighbouring pixels. Using a generative neural network

to augment the simulations is a potential workaround. Such a

pipeline enables a large number of downstream applications,
Frontiers in Cardiovascular Medicine 15
ranging from data generation for neural network training

(segmentation, classification, navigation) to sonographer training.
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Appendix
TABLE A1 Acoustic properties of different media.

Medium Impedance [kg/(m2s)] × 106 Attenuation [dB/MHz] m0 m1 s0 g t
Skull bone 7.8 10.0 0.78 0.56 0.1 0.5 2.0

Soft tissue 1.63 0.75 0.25 0.25 0.25 0.5 1.0

Cardiac muscle 1.71 0.52 0.45 0.51 0.05 0.1 2.25

Blood 1.62 0.18 0.02 0.005 0.015 0.7 1.0

Lung 0.26 41.0 0.10 0.2 0.1 0.9 1.0

TABLE A2 Structures used in the simulation and associated media.

Structure Associated media
Aorta, pulmonary veins, ventricles and atrias Blood

Lungs Lungs

Pericardium Cardiac muscle

Body Soft tissue

Ribs Skull bone

“Body” is the label associated to the tissues between organs.
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