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S100a8/A9 proteins: critical
regulators of inflammation in
cardiovascular diseases
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Jie Li2* and Xijian Liu1*
1College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan,
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Neutrophil hyperexpression is recognized as a key prognostic factor for
inflammation and is closely related to the emergence of a wide range of
cardiovascular disorders. In recent years, S100 calcium binding protein A8/A9
(S100A8/A9) derived from neutrophils has attracted increasing attention as an
important warning protein for cardiovascular disease. This article evaluates the
utility of S100A8/A9 protein as a biomarker and therapeutic target for
diagnosing cardiovascular diseases, considering its structural features,
fundamental biological properties, and its multifaceted influence on
cardiovascular conditions including atherosclerosis, myocardial infarction,
myocardial ischemia/reperfusion injury, and heart failure.
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Introduction

In recent years, the incidence rate and mortality rate of cardiovascular diseases have

been increasing year by year (1). Despite the ongoing enhancements in diagnostic and

treatment technologies, several shortcomings remain, such as extended diagnostic

timeframes, suboptimal sensitivity and specificity of existing diagnostic markers, and,

most notably, a dearth of targeted medications that are both safe and effective for

particular cardiovascular conditions. Thus, the pursuit of new markers and therapeutic

targets is essential for the prevention and treatment of cardiovascular diseases (2). The

impact of immune system-mediated myocardial injury and the associated development

of cardiovascular disease is a burgeoning area of interest in the study of disease

mechanisms. Evidence has established that the innate immune response is stimulated by

damage associated molecular patterns (DAMPs), leading to inflammatory processes.

S100A8/A9, a component of the S100 calponin family of DAMPs, forms the S100A8/

A9 heterodimer, also known as MRP8/14, and is consistently expressed (3). S100A8/A9

importance in cardiovascular diseases is underscored by its association with the extent

of atherosclerosis in coronary and carotid arteries, plaque vulnerability, and its role in

myocardial infarction and myocardial ischemia/reperfusion injury. Consequently,

S100A8/A9 may be a promising biomarker and therapeutic target for cardiovascular

conditions. The development and clinical trial approval of S100A8/A9 receptor blockers

further underscore its potential (4). This review explores S100A8/A9’s utility as a

diagnostic tool for cardiovascular system effects and as a marker for cardiovascular

events, providing a theoretical basis for the clinical treatment of cardiovascular diseases.
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Overview of the S100 protein family

The S100 protein family, initially identified by Moore in 1965,

comprises small molecular weight proteins (10–12 kDa) known for

their solubility in a 100% neutral saturated ammonium sulfate

solution and their role as calcium-regulatory proteins (5).This

family now encompasses 25 members, including S100A1-16,

S100G, and S100B, all of which share a significant degree of

sequence and structural similarity and possess a characteristic

calcium-binding motif (6). Each protein consists of two helix-

loop-helix EF-hand domains surrounded by conserved

hydrophobic regions at the N- and C-termini, connected by a

central hinge. The N-terminus typically contains a 14-amino

acid loop with low calcium affinity, whereas the C-terminus

includes a high-affinity calcium-binding loop of 12 amino acids.

This structural configuration facilitates a conformational change

upon calcium binding, exposing hydrophobic domains that

interact with various target receptors and proteins, a feature

essential for the functional diversity of the S100 proteins (7).

Exclusively found in vertebrates, S100 proteins are highly

conserved across species. Each member of the S100 family

exhibits unique tissue-specific expression patterns, determined

by their respective genes (8).

Unlike calmodulin, which regulates intracellular biological

activity by binding Ca2+, S100 proteins can modulate both

intracellular and extracellular functions, participating in autocrine

and paracrine signaling pathways (9). These proteins influence a

wide array of physiological processes by interacting with cell

membrane receptors such as Receptor of Advanced Glycation

Endproducts (RAGE) and G Protein-Coupled Receptors

(GPCRs), impacting cell proliferation, differentiation, migration,

invasiveness, inflammatory responses, oxidative stress, calcium

homeostasis, apoptosis, glycogen phosphorylation, and

macrophage clustering (10).
Structure, origin and expression of
S100a8/A9

S100A8/A9, similar to other members of the S100 protein

family, is situated at a chromosomal region known for its

variability, 1q21, where a distinct S100 gene cluster is formed (11).

The human S100A8/A9 proteins are encoded with distinct amino

acid compositions; S100A8 comprises 93 amino acids and has a

molecular weight of 10.8 kDa, whereas S100A9 is made up of 113

amino acids and weighs 13.2 kDa (12). These proteins can exist as

homodimers, heterodimers, and tetramers, with the homodimer

being less stable, leading to a preference for the formation of

S100A8/A9 heterodimer complexes, which are the predominant

form of S100A8/A9 in physiological settings (13). These

complexes, referred to as calprotectin, possess multiple biological

characteristics (14). When Ca2+ concentration reaches a certain

threshold, S100A8/A9 heterodimers form (S100A8/A9)2 tetramers,

a configuration that is vital for their biological activity. Secreted

mainly by immune cells such as dendritic cells, neutrophils,
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monocytes, and activated macrophages, these proteins participate

in the pathophysiology of various inflammatory conditions by

attracting leukocytes and modulating the inflammatory response to

vascular injury (15) (Figure 1).
Biological functions of S100a8/A9

S100A8/A9 regulates phagocyte migration
and exacerbates inflammation development
within cells

The S100A8/A9 proteins exert their biological effects through a

combination of specific expression patterns, structural alterations,

distinct metal ion binding affinities, and the formation of

homodimers, heterodimers, and oligomers, which are implicated

in various disease states (16). Intracellular S100A8/A9 plays a

pivotal role in modulating the migration of phagocytic cells,

thereby facilitating the progression of inflammation. By

interacting with the cytosolic components p47phox and p67phox

of nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase, intracellular S100A8/A9 enhances the activity of

NADPH oxidase, exacerbating cellular oxidative stress and

contributing to pro-inflammatory effects. Phosphorylation of

S100A9 regulates the p38 mitogen-activated protein kinase

(MAPK) signaling pathway, leading to the formation of (S100A8/

A9)2 tetramers (17). These tetramers promote microtubule

polymerization and reorganization in a calcium-dependent

manner, enhancing the migration of phagocytes towards the

endothelium (18) Additionally, S100A8/A9 is selectively released

during the interaction between phagocytes and activated

endothelial cells, making it an active mediator in the

development and progression of inflammation (19).
S100A8/A9 exerts significant inflammatory
regulation extracellularly through
multiple receptors

The biological activity of S100A8/A9 in the extracellular space

is mediated by their interaction with receptors such as Toll-like

receptor 4(TLR4) and the RAGE. Research indicates that the

binding of S100A8/A9 to TLR4 sets off a signaling cascade that

leads to the activation of NF-κB, which in turn governs cellular

responses including inflammation and cell cycle progression.

Studies have shown that S100A8/A9 can amplify the TLR4

response to Lipopolysaccharides (LPS) in myeloid cells, possibly

by indirectly activating TLR4, which results in the induction of

NO production by macrophages and intensifies inflammation.

On the other hand, S100A8/A9 has been implicated in

dampening acute inflammatory responses by regulating the

activity of inflammatory cytokines (20).

The protein S100A8/A9 is implicated in the inflammatory

response by potentially stimulating the release of inflammatory

cytokines in endothelial cells through the RAGE receptor and

amplifying its activation. In vitro, S100A8/A9 has been observed
frontiersin.org
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FIGURE 1

Structure of S100A8/A9. This figure shows the three-dimensional structure of S100A8/A9 heterodimer protein, demonstrating its complex folding and
arrangement of key functional sites. (A) Color representation: Proteins are represented in magenta, displaying their alpha helix and secondary
structure. Green sphere: represents the calcium ions (Ca2+) that bind to proteins, indicating that calcium binding sites are crucial for protein
function. Gray sphere: may represent zinc ions (Zn2+) or other metal ions, which can stabilize protein structure and are important for its biological
activity. (B) top-down perspective: This view provides a horizontal cross-section of proteins, emphasizing the internal arrangement of helices and
loops. Subbase interface: The interface between S100A8 and S100A9 subunits is visible, indicating how they interact to form functional
heterodimers. (C) Vertical cross-section: Provides a side view of proteins, highlighting the arrangement and spatial arrangement of alpha helices.
Binding sites: The distribution of green spheres (calcium ions) throughout the structure indicates that multiple calcium binding sites are crucial for
protein activity.
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to trigger cell apoptosis via both caspase-dependent and

-independent pathways, contributing to endothelial injury in

conditions such as vasculitis and inflammatory diseases.

S100A8/A9 has been shown to suppress the proliferation

and differentiation of C2C12 myoblasts and induce caspase-

3-mediated apoptosis. S100A8/A9 can also decrease

mitochondrial membrane potential, leading to the release of

mitochondrial proteins Smac/Diablo and Omi/HtrA2, and

inhibit mitochondrial fission, which in turn induces cell death

by tipping the balance between pro- and anti-apoptotic factors

(21). Furthermore, S100A8/A9 may induce autophagy by

facilitating the relocation of the mitochondrial outer

membrane protein BCL2 interacting protein 3 (BNIP3) to the

mitochondria and promoting Reactive Oxygen Species (ROS)

production through mitochondrial-lysosomal interactions,

thereby promoting apoptosis (22). In atherosclerotic lesions,

S100A8/A9 is abundantly expressed in foam cells, and its

release, possibly due to the upregulation of urokinase-type

plasminogen activator in macrophages, may lead to endothelial

cell apoptosis. Beyond its pro-inflammatory functions,

S100A8/A9 also has a regulatory role in inflammation by

inhibiting dendritic cell (DC) maturation and antigen

presentation, which results in a reduced T cell response and

prevents an overactive adaptive immune response (23).

S100A8/A9 can also augment the quantity and activity of

myeloid-derived suppressor cells (MDSCs), which are known

for their immunosuppressive effects in various pathological

states (24). This indicates that S100A8/A9 has a multifaceted

role in modulating inflammation, with different molecular

biological effects in a range of cell types (Figure 2).
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Transcriptional regulation and
therapeutic development of S100a8/A9
in cardiovascular diseases

Transcriptional regulation of S100a8/A9

The transcriptional regulation of the S100A8/A9 gene is

governed by multiple transcription factors, which modulate its

expression in a cell-specific fashion. The S100A8/A9 gene

exhibits heightened expression in human bone marrow, with

mature neutrophils displaying a 40-fold increase in expression

relative to monocytes (25). During inflammation in the

compromised heart, specific transcription factors are implicated

in the upregulation of the S100A8/A9 gene. Moreover, DNA

demethylation contributes to the enhanced expression of the

S100A8/A9 gene (26). This indicates a notable variation in

S100A8/A9 gene expression throughout bone marrow

differentiation, with its transcriptional dynamics being intricately

linked to the inflammatory response mechanisms within the

body. The Hoxb8 cell line is an important model system for

studying the function of S100A8/A9 in myeloid cells, especially

neutrophils, and can differentiate into various functional immune

cell types (27). Studies have revealed that in monocytes derived

from bone marrow precursor cells, S100A8/A9 mRNA levels

peak during the early stages of differentiation (day 2) and

subsequently decline by the later stages (days 3–5) (28).

Conversely, as Hoxb8 cells differentiate into the neutrophil

lineage, S100A8/A9 mRNA expression gradually increases,

peaking on day 4 of culture (29). This dynamic regulation of

transcription directly influences the secondary inflammatory
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FIGURE 2

Biological function of S100A8/A9 proteins in neutrophils and their mechanism of regulating inflammatory action map. S100A8/A9 is released by
neutrophils in the bone marrow and binds to RAGE and TLR4 receptors on the cell membrane, activating the NF - κB signaling pathway, thereby
causing the expression of inflammatory factors. Meanwhile, S100A8/A9 can also activate NADPH oxidase, produce reactive oxygen species (ROS),
and further promote inflammatory response. These pathways collectively promote the occurrence and development of inflammation, revealing
the important role of S100A8/A9 in cardiovascular disease.
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response associated with heart failure (HF) development, thereby

modulating cardiac injury and potentially decelerating the

progression of cardiovascular disease.
Protein phosphorylation and S100a8/A9
regulation

Protein phosphorylation is pivotal for the intracellular activity

regulation of S100A8/A9 proteins. Schenten et al. demonstrated

that phosphorylated S100A8/A9 (S100A8/A9-p) induces the

expression and secretion of pro-inflammatory cytokines in HL-60

cells (30). In human neutrophils, p38-MAPK acts as the

upstream kinase phosphorylating threonine 113 on S100A9,

regulating the translocation of S100A8/A9 proteins from the

cytoplasm to the plasma membrane, thus accelerating the

inflammatory response (31). Additionally, S100A8/A9 proteins in

neutrophils can undergo S-nitrosylation by nitric oxide donors,

resulting in S-nitrosylated S100A8 at cysteine 41 (S100A8-SNO),

which exhibits anti-inflammatory properties. S100A8-SNO

inhibits eukaryotic-endothelial cell interactions in the rat

mesenteric microcirculation, thereby suppressing mast cell-mediated
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inflammation (32). These findings suggest that S100A8/A9

transcription is regulated by multiple transcription factors under

varying physiological conditions, exerting both pro-inflammatory

and anti-inflammatory effects through distinct mechanisms.
Therapeutic development of S100a8/A9 for
cardiovascular diseases

The crucial role of S100A8/A9 protein in various

cardiovascular diseases has led to the development of therapeutic

tools and drugs targeting this protein. These therapeutic

approaches aim to mitigate inflammation and oxidative stress by

inhibiting the expression or function of S100A8/A9, thereby

slowing the progression of cardiovascular diseases. Key

therapeutic strategies include: RAGE Receptor Antagonists:

Agents such as FPS-ZM1 reduce atherosclerosis and

inflammatory responses by blocking the binding of S100A8/A9

to RAGE, thereby inhibiting NF-κB and MAPK pathways and

reducing inflammatory cell infiltration and plaque formation

(33). Anti-S100A8/A9 Antibodies: Specific antibodies that bind to

S100A8/A9 prevent its interaction with receptors, inhibiting
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1394137
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Sun et al. 10.3389/fcvm.2024.1394137
downstream inflammatory signaling pathways, reducing

myocardial inflammation and apoptosis, and improving cardiac

function (34). Small Molecule Inhibitors: Compounds like

Paquinimod and ABR-238901 disrupt the interaction of S100A8/

A9 with RAGE and TLR4, reducing plaque inflammation and

instability, and reversing cardiac dysfunction in conditions such

as sepsis (35). These inhibitors can bind directly to S100A8/A9

proteins or block their receptor interactions, reducing pro-

inflammatory and pro-oxidative effects. Nanoparticle Delivery

Systems: Utilizing nanoparticles or liposomes to deliver targeted

anti-S100A8/A9 antibodies or small molecule inhibitors enhances

drug concentration at the lesion site, thereby improving

therapeutic efficacy (36). Gene Silencing Techniques: Techniques

such as siRNA or CRISPR/Cas9 are employed to edit S100A8/A9

genes, reducing their expression and subsequent protein

production. This approach decreases activation of NF-κB and

MAPK pathways, reducing myocardial cell apoptosis and fibrosis

(37). In summary, therapeutic tools and drugs targeting S100A8/

A9 function through multiple mechanisms, including receptor

antagonism, antibody therapy, small molecule inhibition,

nanoparticle delivery, and gene silencing. These methods

collectively work to attenuate the pro-inflammatory and pro-

oxidative effects of S100A8/A9, offering significant potential in

the treatment of cardiovascular diseases.
Significance of S100a8/A9 proteins in
cardiovascular disease

S100A8/A9 regulates atherosclerotic
plaque formation

S100A8/A9, as a calcium binding protein, plays an important

role in the formation of atherosclerotic plaque by regulating

inflammatory response and immune regulation (38, 39). Recent

experimental studies have shown that S100A8/A9 activates the

NF-κB signaling pathway by interacting with TLR4 and RAGE,

inducing the expression of various pro-inflammatory cytokines

such as tumor necrosis factor alpha TNF-α, interleukin-1β(IL-

1β), and IL-6 (40). These proinflammatory factors aggravate the

damage of vascular endothelial cells and promote the formation

of atherosclerotic plaque (41). In addition, S100A8/A9 also plays

a role in atherosclerosis by regulating oxidative stress. S100A8/A9

interacts with myeloperoxidase (MPO) to form a complex,

increasing the production of reactive oxygen species (ROS) (42).

ROS not only directly damages endothelial cells, but also oxidizes

low-density lipoprotein (LDL), forming oxidized low-density

lipoprotein (oxLDL). OxLDL is phagocytosed by macrophages to

form foam cells, further promoting the formation and

development of atherosclerotic plaque (43).

Other scholars explained that S100A8/A9 plays an important

role in the early stage of atherosclerosis by promoting leukocyte

migration and adhesion to vascular endothelial cells from the

perspective of cell migration and adhesion (44). Research has

shown that S100A8/A9 induces the expression of cell adhesion

molecules such as Intercellular cell adhesion molecule-1
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(ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) by

binding to TLR4 and RAGE on the surface of vascular

endothelial cells, enhancing the adhesion and migration of white

blood cells on the arterial wall (45). At the same time, clinical

studies have found that the serum S100A8/A9 level is closely

related to the severity of atherosclerosis and the risk of

cardiovascular events, which is expected to become a potential

biomarker and therapeutic target of atherosclerosis (46). In

addition, inhibiting S100A8/A9 or its signal pathway can reduce

the progression of atherosclerosis, providing a new idea for the

treatment of atherosclerosis (47).

In conclusion, S100A8/A9, as an important inflammatory

mediator, plays a variety of roles in the occurrence and

development of atherosclerosis. It promotes the formation and

development of atherosclerotic plaque by regulating

inflammatory response, oxidative stress, cell migration and

adhesion and other mechanisms. In the future, it is expected to

provide a new strategy for early diagnosis and treatment of

atherosclerosis through in-depth research on the mechanism of

action and clinical application value of S100A8/A9.
S100A8/A9 regulates the inflammatory
response to myocardial infarction

The pathogenesis of myocardial infarction involves a sequence

of two phases: an early inflammatory stage and a subsequent repair

stage. Effectively managing this transition is essential for the

restoration of cardiac function and the attainment of a positive

prognosis in individuals with myocardial infarction (48).

S100A8/A9 contributes to the regulation of both phases of

myocardial infarction, with a particular impact on the migratory

and differentiative behaviors of immune cells (49). The emission

of myocardial inflammatory cytokines and the state of hypoxia

are hallmarks of myocardial infarction and significantly

contribute to the development of ischemic damage. Duet et al.

have identified that myocardial ischemia or hypoxia leads to the

upregulation and secretion of S100A8 and S100A9 in

cardiomyocytes (50). A positive association has been observed

between serum S100A8/A9 levels and neutrophil counts in

patients with Acute myocardial infarction (AMI) who are under

dynamic monitoring. Research has validated that blood

neutrophils are the sole cell population that significantly

influences the levels of circulating S100A8/A9 in humans (13).

Double immunostaining analysis of infarcted hearts from AMI

patients revealed that the S100A8/A9 complex was primarily co-

localized with neutrophils during the early acute phase and with

macrophages in the subacute phase. Sreejit using cell sorting and

flow cytometry to isolate leukocytes from infarcted hearts of

mice, identified neutrophils as the principal source of S100A8/A9

(51). The infiltration of neutrophils and macrophages into the

infarcted myocardium was found to be the main contributor to

the elevated levels of S100A8/A9 in myocardial tissue following

AMI (52). In response to myocardial infarction, a surge of

neutrophils expressing the alert protein S100A8/A9 rapidly

infiltrates the ischemic myocardium. S100A8/A9 then interacts
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with TLR4 on circulating neutrophils, triggering the formation of

nucleotide-binding oligomerization domain-like receptor protein

3 (NLRP3) inflammatory vesicles and promoting IL-1 secretion

in a mouse model of MI (53). The concept that S100A8/A9 is an

upstream regulator of MI-induced granulopoiesis is supported by

a mouse model with targeted disruption of S100A9, where the

deletion of the S100A9 gene or pharmacological inhibition of

S100A8/A9 by ABR-215757 markedly constrained granulopoiesis,

reducing the number of circulating and cardiac neutrophils and

monocytes (54, 55). The binding of S100A8/A9 to TLR4 leads to

the upregulation of pro-inflammatory cytokine production by

inducing the nuclear translocation of NF-κB via the Toll/

interleukin-1 receptor (TIR) domain adapter, either through the

interferon-β-dependent pathway or the MyD88-dependent

pathway, thereby amplifying the inflammatory response (56).

S100A8/A9 exerts a harmful influence during the initial phase of

myocardial infarction (MI), and interventions aimed at inhibiting

S100A8/A9 can be advantageous for MI patients. The S100A8/A9

complex interacts with the monocyte differentiation antigen

CD69, leading to the formation of a CD69-S100A8/A9 complex

(29). This association downregulates signaling and transcription

by enhancing the expression of cytokine signaling repressor 3

(SOCS3) and inhibiting signaling and transcription activator 3

(STAT3) signaling, while promoting the differentiation of

regulatory T cells (Tregs) (57). This mechanism may induce

immunosuppression in various immune cells, preventing an

overactive immune response. However, overzealous inhibition of

S100A8/A9 could negate this beneficial effect during the MI

repair phase. Prolonged inhibition of S100A9 in ischemic mice

with ABR-238901 led to progressive left ventricular remodeling

and a decline in cardiac function, indicating that S100A8/A9

may have additional cardioprotective roles during the recovery

phase by promoting a shift in macrophage polarization towards a

reparative phenotype (4, 58). These findings advocate for a

tailored therapeutic approach, suggesting short-term anti-S100A9

blockade during the early inflammatory phase post-MI, while

long-term blockade could impair cardiac function recovery

during the repair phase, underscoring the need for precise

therapy duration determination (59).

Research has identified that female individuals with high serum

S100A8/A9 protein concentrations are at a 3.8-fold greater risk for

adverse vascular outcomes (60). S100A8/A9 has been recognized as

a new predictor for myocardial infarction, with incremental

increases in S100A8/A9 protein levels associated with a

proportional rise in the risk of subsequent cardiovascular events

(24). Platelet mRNA profiling has demonstrated that S100A9

mRNA is significantly elevated in ST-segment elevation

myocardial infarction(STEMI) patients compared to those with

stable coronary artery disease. Additionally, serum S100A8/A9

concentrations are higher in AMI patients, particularly in those

with cardiac rupture (61). Katashima et al. have reported on the

dynamic monitoring of S100A8/A9 levels in patients with acute-

phase AMI and Unstable angina pectoris(UAP), noting that

initial levels are lower in AMI patients than in those with UAP,

with a significant increase in AMI patients by 3–5 days

post-event. S100A8/A9 levels are also higher in patients with
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after the ischemic event and remaining elevated for an extended

period (51). A nested case-control study on ACS patients

undergoing intensive lipid-lowering therapy for 30 days post-

acute cardiovascular event identified elevated S100A8/A9 in those

with MI or cardiovascular death. Nonetheless, S100A8/A9 has a

limited diagnostic utility, with a sensitivity of 28% for myocardial

infarction in patients presenting with non-traumatic chest pain,

and it does not enhance the diagnostic accuracy provided by

cardiac troponin (10).
S100A8/A9 exacerbates ischemia/
reperfusion (I/R) injury

Currently, an effective and standard treatment for STEMI is the

reperfusion strategy (62). Reperfusion protects the ischemic heart

from myocardial necrosis, but it also triggers a series of

cascading responses that exacerbate and prolong post-ischemic

injury (63). Inflammatory responses, oxidative stress (59), and

mitochondrial dysfunction are important pathophysiological

phenomena leading to alterations in cardiac structure and

function after I/R injury (64). Du et al. found that S100A8/A9

was continuously expressed in mouse hearts during the early

stages of myocardial ischemia/reperfusion injury (MI/RI) by time-

series transcriptomics analysis, peaked at 6 h after reperfusion, and

returned to baseline levels on day 7, thus clarifying that S100A8/A9

is an early mediator of I/R injury and is rapidly elevated in the

early stages of MI/RI (65). Experimental Validation Findings

S100A8/A9 was confirmed to be a key initiator molecule of I/R by

S100A9 knockdown and overexpression experiments in animals,

and in mice with a total deficiency of S100A9 after MI/RI, infarct

size was significantly reduced, cardiac contractile function was

improved, CM death was significantly reduced, and myocardial

fibrosis was attenuated, suggesting that S100A9 increases the degree

of myocardial ischemia-reperfusion injury (39, 43). Meanwhile

mechanism studies revealed that S100A8/A9 down-regulated the

gene expression of mitochondrial complex I subunit NDUFs by

inhibiting the TLR4/ERK-mediated PGC-1α/NRF1 signaling

pathway, which in turn inhibited the mitochondrial complex I

function, causing mitochondrial dysfunction, leading to

cardiomyocyte death, and promoting the development of MI/RI (66).

To fully understand the mechanism of action of S100A8/A9 in

I/R, it is also important to clarify the cellular origin of S100A8/A9

in reperfusion injury. Experimental studies revealed that cardiac

S100A8/A9 expression was significantly reduced in CXCR2-KO

mice, further confirming that CXCR2+ neutrophils are the main

source of S100A8/A9 secretion, which is related to the dynamic

changes of CXCR2, and that cardiac neutrophil infiltration

during I/R is consistent with the S100A8/A9 expression pattern.

Chemokine (C-X-C motif) ligand 1 (CXCL1), a chemokine

specific for CXCR2, is responsible for recruiting neutrophils

expressing the chemokine receptor CXCR2 to the inflammatory

microenvironment (67). In addition, mice treated with S100A9

neutralizing antibody (nAb) can observe a significant reduction

in infarcted areas, increased cardiac function, and reduced
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myocardial fibrosis after I/R. Therefore, short-term blockade of

S100A9 after I/R can effectively improve cardiac function in

mice. Meanwhile, elevated serum S100A8/A9 levels 1 day after

percutaneous coronary angioplasty (PCI) were found to be

significantly associated with long-term adverse cardiovascular

events in patients with acute myocardial infarction in the clinic

(68). Targeting the signaling pathway initiated by S100A8/A9

may be a novel intervention for the treatment of MI/RI. At

present, Du Jie’s team has comprehensively carried out the work

of early warning and intervention of S100A8/A9 after PCI for

acute myocardial infarction: developed S100A8/A9 detection kit

and monoclonal therapeutic antibody; and jointly carried out

clinical research of “Early Warning of S100A8/A9 after PCI for

Acute Myocardial Infarction”. Clinical research on S100A8/A9 in

early warning after PCI for acute myocardial infarction (69).
Inhibition of S100a8/A9 slows HF
development

S100A8/A9 proteins are implicated in the advancement of HF

by aggravating cardiac injury through the induction of localized

inflammation (70). These proteins initiate the NF-κB signaling

cascade by interacting with RAGE and TLR4 on the cell

membrane, which in turn activates pro-inflammatory responses

in cardiomyocytes, fibroblasts, and endothelial cells of cardiac

tissue, thereby intensifying HF. Myocardial hypertrophy is a

pivotal aspect of HF, and S100A8/A9 may be influenced by

diverse physiological conditions, leading to varied responses in

the pathogenesis of myocardial hypertrophy (40). While typically

low in cardiomyocytes, S100A8 expression increases in response

to thyroid hormone treatment in neonatal rat cardiomyocytes

(71), contributing to cardiac hypertrophy via the MyD88/NF-κB

pathway (72). Conversely, S100A8/A9 mRNA and protein levels

rise when cardiomyocyte hypertrophy induced by norepinephrine

ceases (73), potentially mitigating hypertrophy and remodeling

by reducing calmodulin neuralphosphatase-nfatc3 activation (74).

The mechanisms by which endogenous S100A8/A9 proteins,

stimulated by different cues, differentially influence cardiomyocyte

hypertrophic responses remain unclear. However, recombinant

S100A8 protein application induces inflammatory responses in

human pluripotent stem cell-derived cardiomyocytes, impacting

calcium transport and electrophysiological properties. CD11b+Gr1+

neutrophil-derived S100A8/A9 proteins participate in angiotensin

II-induced cardiac inflammation and fibrosis, activating NF-

κB signaling in cardiac fibroblasts via RAGE and amplifying

chemokine and cytokine production, thus intensifying the

inflammatory response and cardiac remodeling that

characterize HF progression (27).

Suppression of S100A8/A9 protein expression has been shown

to exhibit significant anti-inflammatory and protective effects

against myocardial hypertrophy and fibrosis across various

tissues, thereby mitigating the progression of heart failure (HF).

In a study involving angiotensin II-infused mice, the

administration of a S100A9 antibody to neutrophils was observed

to protect against myocardial hypertrophy and fibrosis. This
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treatment also reduced the infiltration of immune cells (CD45+

leukocytes, CD45+CD11b+ monocytes, and Gr1+ neutrophils) into

myocardial tissues and curtailed NF-κB-dependent proinflammatory

and profibrotic gene expression (75). In rats subjected to coronary

ligation, the administration of the S100A8/A9 inhibitor ABR-

215757 (5 mg/kg, daily for 5 days) led to a notable decrease in

fibrotic areas surrounding the myocardial infarction margins and a

reduction in NF-κB p65 protein levels (69). ABR-215757 has also

demonstrated protective effects against tissue fibrosis in other

experimental models (76). Concurrently, researchers have developed

specific antibodies and vaccines targeting the mechanotransduction

of S100A8/A9 proteins within the immune system, as well as

compounds that block the interaction between S100A8/A9 and

TLR4 and RAGE (35). Animal studies have confirmed that

inhibiting S100A8/A9 protein expression has a beneficial anti-

inflammatory effect, offering a promising therapeutic target for

managing the inflammatory response in HF (77).

Experimental investigations have detected a variety of immune

cells, such as neutrophils, T lymphocytes, macrophages derived

from monocytes, and NK cells, in the cardiac tissues of HF

patients who do not exhibit significant myocardial injury, viral

infection, or known immune system anomalies (78), Neutrophils,

especially, have been shown to contribute to the exacerbation of

HF based on both clinical and animal research (79), and in HF

with preserved ejection fraction, an elevated neutrophil count is a

predictor of a poor outcome (80). The detection of high

neutrophil expression in myocardial biopsies from HF patients

with preserved ejection fraction and in HF model rats points to

intense cardiac inflammation during the disease’s progression

(81). The role of S100A8/A9 proteins as neutrophil mediators in

the promotion of chronic cardiac injury and inflammation is not

yet fully elucidated (82). Transcription profiling has

demonstrated increased S100A8/A9 gene expression in

neutrophils from HF patients with preserved ejection fraction,

indicating a connection between neutrophil activation and

systemic inflammation, as well as left ventricular diastolic

dysfunction in these patients (14). Proteomic analysis of platelets

from HF patients with preserved ejection fraction has identified

S100A8 protein in platelets and its increased levels in plasma

(83). Moreover, in elderly HF patients, high S100A8/A9 protein

concentrations have been positively correlated with the levels of

the inflammatory cytokines Interleukin-6 (IL-6) and Interleukin-

8 (IL-8). Collectively, these observations imply that S100A8/A9

proteins may function as biomarkers in the evolution of HF (84).
Conclusions

Increasingly, research suggests that the concentrations of

S100A8/A9 proteins in the bloodstream could be pivotal

prognostic markers for negative cardiovascular outcomes in

patients with acute and chronic heart failure, myocarditis, and

thrombosis. Despite the intricate regulatory mechanisms of

S100A8/A9, which involve complex transcriptional and post-

translational processes and result in varied biological functions,

the progress in developing potential therapeutics, such as
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humanized vaccines, antibodies, and inhibitors against S100A8/A9,

is encouraging. These experimental findings have been successfully

adapted to establish safe dosages for various immunoinflammatory

diseases in clinical practice. Looking ahead, with the advancement

of research technologies, the S100A8/A9 protein is expected to

become a new focus for the diagnosis and treatment of

cardiovascular diseases, potentially revolutionizing clinical

approaches to diagnosis and therapy.
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