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Multi-modal transcriptomics:
integrating machine learning
and convolutional neural
networks to identify immune
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United States, 5First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
University of Traditional Chinese Medicine, Tianjin, China, 6Department of Specialty Medicine, Ohio
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Background: Atherosclerosis, a complex chronic vascular disorder with
multifactorial etiology, stands as the primary culprit behind consequential
cardiovascular events, imposing a substantial societal and economic burden.
Nevertheless, our current understanding of its pathogenesis remains
imprecise. In this investigation, our objective is to establish computational
models elucidating molecular-level markers associated with atherosclerosis.
This endeavor involves the integration of advanced machine learning
techniques and comprehensive bioinformatics analyses.
Materials and methods: Our analysis incorporated data from three publicly
available the Gene Expression Omnibus (GEO) datasets: GSE100927 (104
samples, 30,558 genes), which includes atherosclerotic lesions and control
arteries from carotid, femoral, and infra-popliteal arteries of deceased organ
donors; GSE43292 (64 samples, 23,307 genes), consisting of paired carotid
endarterectomy samples from 32 hypertensive patients, comparing atheroma
plaques and intact tissues; and GSE159677 (30,498 single cells, 33,538 genes),
examining single-cell transcriptomes of calcified atherosclerotic core plaques
and adjacent carotid artery tissues from patients undergoing carotid
endarterectomy. Utilizing single-cell sequencing, highly variable atherosclerotic
monocyte subpopulations were systematically identified. We analyzed cellular
communication patterns with temporal dynamics. The bioinformatics approach
Weighted Gene Co—expression Network Analysis (WGCNA) identified key
modules, constructing a Protein-Protein Interaction (PPI) network from
module-associated genes. Three machine-learning models derived marker
genes, formulated through logistic regression and validated via convolutional
neural network(CNN) modeling. Subtypes were clustered based on Gene Set
Variation Analysis (GSVA) scores, validated through immunoassays.
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Results: Three pivotal atherosclerosis-associated genes—CD36, S100A10, CSNK1A1
—were unveiled, offering valuable clinical insights. Profiling based on these genes
delineated two distinct isoforms: C2 demonstrated potent microbicidal activity,
while C1 engaged in inflammation regulation, tissue repair, and immune
homeostasis. Molecular docking analyses explored therapeutic potential for
Estradiol, Zidovudine, Indinavir, and Dronabinol for clinical applications.
Conclusion: This study introduces three signature genes for atherosclerosis,
shaping a novel paradigm for investigating clinical immunological medications. It
distinguishes the high biocidal C2 subtype from the inflammation-modulating
C1 subtype, utilizing identified signature gene as crucial targets.

KEYWORDS

atherosclerosis, convolutional neural networks, machine learning, molecular docking,
molecular subtyping
1 Introduction

Atherosclerosis, characterized as a chronic inflammatory

vascular disease with diverse etiologies (1) stems from the intricate

interplay among activated endothelial cells, modified low-density

lipoprotein (LDL), monocyte-derived macrophages, T-cells, and

the vascular wall (2). This pathological process gives rise to

atherosclerotic plaques, endothelial dysfunction, inflammation, and

plaque formation (3). Notably, a significant epidemiological facet

of cardiovascular disease (CVD) is atherosclerotic cardiovascular

disease (ASCVD), contributing to a substantial proportion of

CVD-related deaths. In 2016 alone, approximately 2.4 million

fatalities were attributed to ASCVD, constituting 61% of CVD

deaths and 25% of total mortality (4). Premature cardiovascular

events resulting from atherosclerosis underscore the urgency of

addressing this condition (5). Atherosclerotic alterations increase

the risk of premature myocardial infarction, with around 90% of

cases traced back to acute thrombus formation leading to arterial

blockage at the rupture point of the atherosclerotic plaque (6, 7).

Early stages of atherosclerosis may elude noticeable symptoms (8),

emphasizing the critical role of monitoring LDL and ox-LDL changes

even before overt symptoms manifest (9) By the time symptoms

become apparent, atherosclerosis typically reaches an advanced stage

(10). Various clinical approaches exist for evaluating atherosclerosis,

including Doppler ultrasound to gauge carotid artery intima-media

thickness and detect arterial plaque, as well as dual—source

computed tomography of coronary arteries or coronary angiography

to assess atherosclerosis presence and quantify coronary artery

stenosis (11). However, each diagnostic tool possesses inherent

limitations, potentially hindering recognition of atherosclerosis.

Furthermore, the understanding of the mechanism and etiology

of atherosclerosis remains a subject of ongoing debate and lacks

consensus (12). Divergent perspectives, such as the lipid

infiltration theory (13) and the damage-response theory,

contribute to the complexity of elucidating its underlying causes.
ene co—expression network an
ng characteristic curve; AUC,
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Although vascular inflammation (14), hyperlipidemia (15), and

diabetes are widely acknowledged as risk factors, the genesis of

atherosclerosis involves a intricate interplay of multiple genes and

their products. It is of paramount importance to comprehensively

unravel its pathogenesis for early disease diagnosis and intervention.

Given the intricate nature of atherosclerosis, exploring its

immune mechanisms and advancing treatment/diagnostic

modalities holds significant clinical value (16). This avenue of

research is pivotal in enhancing our understanding of the disease

and refining strategies for effective diagnosis and intervention.

Moreover, the field of bioinformatics analysis, which integrates

computer science and information technology into biological research,

has gained increasing prominence in recent decades, spanning diverse

domains such as genomics, proteomics, and structural biology.

Technological advancements have significantly broadened its scope,

exerting a profound impact on comprehending biological systems,

investigating disease mechanisms, and facilitating drug development

(17). Machine Learning, a subset of Artificial Intelligence (AI), has

emerged as a powerful tool for elucidating the intricate relationships

between gene expression patterns and diseases (18). Employing

sophisticated machine learning and deep learning algorithms allows

for a systematic and thorough analysis of vast clinical datasets. This

approach facilitates the precise identification of molecular targets and

enables accurate assessment of disease risk (19, 20).

Furthermore, the molecular docking technique, a widely employed

method, is a notable application for studying molecular interactions,

particularly the binding between proteins and small molecules (21).

This technique finds application in drug design, predicting binding

modes between potential drugs and target proteins to enhance

screening efficiency and design novel drug molecules. This not only

expedites the drug discovery process but also mitigates experimental

costs and time (22). The synergistic integration of bioinformatics,

machine learning, and molecular docking techniques holds promise

for advancing our understanding of diseases like atherosclerosis and

accelerating therapeutic developments.
alysis; PPI, protein-protein interaction; GSVA, gene set variation analysis; GSEA,
area under the curve; CNN, convolutional neural network; CDF, cumulative
rotein; KEGG, kyoto encyclopedia of genes and genomes; GO, gene ontology;
machine recursive feature elimination.
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In light of the global prevalence and substantial impact of

atherosclerotic disease, our research endeavors to elucidate the

molecular intricacies of atherosclerosis at the single-cell level. We

aim to construct an integrated approach, combining transcriptome

sequencing and single-cell sequencing technologies. In the realm

of single-cell sequencing, our focus is to unravel the nuanced

cellular mechanisms underlying atherosclerotic disease progression.

This involves a comprehensive exploration of intricate cellular

differentiation pathways and communication mechanisms, mirroring

the microenvironments influencing gene expression during

atherosclerosis progression.

At the transcriptome level, our methodology synergizes machine

learning algorithms with a CNN model to identify central genes

characterizing atherosclerosis. The performance of this approach is

subsequently validated through functional assessments, employing

the Receiver Operating Characteristic Curve (ROC). Molecular

docking is employed to furnish metrics for predicting clinical drug

therapy efficacy against the modeled genes. Additionally, patients

with atherosclerosis are categorized into two subtypes, and

immune infiltration analysis unveils the immune mechanisms

distinguishing these subtypes. This analysis contributes valuable

insights into the pathogenesis of atherosclerosis.

Weanticipate that our researchfindingswill furnish robust academic

support, offering practical applications in the diagnosis, prognosis, and

drug therapy of clinical patients dealing with atherosclerosis.
2 Method

2.1 Raw data processing

The conceptual framework of this study is illustrated in Figure 1.

Total RNA data were sourced from the GEO database, specifically

the raw array analysis expression datasets GSE100927 (comprising 35

normal samples and 69 disease samples) and GSE43292 (comprising

32 normal samples and 32 disease samples). Model genes were

identified through analysis of GSE100927, while diagnostic models

were validated using GSE43292. To mitigate batch effects both

between and within datasets, the R package “limma” (23) with

“normalization between arrays” was applied. The Combat function’s

efficacy was assessed using principal component analysis (PCA).

Subsequently, the probe ID of each gene was mapped to its

corresponding Gene symbol. In cases where a Gene symbol

corresponded to multiple probe IDs, the average expression of the

probe IDs was utilized instead of their individual expression values.

Two sets of well-correlated single-cell data were extracted from the

GSE159677 dataset. This dataset comprises single-cell RNA-seq data

derived from three atherosclerotic core plaques and three patient-

matched proximal portions of carotid collaterals, respectively.
2.2 scRNA-Seq downscaling to identify key
subpopulations

The dimensionality reduction process for the two pairs of

single-cell sequencing data is delineated as follows:
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(1) Utilize the “Seurat” package within the R software to

transform the four single-cell sequencing datasets into Seurat

objects (24). (2) Perform quality monitoring to filter out instances

with excessively low or high numbers of RNA features and assess

the proportion of mitochondrial RNA.(3) Employ the

“FindVariableFeatures” function to identify highly variable genes

and execute Unique Molecular Identifier (UMI) counting. (4)

Normalize the single-cell data using the “Harmony” package (25).

(5) Implement Uniform Manifold Approximation and Projection

(UMAP) for dimensionality reduction and clustering analysis

based on the 2,000 highly variable genes post-normalization (26).

(6) Employ the “SingleR” package for cluster annotation to

identify cell types (27). (7) Select cell groups exhibiting significant

differences and repeat steps 1–5 to iteratively obtain key subgroups.
2.3 Cellchat analysis

Cell communication analysis was conducted utilizing the

“CellChat” package within the R software environment (28). The

createCellChat function was employed to generate a CellChat object,

while the identifyOverExpressedGenes function facilitated the

identification of over-expressed genes. Subsequently, the

identifyOverExpressedInteractions function was utilized to extract

ligand-receptor pairs. The projectData function enabled the

projection of data onto the PPI network. Furthermore, the

createCellChat function was again utilized to create a CellChat object,

the identifyOverExpressedGenes function was employed to identify

over-expressed genes, and the identifyOverExpressedInteractions

function was used to retrieve ligand-receptor pairs. Projecting this

data onto the PPI network was accomplished using the projectData

function. Finally, the communication probability of the cell was

calculated, elucidating inter-cell interactions and communication

mechanisms. Functions such as composeCommunProb were

instrumental in achieving this outcome.
2.4 hdWGCNA (high dimensional weighted
gene co-expression network analysis)

High-dimensional weighted gene co-expression network

analysis, facilitated by the “hdWGCNA” package, was conducted

to probe co-expression modules associated with small

subpopulations of monocytes and propose temporal sequence

analysis. This method, documented in literature (29–32), was

employed to explore the intricate relationships between gene

networks, diseases, and clinical features. The analysis involved

obtaining metacells through the aggregation of neighboring cells.

Sparse matrices of single cells were constructed, and neighbor

matrices were generated using TestSoftPowers to establish soft

thresholds, subsequently transformed into Topological Overlap

Matrix (TOM) matrices. Modules were delineated using

hierarchical clustering tree-based techniques. The definition of

these modules involved mirror tests employing hierarchical

clustering and dynamic tree-cutting. Module attributes of

affiliation (MM) and genetic significance (GS) were employed to
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FIGURE 1

The flowchart shows the research idea of this paper.
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assess correlations between modules and clinical features. Core co-

expression modules, characterized by high module affiliation

(MM>0.8) and substantial clinical significance (GS>0.2), were

prioritized for association with small subpopulations of single cells.

The “Monocle” package was then utilized for cell trajectory

reconstruction analysis, employing gene counts and expression to

infer cellular differentiation trajectories (33–35). First, to analyze
Frontiers in Cardiovascular Medicine 04
gene dispersion, we used the dispersionTable function. Next, we

identified highly variable genes based on criteria of average gene

expression ≥0.1 and empirical dispersion exceeding the fitted

dispersion by at least one fold.Then, we visualized temporal

differentiation pathways using the plot_cell_trajectory function,

with color intensity indicating differentiation stages. The diagram

demonstrated the progression from top to bottom and from the
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middle to the sides.Furthermore, to confirm differentiation

directions, we utilized an evolutionary tree diagram at the state

level. Finally, we analyzed significantly altered genes in the target

modules derived from hdWGCNA, observing differentiation

patterns from top to bottom and from the middle to the

sides.Overall, this approach facilitated the exploration of cellular

states and dynamics during biological processes, unveiling insights

into the changes and dynamics of cells throughout these processes.
2.5 Immune infiltration analysis

The assessment of immune cell composition was carried out

utilizing the “CIBERSORT” package (36). Additionally, immune

scoring was performed employing the “GSVA” package with

immunocompetent gene sets (h.all.v7.5.1.symbols.gmt). The

correlation analysis aimed to quantify differences in immune cell

numbers, functions, and pathways between atherosclerotic and

normal samples. The specific gene sets used were from

h.all.v7.5.1.symbols.gmt (37). This comprehensive immune

infiltration analysis provided valuable insights into the immune

landscape of atherosclerotic samples in comparison to normal

samples, shedding light on alterations in immune cell populations,

functions, and pathways associated with atherosclerosis.
2.6 Module gene enrichment analysis

Enrichment analysis of model genes was conducted

employing the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene Ontology (GO) using the Differential

Ontology (DO) software packages. The benjamin-hocheberg

method or False Discovery Rate (FDR) method was applied to

correct p-values for multiple tests. GO was further categorized

into cellular components (CC), molecular functions (MF), and

biological processes (BP), with a critical threshold set at FDR

<0.05. Special attention was devoted to the top 5 KEGG

pathways exhibiting high enrichment significance. The pathways

with the most pronounced enrichment were meticulously

elucidated, providing detailed insights into the molecular

mechanisms and biological processes associated with the model

genes. This comprehensive analysis contributes to a deeper

understanding of the functional roles and pathways implicated

in the context of atherosclerosis.
2.7 PPI network construction

The construction of the PPI network was facilitated through

GeneMANIA (http://www.genemania.org), a platform designed

for building PPI networks to predict gene function and identify

genes with similar functions. The network integration algorithm

employed various bioinformatics techniques, including site

prediction, gene exchange, gene enrichment analysis, co-

expression, co-localization, and physical interactions (38).

Subsequently, the PPI network of model genes underwent
Frontiers in Cardiovascular Medicine 05
analysis using GeneMANIA. KEGG and GO enrichment analyses

were conducted on the network genes, leveraging the

“clusterProfiler” R tool. The results of significant functional or

pathway enrichment were visually represented in bubble plots,

with corrections applied to achieve a threshold of P < 0.05. This

analysis provides a comprehensive view of the functional

relationships and enriched pathways within the PPI network of

model genes, contributing valuable insights into the molecular

interactions associated with atherosclerosis.
2.8 Exploration and validation of signature
marker genes for atherosclerosis

To identify signature gene for atherosclerosis, further screening

based on modular genes was conducted using Cox proportional—

hazards regression model(COX regression) analysis on the training

set data. Three machine learning techniques were employed to

mitigate cohort bias. Supervised machine learning Support

Vector Machine Recursive Feature Elimination (SVM-RFE) (39)

was utilized for recursive classification of genes in the training

set, and Least Absolute Shrinkage and Selection Operator

regression(LASSO regression), implemented with the “glmnet”

package in R (40), was employed to retain valuable variables.

Sorting was performed using the “randomForest” package in R

(41). Subsequently, the “mlr3verse” integrated software package

facilitated the application of k-nearest, Naïve Bayes, Linear

Discriminant Analysis, Logistic Regression, Recursive

Partitioning, and Regression Trees as five machine learning

algorithms. Evaluation of these algorithms was conducted

through 5-fold and 10-fold cross-validation to compare model

performance. The “pROC” function in the ROC R package (42)

was employed to calculate the area under the curve (AUC) for

the training and validation groups. This assessment aimed to

gauge the performance of the model under different machine

learning algorithms. The relationship between model genes and

immunity was further explored using a CNN model. The main

parameters and processes are as follows, (1) Feature Extraction:

Feature extraction was performed using the deconvo_mcpcounter

function from the IOBR package. This function provided a

feature matrix based on gene expression characteristics of

different cell types. Each sample’s feature matrix was calculated

and standardized, combining gene expression data with immune

cell infiltration ratios for subsequent model training and testing.

(2) CNN Architecture:We designed and trained a CNN to

differentiate between atherosclerosis and control samples. The

CNN architecture included: ① Input Layer: A 4D tensor with

dimensions [length(genes),10,1]. ② First Convolutional Layer: 32

filters of size 3 × 3, ReLU activation, “same” padding. ③ Second

Convolutional Layer: 16 filters of size 2 × 2, dilation rate (1,1),

Softplus activation, “same” padding. ④ Pooling Layer: 2 × 2 max

pooling. ⑤ Flattening Layer: Flattened multidimensional input

to 1D. ⑥ Fully Connected Layer: 64 neurons, ReLU activation.

⑦ Dropout Layer: Dropout rate of 0.5 to prevent overfitting.

⑧ Output Layer: 1 neuron, Sigmoid activation for binary

classification. The CNN model employed binary_crossentropy as
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the loss function, adam optimizer, and accuracy as the evaluation

metric. The model was trained over 200 epochs. (3) CNN: The

relationship between model genes and immunity was further

explored using a CNN model. This involved creating a two-

dimensional array by taking the quotient of model gene

expression and immune cell infiltration. Subsequently, the CNN

analysis was conducted, assessing performance through ROC

analysis aimed to determine the effectiveness and value of the

signature gene in clinical applications. (4) Multilayer Perceptron

Architecture:For comparative purposes, we also designed and

trained a multilayer perceptron (MLP). The MLP architecture

included: ① Input Layer: A 1D tensor with dimensions length

(genes) × 10 ② First Dense Layer: length(genes) × 10 neurons,

ReLU activation, and a Dropout layer with a rate of 0.4. ③

Output Layer: 1 neuron, Sigmoid activation for binary

classification.The MLP model also used binary_crossentropy as

the loss function, adam optimizer, and accuracy as the evaluation

metric, with 200 training epochs. (5) Model Evaluation:Model

performance was evaluated using ROC curves and AUC values.

ROC analysis was conducted on both training and testing sets

for CNN and MLP models. Additionally, confusion matrices

were generated to compare actual and predicted labels, and to

assess classification performance at optimal thresholds.
2.9 Unsupervised clustering of patients with
atherosclerosis

To classify the 69 disease group samples into different clusters

based on the three atherosclerosis model genes, unsupervised

clustering was conducted using the “ConsensusClusterPlus” R

package (43). The process involved 1,000 cycles of k-means. The

optimal number of clusters (k = 2) was determined through the

cumulative distribution function (CDF), consensus matrix plot, and

consistent clustering score. Additionally, kerning and scoring were

performed using PCA and GSVA. This comprehensive approach

facilitated the robust classification of patients with atherosclerosis

into distinct clusters, providing insights into potential subtypes

based on the expression patterns of the model genes.
2.10 Gene enrichment analysis and immune
infiltration of model genes

To unravel the biological functions and signaling pathway

importance of the model genes, Gene Set Enrichment Analysis

(GSEA) was employed (44). Gene sets “h.all.v2023.2.Hs.symbols.gmt”

and “c2.cp.kegg.gmt” from the MSigDB database (MSigDB, http://

software.broadinstitute.org/gsea/MSigDB) (45) were utilized, focusing

on “c2.cp.kegg.v11.0” gene sets. Pathways significantly enriched in

the training set were identified based on the expression patterns of

the signature gene. This analysis provides valuable insights into the

biological functions and pathways implicated in atherosclerosis,

shedding light on the potential molecular mechanisms driving

the disease. Furthermore, an examination of immune infiltration in

the context of model genes enhances our understanding of the
Frontiers in Cardiovascular Medicine 06
interplay between these genes and the immune microenvironment

in atherosclerosis.
2.11 Molecular docking

To analyze the binding affinity and interaction patterns of the

drug candidates with the targets, the protein-ligand docking

software AutodockVina 1.2.2 (46) was employed. Molecular

structures of Dronabinol, Estradiol, Clofibrate, Nicotine,

Zidovudine, and Indinavir were obtained from PubChem

Compound Data (https://pubchem.ncbi.nlm.nih.gov/) (47). The

3D coordinates of CD36 (PDB ID: 4F7B), S100A10 (PDB ID:

1A4P), and CSNK1A1 (PDB ID: 6GZD) were retrieved from the

Protein Data Bank (PDB) (http://www.rcsb.org/pdb/home/home.do).

For the docking analysis, all protein and molecular files were

converted to PDBQT format, excluding water molecules and

adding polar hydrogen atoms. The grid box was positioned in

the center, encompassing the region of each protein and allowing

free molecular motion. The dimensions of the grid box were set

to 126 Å × 126 Å × 126 Å, with a grid point distance of 0.05 nm.

Molecular docking studies were executed using Autodock Vina 1.2.2

(http://autodock.scripps.edu/). This analysis provides valuable

insights into the potential interactions between the drug candidates

and the specified targets (CD36, S100A10, and CSNK1A1) at the

molecular level.
2.12 Statistical analysis

Statistical analysis was conducted using R software version

4.3.1. One-way analysis of variance (ANOVA) and t-tests were

employed to explore potential significant differences in

atherosclerosis model genes, functional enrichment results,

immune cell infiltration, and immune function scores among

the patient groups. The significance level was set at p-values

and false discovery rate (FDR) q-values below 0.05, indicating

statistical significance. These analyses provide a rigorous

statistical foundation for the interpretation of the

study results and the identification of key factors associated

with atherosclerosis.
3 Result

3.1 Single-cell dimensionality reduction
swarming to obtain key subpopulations

To delve into the gene expression profile of atherosclerosis, our

initial step involved normalizing and pre-processing the single-cell

data from atherosclerotic samples (GSE159677) (Supplementary

Figures 1A,B). We selectively retained single-cell data meeting

the criteria of 200≤ nCount_ Features ≤2,500 and percent.mt <10.

Subsequently, we employed UMI and gene correlation analysis to

detect cells, achieving a correlation coefficient between nCount

and nFeature (r = 0.92), indicating the qualification of cell quality
frontiersin.org
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(Supplementary Figure 1C). The RunPCA function in the Seurat

software package was then utilized to perform PCA. We

identified and mitigated potential batch effects in the original

data, discovering anchors through PCA dimensionality-

decreasing clustering (Supplementary Figure 1D). The top five

ranked PC data were selected for further analysis (Supplementary

Figures 1E,F). Using the findclusters function, we clustered the

17 subclusters into groups and annotated them using the

“SingleR” package. This process identified six distinct cell classes:

B cell, Endothelial cell, Monocyte, NK cell, Smooth muscle cell,

and T cell. Visualization of normal and diseased samples was

achieved through UMAP plots (Figure 2A). Notably, in this

study sample, the proportions of Monocyte, T cell, and

Endothelial cell populations in the diseased group were

significantly higher compared to the normal group, as depicted

in the scale graph (Figure 2B). Further analysis focused on the

three cell types, with the data of the monocyte subpopulation

exhibiting the most significant degree of change selected for

subsequent exploration. Continuing our analysis, we focused on

the monocyte data, downscaling it into clusters and presenting

the results in UMAP plots (Figure 2C). This allowed for a

detailed comparison of cellular changes in small subpopulations

between the normal and disease groups. In this study sample, out

of the 12 small monocyte subpopulations, subpopulations 0, 6,

and 7 were notably more prevalent in the disease group

(Figure 2D). This observation holds substantial value for our

study, highlighting specific small monocyte subpopulations that

may play a crucial role in the context of atherosclerosis.
FIGURE 2

scRNA-Seqs data reduced to clusters.aS, atherosclerosis group. CT, contro
various cell proportions; (C) UMAP reduced cluster analysis of mo
monocyte subpopulations.
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3.2 Cellchat probes potential
communication networks between cells

To further delve into the alterations occurring in monocytes

within diseased tissues, we individually extracted monocyte data

from the diseased and normal groups. Using the CellChat

software package, we predictively analyzed the intercellular

communication network. Initially, we quantified the number of

receptor-ligand pairs and communication strength between

different cell taxa (Figure 3A). Notably, the relevant

communication of monocytes was significantly enhanced in the

disease samples. Subsequently, utilizing bubble, scatter, and

heatmap visualizations, we depicted the correlation between the

types of cytokines released among cells and the quantity of

signaling outputs and receptive contributions, respectively

(Figures 3B–D). This analysis revealed that in the disease group,

the release of Secreted Phosphoprotein 1 (SPP1), Macrophage

Migration Inhibitory Factor (MIF) by monocytes, and the

receptive communication of Galactoside—binding lectin

(GALECTIN), Annexin family of proteins (ANNEXIN), and

Vascular Endothelial Growth Factor (VEGF) were significantly

enhanced. Additionally, the communication of C—C Motif

Chemokine Ligand (CCL), Midkine (MK), and TNF—related

Weak Inducer of Apoptosis (TWEAK) exhibited heightened

activity. To provide a unified representation of the active cytokines,

a heatmap was employed, showcasing the aforementioned dynamic

cytokine interactions (Figure 3E). This comprehensive analysis

sheds light on the intricate communication networks and
l group; (A) UMAP cluster analysis of scRNA-Seq data. (B) scRNA-Seq
nocyte subpopulations; (D) proportions of the number of small
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FIGURE 3

Analysis of cellular communication for monocyte data. AS_Mono, Differentially Highly Expressed Monocyte Subpopulations in Atherosclerotic
Samples. Other_Mono, Other Monocyte Subpopulations Not Differently Expressed in Atherosclerotic and Normal Samples. (A) overview of the
number of receptor-ligand pairs and strength of communication between different cell taxa communications; (B) receptor-ligand interaction
relationships between different cell taxa communications; (C) statistics of the total output-input communication of cell taxa; (D) cell taxa-
associated cytokine output-receipt relationships; and (E) relationships of the various types of cells to individual cytokines.

Chen et al. 10.3389/fcvm.2024.1397407
altered cytokine dynamics involving monocytes in the context

of atherosclerosis.
3.3 hdWGCNA access to core module genes

To delve deeper into the gene network associated with

monocytes in atherosclerosis, we employed the “hdWGCNA”

package to conduct hybrid dimensionally weighted gene co-

expression network analysis. Initially, we utilized the

“SetupForWGCNA” function to filter out genes expressed in at

least 5% of the cells, excluding obvious abnormal data.

Subsequently, the MetacellsByGroups function was employed for
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subcellular clustering of single-cell data. To calculate the soft

threshold value, we used the “TestSoftPowers” function, setting it

to 7 (Figure 4A), which provided the average connectivity for the

subsequent construction of the co-expression network. The

merged modules under the specified number of clusters were

displayed (Figure 4B). Subsequently, we scored and visualized the

genes under each module using the “UCell” package (Figure 4C).

To illustrate the distribution of genes in each module on the

UMAP graph, we mapped the scoring structure of each module

into the color space of UMAP (Figure 4D). Additionally,

exploring the relationship between each module was facilitated

through a correlation heatmap (Figure 4E). In a final step, we

used a bubble graph to depict the distribution of each module
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FIGURE 4

High-dimensional weighted co-expression network analysis; (A) soft threshold b = 7 and scale-free topological fit index; (B) clustering dendrogram
for detecting combinatorially similar modules; (C) KEMs gene scoring for each module; (D) expression mapping map on UMAP for each module;
(E) correlation analysis between modules; (F) correlation between modules and expression of small subpopulations of monocytes.

Chen et al. 10.3389/fcvm.2024.1397407
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with monocyte subtypes. Notably, the most varied small subtypes

of the monocyte disease group, specifically subtypes 0, 6, and 7,

were predominantly located in the pink and turquoise modules

(Figure 4F). This comprehensive analysis provides insights into

the core module genes associated with distinct monocyte

subtypes in the context of atherosclerosis.
3.4 Proposed time series analysis to study
monocyte differentiation trajectories

To investigate the proposed chronology of monocyte

differentiation trajectories, we utilized the “monocle2” package for

analysis. Initially, we employed the dispersionTable function to

calculate gene dispersion. Subsequently, we identified highly

variable genes based on criteria such as average gene expression

greater than or equal to 0.1 and empirical dispersion exceeding 1

times the fitted dispersion (Figure 5A). Using the

plot_cell_trajectory function, we illustrated the proposed temporal

differentiation pathway diagram. The color intensity reflects the

progression of cell differentiation over time, with darker colors

indicating earlier stages. The diagram reveals that monocyte

differentiation progresses from the top down, moving from the

middle towards the two sides of differentiation (Figure 5B).

Furthermore, monocytes were classified into 11 key cell subtypes,

and pseudotemporal analysis projected them for display

(Figures 5C,D). To further confirm the specific direction of

differentiation of monocyte subpopulations, an evolutionary tree

diagram at the state level of monocytes was utilized (Figure 5E).

Additionally, we performed a separate analysis of the pink and

turquoise modules in hdWGCNA, which contained significantly

altered genes. The analysis revealed that module genes were

mainly differentiated from top to bottom and from the middle to

the sides (Figure 5F). This comprehensive analysis provides

valuable insights into the intricate differentiation trajectories of

monocytes, shedding light on the temporal dynamics and specific

directions of differentiation for distinct subpopulations in the

context of atherosclerosis.
3.5 Immune cell infiltration analysis

To comprehensively validate the study of monocyte changes in

atherosclerosis and assess overall immune infiltration, we

transitioned to a transcriptomic atherosclerosis GEO dataset

(GSE100927). This shift in perspective allowed us to measure

gene expression at the level of the entire cell population (bulk).

Before delving into the analysis, we preprocessed the GSE100927

and GSE43292 samples. Initially, we identified and mitigated

batch effects between samples using box-and-line plots via the

normalizeBetweenArrays function (Supplementary Figures 2A–

D). Subsequently, we uncovered significant batch effects between

the two datasets using PCA (Supplementary Figure 2E).

Employing the ComBat function helped eliminate the batch

effect (Supplementary Figure 2F). After the meticulous data

processing, we proceeded to unveil the disparity in the activity
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of modular genes between samples in the disease and normal

groups through GSVA analysis (Figure 6A). The observed p-

value <0.01 indicated a significant difference at the entire bulk

level. Further confirmation of the significant difference in the

expression of modular genes between disease and normal groups

was achieved through PCA (Figure 6B). Employing

CIBERSORT, we compared 22 types of immune cells and

depicted the differences in immune cell composition between

the two groups using bar graphs (Figure 6C). Notably, in the

disease group, activated Mast cells, Macrophages M0, B cells

memory, and other immune cells exhibited high infiltration,

while Plasma cells, Monocytes, and other immune cells showed

low infiltration (Figure 6D). An immune function analysis was

also conducted, revealing significant up-regulation in APC co-

inhibition, APC co-stimulation, CCR, Checkpoint, Cytolytic

activity, HLA, Inflammation Promoting, MHC class I,

Parainflammation, T cell co-inhibition, T cell co-stimulation,

and Type I-IFN Response (Figure 6E). Finally, leveraging the

GSEA database of immunologic signature gene sets through the

ssGSEA algorithm, we demonstrated the differences in immune

infiltration between the disease and normal groups (Figure 6F).

This comprehensive analysis provides a holistic view of the

immune landscape in the context of atherosclerosis, highlighting

specific immune cell populations and functional pathways

implicated in the disease.
3.6 Module gene interaction analysis and
enrichment analysis

Furthermore, we conducted an in-depth analysis of the module

genes obtained from hdWGCNA for relevant enrichment and

selected significantly enriched items (q-value <0.05) for

presentation. Beginning with the GO enrichment analysis, we

delved into the characteristics of module genes in cellular

components, biological processes, and molecular functions,

presenting the top ten enriched pathways (Figure 7A). In the

biological processes category, modular genes were prominently

involved in biometabolism-related processes such as sugars,

lipids, nucleotides, etc. The cellular components category

demonstrated that modular genes concentrated in tissues related

to cell membranes, vesicles, and exocrine granules. The

molecular functions category reflected the regulatory role of

modular genes in phosphorylation and dephosphorylation

processes of various types of proteases, fatty acid transporters,

and nucleotide binding-related molecules in the process of

phosphorylation and dephosphorylation. This comprehensive

enrichment analysis provides valuable insights into the functional

roles and molecular pathways associated with the identified

module genes, shedding light on their potential contributions to

the complex processes underlying atherosclerosis. In addition, we

conducted an evaluation of the biological activity and signaling

functions through KEGG enrichment analysis (Figure 7B). This

analysis not only reaffirmed the role of the module in glycolysis/

gluconeogenesis, amino acid synthesis, and other pathways but

also revealed enrichment in the HIF-1, PPAR, and Notch
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FIGURE 5

Proposed chronological analysis. (A) Screening of highly variable genes for atherosclerosis; (B) Proposed chronological measurement of the degree of
cellular differentiation; (C) General overview of the 13 differentiation trajectories of the proposed chronological analysis; (D) Display of the 13
differentiation trajectories of the proposed chronological analysis, one by one; (E) Dendrogram State level proposed chronological analysis
revealing the differentiation trajectories; (F) Heatmap of the expression of genes characteristic of atherosclerosis, arranged in chronological order.
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FIGURE 6

Bulk-level immune infiltration analysis. (A) GSVA disease-normal group difference analysis; (B) PCA analysis of disease-normal group samples;
(C) proportion of various immune cell infiltration components; (D) immune cell infiltration difference analysis; (E) immune function scoring
difference analysis; (F) normal-disease group ssGSEA difference analysis based on Hallmark gene sets.; p significance is indicated by “***” < 0.001,
“**” < 0.01, “*” < 0.05.
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FIGURE 7

Interaction analysis and enrichment analysis of modular genes. (A) GO enrichment analysis of modular genes; (B) KEGG enrichment analysis of
modular genes; (C) display of KEGG top five pathway-related genes; (D) display of KEGG enrichment of the most significant pathways; (E) DO
enrichment analysis; and (F) Co-expression gene protein mutualistic network.
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signaling pathways. The top five enriched pathways in KEGG were

further highlighted (Figure 7C), and it was observed that the

expression levels of all these genes were significantly lower than

normal. Taking the most significantly enriched Glycolysis/

Gluconeogenesis pathway as an example (Figure 7D), we

demonstrated the inhibition of fructose-1,6-bisphosphatase,

phosphoglycerate kinase 1, and triosephosphate isomerase

1. Additionally, we performed DO enrichment analysis

(Figure 7E) and discovered that the modular genes were indeed

most significantly enriched in atherosclerosis and its

atherosclerotic heart disease. This multi-faceted enrichment

analysis provides a nuanced understanding of the functional

implications of module genes in the context of key biological

processes and pathways associated with atherosclerosis. Finally,

we elucidated the PPI network of the module genes by utilizing

the GeneMANIA database (Figure 7F). Notably, nearly 80% of

the proteins expressed by these genes exhibited co-expression

relationships. Among them, 11 genes, namely GPI, PGK1, PFKL,

ALDOA, TPI, PGAM1, PFKP, ENO1, PKM, GAPDH, and

PKLR, were all implicated in sugar- and NADH-related

metabolism, aligning with the enrichment results. This PPI

network analysis enhances our understanding of the intricate

relationships and functional collaborations among module

genes, particularly in the context of metabolic pathways crucial

to atherosclerosis.
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3.7 Module gene-based machine learning
screening and validation

Firstly, we employed three machine learning algorithms—LASSO,

Random Forest, and SVM-RFE—to discern feature genes from the

module genes and assess their diagnostic efficacy. For the LASSO

algorithm, we identified the optimal λ, with an average error

minimum of 0.01, through ten-by-ten cross-validation. Subsequently,

the LASSO classifier was constructed based on this minimum λ value,

revealing 15 feature genes (Figure 8A). Regarding the Support Vector

Machine algorithm, the SVM-RFE approach achieved peak accuracy

with 15 features. Consequently, by considering the collapsed average

ranking order, 15 feature genes were identified (Figure 8B). In the case

of Random Forest, we selected the 9 feature genes with the highest

importance by amalgamating feature selection and classification tree

results (Figure 8C). Subsequently, through the Venn diagram analysis,

we identified three signature genes—CD36, S100A10, and

CSNK1A1—as the intersection genes derived from the three machine

learning algorithms (Figure 8D). Finally, we investigated the efficacy of

the identified signature gene in effectively diagnosing and

distinguishing the normal group from the atherosclerotic disease

group. We assessed the performance of five machine learning

algorithms—k-nearest, Naïve Bayes, Linear Discriminant Analysis,

Logistic Regression, and Recursive Partitioning and Regression

Trees—via 5-fold and 10-fold cross-validation (Figures 8E,F and
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FIGURE 8

Machine learning screening sequencing feature genes and testing validation. (A) 10× cross-validation of LASSO algorithm tuning parameter selection,
lasso coefficient distribution plot; (B) SVM-RFE validation of biometric gene expression; (C) Tree number vs. random forest error rate, lollipop graph
showing gene importance ranking (D) Wayne’s plot screening of three machine learning shared feature genes; (E) kknn, k-nearest. naïve_Bayes, Naïve
Bayes. Ida, Linear Discriminant Analysis. log_reg, Logistic Regression. rpart, Recursive Partitioning and Regression Trees. Five additional ROC
comparisons of feature genes for machine learning training sets; (F) Specific ROC demonstration for training sets of five machine learning
algorithms; (G) ROC validation on external dataset.
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Supplementary Table 1). The results indicated that the average AUC for

these models consistently exceeded 0.85. Additionally, to mitigate the

potential impact of chance in the sample results, we conducted

external validation using another GEO transcriptome dataset

(Supplementary Figure 3). Notably, we presented the evaluation

results for the representative Linear Discriminant Analysis algorithm

(Figure 8G), demonstrating an AUC exceeding 0.8.
3.8 CNN deep learning

To further validate the Application value of the signature gene,

we employed the CNN deep learning method. We constructed a

two-dimensional array by juxtaposing the expression levels of the
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model genes with immune cell infiltration data. Subsequently, we

utilized the CNN to train and validate the diagnostic accuracy of

the model genes (Figure 9A). Remarkably, the accuracy rate

reached approximately 0.9, and the AUC consistently exceeded

0.8 in both the training and validation groups (Figures 9B,C and

Supplementary Table 2), providing robust evidence for the

reliability of the signature gene diagnosis. To enhance the

quantitative understanding of the diagnostic process involving

the signature gene, we employed a logistic regression model to

determine the applied regression coefficients, constructing a

linear prediction model. The logistic regression model,

incorporating the model genes, generated a column-line diagram

illustrating atherosclerosis each gene received a score, and the

cumulative score of the module genes reflected the risk of
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FIGURE 9

CNN to build diagnostic models and validate them. (A) CNN to validate feature genes; (B,C) CNN ROC training-validation group ROC demonstration;
(D) Diagnostic performance ROC curves of the signature genes.
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developing atherosclerosis. The ROC curves for each modeled gene

were presented (Figure 9D). This suggests that the CNN model

based on this signature gene provides more valuable insights into

the patient’s condition (Figure 9F).
3.9 Signature gene-based subtype
construction and immune infiltration

This comprehensive analysis using signature gene of

atherosclerotic monocytes resulted in the identification of two

subtypes. By leveraging the elbow method, CDF plots, and

consistency matrix heatmap, we determined the optimal grouping

k = 2, 3 (Figures 10A–C). PCA and single-sample gene enrichment

analysis (ssGSVA) showcased significant distinctions between the

two subtypes (Figures 10D,E). Subtype 2 exhibited higher
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expression frequencies of modular genes, indicating its greater

relevance in the disease group compared to subtype 1. Furthermore,

heatmaps illustrated differences in modular genes and immune cell

infiltration between the two subtypes (Figure 10F). Subtype 2

demonstrated pronounced expression levels of NK cells,

lymphocytes, dendritic cells, and monocytes. Box-and-whisker plots

displayed variations in immune cells between atherosclerosis-

associated gene subtypes (Figure 10G), revealing significant

increases in T lymphocytes, monocytes, and myeloid dendritic cells

in subtype 2 relative to subtype 1. Conversely, endothelial cells and

fibroblasts exhibited a decrease. Immune function analysis

demonstrated that subtype 2 had a substantial increase in the

proportion of APC co-inhibition, APC co-stimulation, CCR, Check

point, HLA, Inflammation promoting, Parainflammation, T cell co-

inhibition, and T cell co-stimulation, compared to subtype 1, while

Type II-IFN Response function was down-regulated (Figure 10H).
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FIGURE 10

Constructs based on atherosclerosis subtypes. (A) Elbow method of Delta area to take the optimal k value; (B) Consensus CDF at k = 2–9;
(C) Consensus matrix heat map at k = 2 and 3; (D) PCA analysis of two subtype samples; (E) Expression of two subtype samples assessed by GSVA;
(F) Heat map of the difference in immune cell infiltration between subtypes; (G) Comparison of the difference in immune cell infiltration between
subtypes; (H) Differential analysis of immune function between subtypes;. “****” indicates P < 0.0001.
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3.10 Enrichment analysis of signature gene

GSEA analysis of signature gene provided valuable insights into

their association with specific signaling pathways. CD36

(Figure 11A), CSNK1A1 (Figure 11B), and S100A10 (Figure 11C)

exhibited significant correlations with various pathways. Notably,

CD36 and S100A10 displayed negative correlations in Vascular

smooth muscle contraction, Basal cell carcinoma, and different

types of cardiomyopathy, and positive correlations in Allograft

rejection and Asthma, among others. Conversely, CSNK1A1

showed opposite correlations. Comparing the expression changes

of model genes in the normal and disease groups, both CD36

and S100A10 (Figures 11D,E) demonstrated elevated expression

compared to the normal group, while CSNK1A1 (Figure 11F)

exhibited decreased expression. In addition, an immune

correlation analysis was conducted on the model genes, revealing

a significant positive correlation between CD36 and S100A10

with Macrophage M0 and T cells-γ delt cells. Conversely, a

significant negative correlation was observed with T cells CD4

memory resting, Monocytes, and Plasma cells cells (Figures 11G,
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H). Interestingly, these correlations stand in stark contrast to the

CSNK1A1 correlation pattern (Figure 11I). Moreover, ssGSEA

analysis of model genes in the marker gene set of the GSEA

database (Figure 11J) revealed that CD36 and S100A10’s

activities in the respective marker gene sets were precisely

opposite to CSNK1A1, highlighting distinct regulatory roles of

these genes in the context of atherosclerosis.
3.11 Molecular docking based on model
genes to explore their potential therapeutic
targets

Molecular docking analysis using Autodock Vina provided

valuable insights into the binding poses and interactions of the

drug candidates with their respective protein targets. The results

indicated that the drug candidates formed visible hydrogen

bonding and strong electrostatic interactions with the proteins,

suggesting a potential for effective binding and therapeutic

impact in the context of atherosclerosis. The generated binding
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FIGURE 11

Enrichment, immunoassay analysis based on marker genes. (A–C) GSEA identification of signaling pathways associated with signature genes, (A) CD36,
(B) CSNK1A1, (C) S100A10; – Box line plots of expression differences of modular genes, (D) CD36, (E) CSNK1A1, (F) S100A10; (G–H) immune cell
infiltration analysis; (G) CD36, (H) CSNK1A1, (I) S100A10; (J) ssGSEA differential analysis of modular genes based on Hallmark gene sets.
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energies further contribute to understanding the strength of these

interactions, aiding in the assessment of drug efficacy. It’s

fascinating to see how these drug candidates, Dronabinol and

Estradiol, effectively occupied the hydrophobic pocket of the

CSNK1A1 target (Figure 12A), demonstrating promising binding

energies. The fact that both drugs exhibited binding energies

lower than −5 kcal/mol and formed at least 1–2 hydrogen bonds

with adjacent proteins is indicative of strong binding activity.This

underscores their potential as effective therapeutic agents for

atherosclerosis by interacting with the specific protein target. It’s

intriguing to observe the differences in binding energies and

interactions between drug candidates and their respective protein

targets. While Clofibrate and Nicotine showed binding energies

around −4.25 kcal/mol for S100A10 (Figure 12B), the absence of

hydrogen bonds in the protein conformation suggests that their

binding activity might be limited. Understanding the nuances of

these interactions is crucial for evaluating their potential clinical

utility. The molecular docking results for CD36 are particularly

promising. The binding energies of Dronabinol, Zidovudine, and

Indinavir are all below −7 kcal/mol (Figure 12C), indicating

robust binding activity. Additionally, the formation of more than

two hydrogen bonds in the binding conformation of CD36 with
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Zidovudine and Indinavir further supports their strong

interaction, making them potential ideal drug candidates. This

molecular docking analysis provides valuable insights into the

potential efficacy of these drugs in targeting CD36.
4 Discussion

Identification of atherosclerosis is pivotal for proactive

intervention, aiming to alleviate the socioeconomic burden of

atherosclerotic cardiovascular diseases (ASCVD) (48, 49).

Uncovering potential susceptibility markers and elucidating their

underlying mechanisms represent effective strategies for

predictive diagnosis and targeted prevention. Our investigation

highlights CD36, S100A10, and CSNK1A1 as pivotal features in

atherosclerosis, showcasing their collective prowess In terms of

diagnosis, prognosis, and therapeutic performanceEmploying

single-cell sequencing, we conducted a thorough bioinformatics

analysis to integrate novel modular genes emerging in the

atherosclerosis microenvironment via high-dimensional weighted

gene co-expression network analysis, focusing on monocytes

within the diseased microenvironment. Subsequently, we utilized
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FIGURE 12

Marker gene-based docking of receptor proteins with ligand molecules. (A) CSNK1A1 docked with small molecules Dronabinol and Estradiol; (B)
S100A10 docked with small molecules Clofibrate and Nicotine; (C) CD36 docked with Dronabinol and Zidovudine, Indinavir binding mode.
(Yellow: Ligand; Green: macromolecule docking target structure).
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three machine learning approaches (Random Forest, LASSO, and

SVM-RFE) to identify core atherosclerotic features. Validation

was performed using logistic regression, linear discriminant

analysis, Naïve Bayes, k-nearest neighbor, and decision tree

models. A CNN model was constructed to elucidate the

correlation between core features and immune infiltration. The

entire process harnessed multiple machine learning algorithms to

elucidate the fundamental signature genes intrinsic to

atherosclerosis, ultimately pinpointing CD36, S100A10, and
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CSNK1A1 as genetically correlated markers. The diagnostic

performances of these markers were validated using ROC

analysis, achieving an AUC exceeding 80%. Furthermore, our

study delves into the segregation of two atherosclerosis subtypes,

enhancing the precision of immune profile differentiation and

facilitating tailored treatment strategies through systematically

clustered patient samples.

Atherosclerosis is a chronic, lipid-driven inflammatory

condition involving multiple pathways. While monocyte-derived
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data are crucial for identifying targets, their role within the

complex pathophysiology of atherosclerosis warrants thorough

and critical examination. Previous studies have shown that

ARID5B gene expression is regulated by DNA methylation and

involved in dysregulating lipid metabolism and inflammatory

pathways through monocyte transcriptome and epigenome

analyses (50). These findings reveal potential genetic changes in

atherosclerotic monocytes/macrophages and highlight the

importance of lipid metabolism pathways and inflammation in

atherosclerotic plaque formation, a view that aligns with our

current study. Our functional enrichment analysis of emerging

modular genes in the atherosclerotic microenvironment,

particularly through KEGG analysis, revealed significant

enrichment in the peroxisome proliferator-activated receptor

(PPAR) pathway, closely linked to lipid metabolism. PPARγ,

primarily present in adipose tissue and the immune system, is

crucial for adipocyte differentiation, cholesterol metabolism, and

inflammatory responses. The development of atherosclerosis is

characterized by elevated levels of LDL and very low-density

lipoprotein (vLDL), along with reduced levels of high-density

lipoprotein (HDL) in patients with hyperlipidemia and diabetes

mellitus. One critical and intricate area of research focuses on

regulating the electronegativity of LDL to mitigate the risk of

atherosclerosis. Untargeted lipidomic analysis has shown that

lipid profiles vary between subgroups with lower LDL

electronegativity (L1) and higher LDL electronegativity (L5). The

top 10 lipid species enriched in L1 were independently linked to

fatal events within one year. These findings indicate that reduced

LDL electronegativity is associated with changes in the LDL

lipidome, suggesting it may be a novel risk factor for adverse

outcomes in patients with acute coronary syndrome (ACS) (51).

Moreover, increased electronegativity of LDL is associated with

its pro-inflammatory and pro-apoptotic properties. These

electronegative LDL [LDL(-)] are more prevalent in patients with

high cardiovascular risk, serving as biomarkers to monitor

atherosclerosis progression (52). Among the factors influencing

LDL electronegativity, cytokines such as IL-4 and IL-13 enhance

the ability of monocytes to oxidize LDL, whereas IFN-γ inhibits

this process (53). Additionally, reducing LDL oxidation and

increasing its electronegativity can be achieved with antioxidants

like vitamins E and C, potentially slowing the progression of

atherosclerosis in dialysis patients (54).

In addition to its role in lipid metabolism and inflammation,

PPARγ is also closely related to CD36, a core gene among the

marker genes we are currently investigating, further underscoring

its significance in atherosclerosis. CD36 functions as a receptor

for scavenging oxidized low-density lipoprotein (oxLDL) and aids

in removing cholesterol deposits from arterial walls, thereby

mitigating atherogenesis. However, it is important to note that

the CD36-PPARγ pathway also plays a role in the early stages of

atherosclerosis development. The activation of the CD36-PPARγ

pathway not only fosters cholesterol efflux but also augments the

synthesis of HDL and facilitates reverse cholesterol transport,

leading to a reduction in atherosclerotic burden. Furthermore,

this pathway exerts inhibitory effects on cholesterol synthesis

within hepatocytes, curtailing de novo cholesterol production by
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downregulating the activity of 3-hydroxy-3-methylglutaryl

coenzyme A reductase (HMGR). These regulatory actions hold

therapeutic significance in the context of atherosclerosis (55, 56).

In summary, the pivotal involvement of the CD36-PPARγ

pathway in atherosclerosis underscores its significance in both

the prevention and treatment of atherosclerosis and its

concomitant metabolic syndrome. This pathway intricately

modulates lipid metabolism, cholesterol transport, and

inflammatory responses, offering multifaceted therapeutic

avenues for addressing atherosclerotic conditions.

In parallel with marker gene the classification of patients into

C1 and C2 subtypes using three signature genes aims to enhance

patient differentiation for more precise treatment. The intricate

connection between atherosclerosis, immune inflammation, and

tumorigenesis (57, 58) underscores the significance of

investigating immune infiltration and immune function scores in

patients with these subtypes, accomplished through the

utilization of ssGSEA. At the level of immune cell infiltration, the

C2 subtype exhibited significant overexpression, particularly in T

cells, the Monocytic lineage, Cytotoxic lymphocytes, and Myeloid

dendritic cells. These cell types are actively involved in the

inflammatory process, with a primary focus on pathogen removal

during the inflammatory response and the maintenance of a

stable immune environment in the body. Conversely, the C1

subtype, characterized by high expression in Endothelial cells and

Fibroblasts, plays a crucial role in maintaining normal

physiological status. It contributes to regulating vascular

response, immune cell migration, and tissue repair to cope with

tissue damage during inflammation.

At the immune function level, elevated levels of both

inflammatory and anti-inflammatory responses in C2 may be the

primary contributors to persistent or chronic inflammation. This

dual response pattern aligns with the concept of quasi-

inflammation, where transient inflammation serves as a host

defense mechanism, while prolonged inflammation is associated

with detrimental tissue changes observed in conditions such as

diabetic retinopathy (DR) and other age-related disorders (59). In

addition to elevated levels of inflammation and anti-inflammatory

antagonism, C2 also exhibits significant para-inflammation. Quasi-

inflammation, characterized by increased expression of the anti-

inflammatory cytokine IL-10 and a shift in macrophage plasticity

from pro-inflammatory M1 to anti-inflammatory M2 polarization,

serves as a mediator between basal inflammation and intense

inflammatory responses (60). While mature inflammatory

responses are typically associated with infection or tissue damage,

quasi-inflammatory responses in C2 indicate tissue reactions to

deleterious stress induced by various stressors, such as oxidative

stress, hyperglycemia, or hypercholesterolemia. This complements

the diverse risk factors and underlying etiologies previously

discussed, collectively influencing the development of

atherosclerotic disease. Meanwhile, C1 exhibits a stronger response

to type II interferon than C2, suggesting that C1 activates

inflammatory cells during inflammation, releasing IFN-γ to

enhance their ability to combat bacteria and viruses. Additionally,

C1 prompts antigen-presenting cells to efficiently present antigens,

thereby regulating and enhancing immune system activity in C2.
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In summary, C2 represents a “classical” activation state

primarily triggered by infection and inflammation. These cells

demonstrate robust microbicidal activity and produce

inflammatory mediators crucial for clearing pathogens and

diseased cells. However, excessive activation may lead to tissue

damage. On the other hand, C1 represents an “alternative”

activation state involved in inflammation regulation, tissue repair

promotion, and immune homeostasis regulation.

Our signature genes, S100A10/p11, and CSNK1A1, are intricately

linked to the development of various diseases and cancers. In our

targeted approach towards the CD36 receptor, molecular docking

was conducted to investigate potential therapeutic agents. Notably,

CD36 exhibits robust binding activity with Indinavir and

Zidovudine. Zidovudine (AZT), a pyrimidine synthetic analog, has

been clinically utilized in the past for treating HIV-1 and preventing

mother-to-child transmission. Specifically, Zidovudine belongs to

the class of nucleoside reverse transcriptase inhibitors (NRTIs) (61).

Zidovudine has proven efficacy in reducing the incidence of

opportunistic infections and tumors, while also increasing the count

of helper T lymphocytes (62). Additionally, Indinavir, another drug

initially employed in the treatment of HIV/AIDS, functions as a

protease inhibitor within highly active antiretroviral therapy.

Notably, Indinavir has exhibited activity against the protease of

human T lymphotropic virus type 1 (HTLV-1). There is ongoing

exploration of novel medical applications of Indinavir, including its

potential in preventing or treating conditions such as obesity, type

II diabetes mellitus, diabetic nephropathy, and nonalcoholic fatty

liver disease. In summary, the antiretroviral drugs Indinavir and

Zidovudine exhibit promise beyond their established use. Our

investigation, utilizing data from the Comparative Toxicogenomics

Database (https://ctdbase.org/), reveals their significant inhibitory

effect on the overexpression of CD36. This inhibition, in turn,

impedes the macrophage phagocytosis of ox-LDL, a process integral

to the formation of foam cells and the progression of

atherosclerosis. These findings suggest a broader potential for the

therapeutic application of Indinavir and Zidovudine beyond their

original scope in treating HIV, extending into the realm of

atherosclerosis management.

The intriguing discovery in our study indicates that Dronabinol

binds to both CD36 and CSNK1A1 targets, exhibiting robust

molecular bioactivity and suggesting a potential role in

atherogenesis. Notably, Tetrahydrocannabinol (Δ9-THC) has been

demonstrated to activate cannabinoid receptor 1 (CB1), triggering

inflammation and oxidative stress in vascular endothelial cells.

This could represent a plausible avenue through which cannabis

may impact cardiovascular health. In a model employing human

stem cell-induced vascular endothelial cells, genistein demonstrated

the capacity to counteract the oxidative stress and inflammatory

reactions initiated by Δ9-THC. This suggests that genistein’s ability

to inhibit CB1 receptors might antagonize the effects of Δ9-THC,

potentially mitigating the development of atherosclerosis induced

by Δ 9-tetrahydrocannabinol (63). Consequently, targeting

tetrahydrocannabinol could emerge as a promising therapeutic

strategy for atherosclerosis treatment (64).

Despite the innovative approach and significant findings, this

study has several limitations that need to be addressed. Firstly,
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the limited sample size may affect the generalizability and

reproducibility of the results. Although single-cell sequencing

provides high-resolution data, the small number of samples

analyzed could lead to biased outcomes, reducing the reliability

of the identified biomarkers. Secondly, focusing on monocytes

might overlook the contributions of other critical cell types in

atherosclerosis. As a complex disease involving various cellular

interactions, concentrating solely on monocytes may not provide

a comprehensive understanding of its mechanisms. Thirdly, the

complexity of the machine learning models used, including

Random Forest, LASSO, SVM-RFE, and the CNN, presents

challenges for interpretation and reproducibility. While these

models enhance predictive accuracy, their intricate nature can

hinder straightforward replication and clear interpretation of

results. Lastly, although molecular docking based on CD36,

S100A10, and CSNK1A1 has been used to predict targeted

therapies for guiding clinical treatment, these predictions have

not yet been experimentally validated. While the discussed

therapeutic drugs may positively impact modeled gene expression

and contribute to the recovery of atherosclerosis patients, these

findings need validation through extensive clinical trials.

Experimental confirmation is crucial to determine the broader

impacts and clinical applicability of these molecular

targets.Addressing these limitations in future studies will be

essential for validating and expanding upon the current findings,

ultimately contributing to a deeper understanding and more

effective management of atherosclerosis.
5 Conclusion

In summary, our study highlights monocyte infiltration as a

crucial contributor to atherosclerosis development, with CD36,

S100A10, and CSNK1A1 emerging as prominent biomarkers for

disease detection. These results furnish a robust scientific

foundation for advancing the diagnosis and treatment strategies

for individuals afflicted with atherosclerosis.
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represents the proportion of UMIs of mitochondrial genes in the cell to
the total UMIs in each cell; (B) Expression of scRNA-seq data after quality
control; (C) UMIs vs. scatter plot of total number of genes; (D) PCA down
to cluster analysis before de-batching; (E) elbow drop plot of PCA; (F) PCA
down to cluster analysis after de-batching.
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after de-batching of GSE100927; (C) boxplot of intergroup batch effects
before de-batching of GSE43292; (D) boxplot of intergroup relationships
after de-batching of GSE43292; (E) boxplots of intergroup relationships
before de-batching of GSE100927 vs. GSE43292 dataset batch effect PCA
plots; (F) PCA plots showing the relationship between GSE100927 and
GSE43292 datasets after de-batching.

SUPPLEMENTARY FIGURE S3

Evaluation results of ROC test for machine learning in the validation group.
(A) Linear Discriminant Analysis; (B) Logistic Regression; (C) Recursive
Partitioning and Regression Trees; (D) Naïve Bayes (E) k-nearest.
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