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A novel method of swin
transformer with time-frequency
characteristics for ECG-based
arrhythmia detection
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1Heilongjiang University of Chinese Medicine, Harbin, China, 2College of Computer Science and
Technology, Harbin Engineering University, Harbin, China, 3First Affiliated Hospital, Heilongjiang
University of Chinese Medicine, Harbin, China
Introduction: Arrhythmia is an important indication of underlying cardiovascular
diseases (CVD) and is prevalent worldwide. Accurate diagnosis of arrhythmia is
crucial for timely and effective treatment. Electrocardiogram (ECG) plays a key role
in the diagnosis of arrhythmia. With the continuous development of deep learning
and machine learning processes in the clinical field, ECG processing algorithms
have significantlyadvanced thefieldwith timelyandaccuratediagnosisof arrhythmia.
Methods: In this study, we combined the wavelet time-frequency maps with the
novel Swin Transformer deep learning model for the automatic detection of
cardiac arrhythmias. In specific practice, we used the MIT-BIH arrhythmia
dataset, and to improve the signal quality, we removed the high-frequency
noise, artifacts, electromyographic noise and respiratory motion effects in the
ECG signals by the wavelet thresholding method; we used the complex Morlet
wavelet for the feature extraction, and plotted wavelet time-frequency maps
to visualise the time-frequency information of the ECG; we introduced the
Swin Transformer model for classification and achieve high classification
accuracy of ECG signals through hierarchical construction and self attention
mechanism, and combines windowed multi-head self-attention (W-MSA) and
shifted window-based multi-head self-attention (SW-MSA) to comprehensively
utilise the local and global information.
Results: To enhance the confidence of the experimental results, we evaluated
the performance using intra-patient and inter-patient paradigm analyses, and
the model classification accuracies reached 99.34% and 98.37%, respectively,
which are better than the currently available detection methods.
Discussion: The results reveal that our proposed method is superior to currently
available methods for detecting arrhythmia ECG. This provides a new idea for
ECG based arrhythmia diagnosis.

KEYWORDS

electrocardiogram, deep learning, arrhythmia, wavelet time-frequency map, swin

transformer

1 Introduction

Currently, cardiovascular diseases (CVD) exhibit the highest morbidity and mortality

rates worldwide, posing a serious threat to human health (1). According to the World

Health Organization (WHO), CVD-associated deaths account for approximately 32% of

the total number of deaths each year (2). Arrhythmia, a phenomenon that causes the
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heart to beat irregularly due to abnormal functioning of the heart’s

electrical system, is one of the major manifestations of underlying

CVD (3). In many cases, arrhythmia patients often remain

asymptomatic and later lead to diseases that cannot be easily

diagnosed, resulting in serious consequences, for example, heart

failure, stroke, and even sudden cardiac death (4, 5). Therefore,

accurate and rapid detection of arrhythmia is particularly

important for better treatment outcomes and long-term survival of

the patient. Therefore, detecting arrhythmia at an early stage can

minimize the chances of life-threatening situations in the future.

Currently, there are several diagnostic methods for arrhythmia,

such as electrocardiogram (ECG), cardiovascular magnetic

resonance imaging (MRI), and cardiac computed tomography

(CT) (6–8). As an objective indicator of the occurrence,

propagation, and recovery process of cardiac excitation, ECG plays

a crucial role in the diagnosis of heart diseases. Moreover, due to

the non-invasive procedure and low-cost advantages, ECG is most

commonly used for detecting arrhythmia in clinical practice.

ECG data are usually affected by multiple factors, and data

preprocessing can improve the data quality. Noise reduction is

widely used as a common method for preprocessing. Sharma et al.

(9) proposed noise reduction based on eigenvalue decomposition

of Hankel matrix, which achieved better performance. Zhang et al.

(10) proposed noise reduction of ECG signals by using coif3

wavelet and trap filter, which improves the accuracy of extracted

ECG parameters by suppressing the noise of P-wave and T-wave.

Among many noise reduction methods, wavelet thresholding is

suitable for various types of signal noise reduction, including

biomedical signals, images, audio, etc., so it has a wide range of

application prospects (11–13). Therefore, in this paper, wavelet

thresholding method is used to achieve ECG noise reduction.

Feature extraction is an important component of machine-

learning-based ECG diagnosis. Currently, feature extraction

processes have been optimized based on the time and frequency

domain aspects of the ECG (14, 15). Time domain feature

extraction mainly captures the dynamic characteristics of the

signal with respect to time but this feature has limitations in

dealing with non-stationary signals. Frequency domain feature

extraction can reveal the frequency of components and spectral

features of the ECG, but transient information may be omitted

when extracting the signal. In contrast, time-frequency domain

feature extraction combines both time and frequency domain

information, making the signal analysis more comprehensive by

capturing the dynamic changes and frequency characteristics of

the ECG. Currently, ECG feature extraction based on time-

frequency features has become more and more popular, Qurraie

et al. (16) extracted time-frequency features and statistical

features of ECG signals along the RR intervals for arrhythmia

classification, and Sharma et al. (17) proposed time-frequency

matrix-based modified features for detecting coronary artery

disease (CAD), which have all achieved good results. Wavelet

time-frequency maps can visualise the time-frequency

characteristics of the signal and have significant advantages in

feature extraction (18). Therefore, this study primarily focuses on

the time-frequency domain and adopts the visualized wavelet

time-frequency diagram to represent ECG features. This
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combined approach can effectively extract almost all ECG time-

frequency domain features and provide a guarantee for the

subsequent accurate classification work.

With the continuous development of computer-aided

technologies in the medical field, the number of research works

on the ECG detection method is gradually increasing. Diker et al.

(19) used the Pan-Tompkins algorithm and the discrete wavelet

transform (DWT) to extract the key points of ECG signals for

ECG classification, and improved the wavelet kernel limit

learning machine to determine the wavelet coefficients. Shirin

et al. (20) used electrocardiogram data from three different

databases, combined with temporal and spectral analyses and

nonlinear dynamics, and were able to efficiently distinguish

between ventricular fibrillation (VF) and non-VF arrhythmias

and applied B bifurcated decision tree (BDT) and support vector

machine (SVM) classifiers for arrhythmia classification. These

methods have not only improved the accuracy of cardiovascular

disease diagnosis, but also reduced the time required for

diagnosis. In recent years, deep learning methods have achieved

better results in several fields, including biosignal analysis (21),

face recognition (22), computer vision (23), and character

recognition (24). In ECG detection, the application of deep

learning methods has also become substantially widespread

(25–27). Currently, traditional networks such as convolutional

neural networks (CNN) and recurrent neural networks (RNN)

are most frequently used for arrhythmia diagnosis (28, 29).

However, these techniques have several limitations in facing

long-range dependencies and dealing with global information

capture. The new network architecture of the emerging

Transformer (30) shows certain advantages over previous models

in the field of deep learning. The Transformer model has been

developed considering the weightage of each position over the

others through a self-attention mechanism, and positional coding

to convey information about the sequence structure. In addition,

jump connections between the outputs and inputs of each

sublayer have been added to this model. Compared with the

traditional model, the Transformer can effectively solve more

complex problems involving long-range dependencies and global

information capture. Simultaneously, the Transformer can

perform parallel computation by calculating the number of

dependencies between different positions in the input

sequence, which improves the training speed of the model.

Developed based on the Transformer model, the Swin

Transformer offers specific improvements for computer vision

to increase the efficiency of image-specific processing, thus

making the Transformer architecture more compatible and

efficient for a wide range of large-scale computer vision tasks (31).

Therefore, we employed the Swin Transformer model to classify

the ECG features.

In this study, we first pre-processed the ECG data from the

MIT-BIH arrhythmia database to improve the data quality, then

extracted the time-frequency features of the ECG by wavelet

time-frequency mapping. Swin Transformer model was used to

classify various types of arrhythmia, which in turn enabled the

effective detection of cardiac arrhythmia. We found that the

Swin Transformer model was effective in prompting early
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warning and auto-diagnosis of arrhythmia, which provided a new

avenue for arrhythmia detection.
2 Materials and methods

Arrhythmia classification has always been an important issue in

the field of medicine, which is significant for diagnosis and treatment.

With our proposed method, we are able to identify different types of

arrhythmias more accurately and provide doctors with a more

reliable auxiliary diagnostic tool, which further improves the

efficiency and accuracy of patient diagnosis and treatment. In this

study, we propose an ECG signal processing and classification

method based on the wavelet threshold method and the Swin

Transformer model, which has the potential for accurate ECG data

analysis and classification in clinical applications. The overall

flowchart of the experiments in this study is shown in Figure 1,

which consists of three main parts. The first part is the

preprocessing of the data, which introduces the new application of

wavelet thresholding method in ECG data denoising to remove the

effects of high frequency noise, artefacts, electromyographic noise

and respiratory motion produced on ECG. We perform wavelet

transform on the original ECG signal, which makes the signal

decomposed into wavelet components with different scales and

frequencies, and choose the soft thresholding method for

thresholding, which improves the quality of ECG. The second part

is to complete the feature extraction of ECG data, we adopt the

complex Morlet wavelet as the wavelet basis function, and then the

continuous wavelet transform(CWT) is used to capture the feature

information of the signal in time and frequency simultaneously,

and the wavelet time-frequency diagram is drawn to show the

ECG features, so as to achieve a more intuitive presentation of the

time-frequency information of ECG, and to improve the accuracy

and reliability of the analysis of ECG signals. The third part is to

introduce the Swin Transformer model for ECG classification,

which uses a hierarchical construction method similar to CNN,
FIGURE 1

A flowchart illustrating the process of achieving ECG classification of arrhyt
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reduces the computational complexity by calculating the self-

attention within the window, and achieves window-to-window

information transfer by moving window, which has a good

accuracy in clinical diagnosis. We input the wavelet time-

frequency maps into the Patch Partition module for chunking,

sampling through the Patch Merging layer, and then construct

feature maps of different sizes through four stages, and in order

to combine local and global information, we use windowed

multi-head self-attention (W-MSA) and shifted window-based

multi-head self-attention (SW-MSA) in pairs. For each sample,

the features are standardized, the mean and variance of the

features are calculated, and the feature map is pooled along the

spatial dimension. The globally pooled feature vector is used as

input, and the output of the last fully connected layer is used as

the final output of the model. Cross entropy loss is used as the

loss function, and the Adam optimizer is selected for model

optimization to achieve signal classification. This model has

good accuracy in clinical diagnosis. Finally, model evaluation is

achieved through model comparison confusion matrix and

feature visualization.
2.1 Dataset

The MIT-BIH Arrhythmia database, created in collaboration

between the Massachusetts Institute of Technology (MIT) and

Beth Israel Hospital (BIH), is one of the most widely used

resources in the field of arrhythmia detection and classification

(32). The dataset covers many types of arrhythmias, including

supraventricular and ventricular premature beats, atrial

fibrillation, and atrial flutter.

In this study, we used the MIT-BIH Arrhythmia database for

the classification of arrhythmias. This dataset included 48 ECG

recordings from 47 volunteers, each of which lasted 30 min and

contained more than 116,000 heartbeats, consisting of two signal

channels V and II, and recorded at a sampling rate of 360 Hz

and 11-bit resolution with a range of 10 mV (33–35).
hmias.
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In this experiment, we randomly divided the MIT-BIH

Arrhythmia database into ten subsets, using nine folds of data as

the training set and the remaining one fold as the validation set.

The process was repeated ten times, choosing a different

validation fold each time. During each validation process, the

model is trained using the currently selected training set and the

model performance is evaluated on the corresponding validation

set. The accuracy, precision, sensitivity, specificity, F1 score and

AUC values were recorded for each validation. Afterwards, the

above metrics of each of the ten validations are averaged to

obtain the final model evaluation results.
2.2 Pre-processing

Usually, the ECG recording includes artefactual contaminations,

which incorrectly extract the local waveform of the ECG. Therefore,

performing pre-processing is an essential step toward a precise and

automatic ECG classification. Pre-processing of ECG data includes

de-baseline drifting, filtering, noise reduction, and heartbeat

detection, aiming to improve the quality of ECG signals (36).

Among them, noise reduction is the most important step in

experimental pre-processing. In this work, we used the wavelet

thresholding method (37) to denoise the raw data, in order to

remove the effects of high-frequency noise, artifacts,

electromyographic noise, and respiratory movements on ECG.

First, the db6 wavelet was used to decompose the signal into levels

1–3, and subsequently, decomposed signals were adjusted to the

baseline using the rigrsure soft threshold selection method.

Compared with the hard thresholding method, the soft

thresholding method improves the defect of discontinuity at the

threshold point, so smoother data are obtained in the soft

thresholding process. The threshold processing formula of the soft

thresholding method is expressed as Equation (1):

ŵ ¼ [sgn(w)](jwj � T), jwj � T
0, jwj , T

�
(1)

where w is the decomposed wavelet coefficient, ŵ is the thresholded

wavelet coefficient, and T denotes the threshold function.

For healthcare professionals to accurately identify and

understand the ECG features, the Association for the

Advancement of Medical Instruments (AAMI) has classified the

MIT-BIH arrhythmia database into five AAMI heartbeat

categories: N for normal beats, S for supraventricular

abnormalities, V for ventricular abnormalities, F for fusion beats,

and Q for unclassified beats (38, 39).
2.3 ECG feature extraction

The wavelet time-frequency diagram is one of the important

methods to extract the time-frequency features of ECG, which

converts one-dimensional signals into a two-dimensional time-

frequency image through the CWT. Thus, the wavelet time-
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frequency diagram could be helpful to further understand the

essential properties of ECG, and enhance the analysis and

diagnosis of diseases (40, 41).

Here, we used the complex Morlet wavelet for the wavelet

analysis, which is expressed as Equation (2):

c(t) ¼ (pFb)
0:5e2ipFcte�t2=Fb (2)

where Fb denotes the bandwidth factor.

The wavelet coefficient of different scales and frequency bands of

wavelet components that have been decomposed in the pre-

processing step are obtained by wavelet transformation that gives

different signal resolutions at different time-frequency characteristics,

and the formula for the CWT is expressed as Equation (3):

U(a, b) ¼
ðþ1

�1
x(t)c(t)dt ¼ 1ffiffiffiffiffiffijajp ðþ1

�1
x(t)c

t � b

a

� �
dt (3)

whereU(a, b) denotes the coefficient of the wavelet function; a andb

denotes the scaling and translation factors; x(t) denotes the original

signal; c(t) indicates the wavelet basis function; and c(t) refers to the

conjugate complex of c(t). These wavelets are generated by the

mother wavelet c scaling and translation.

Following are the steps for calculating the time-frequency

diagram of the wavelet components:

The actual frequency Fa corresponding to the scaling factor is

denoted as Equation (4):

Fa ¼ Fc � fs
a

(4)

where Fc denotes the wavelet center frequency factor in Hz, and fs
denotes the sampling frequency.

The scale series t is expressed in the following form so that the

changed frequency series is presented as an isotropic series A:

A ¼ {c= totalscal, � � � , c=(totalscal � 1), c=4, c=2, c} (5)

c ¼ 2Fc � totalscal (6)

where the length of the scale sequence totalscal is set to 256, and c

is a constant.

Substituting the expression of Equation (6) into Equation (5),

we can obtain the desired scale sequence. Through the scale

sequence and wavelet basis, the wavelet coefficient matrix can be

derived from Equation (3), and the wavelet time-frequency

diagram of the original vibration signal can be constructed by

combining the time series and the actual frequency series.
2.4 ECG classification model

The Swin Transformer network model is a deep learning model

proposed by Microsoft Research Asia in 2021. This model uses a
frontiersin.org
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hierarchical structure to extract features by calculating attention

within each window (31). In this study, we applied the Swin

Transformer network model to segment an image with an input

of h ×w × 3 RGB into non-overlapping equal-sized N × (4 × 4 × 3)

image blocks, where h and w were the height and width of the

input image, respectively, and N was the effective length of the

input sequence for the 31model.

When the linear embedding layer projects a tensor with feature

dimension h/4 ×w/4 × 48 to any dimension C, the feature

dimension at this point becomes h/4 ×w/4 × C. Hence, we first

performed layer normalization (LN) by passing the image block

sequence into two consecutive Swin Transformer blocks, and

then conducted W-MSA analysis. The W-MSA divides the input

sequence into different windows based on MSA to reduce the

complexity of the calculation. Attention is calculated by

extracting the correlation between local patches in the window.

The basic formula of MSA can be expressed as Equation (7):

Attention (Q, K , V) ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V (7)

Where Q, K and V denote the Query, Key and Value matrices,

respectively; softmax denotes the weight assigned to all the Keys

of each Query; dk denotes the dimension of each element in the

K matrix and applies weights to the Value matrix.

Assuming that the size of each local block is m*n and the

dimension of the transformed matrix is Z*Z, the computation of

MSA can be done by Equation (8):

V(MSA) ¼ 4mnZ2 þ 2(mn)2Z (8)

Assuming that a graph is divided into H*H local blocks, the

computation of W-MSA can be estimated as Equation (9):

V(WMSA) ¼ 4mnZ2 þ 2H2mn2Z (9)

Next, LN and multilayer perception (MLP) are performed to train

the model with features at a deeper level, and this is the end of the

first module. Subsequently, SW-MSA based on moving windows is

carried out to realize mutual communication between windows,

where W-MSA and SW-MSA are used in pairs, and their

module calculations can be performed using Equation (10):

F̂
l ¼ WMSA(LN(Fl�1))þ Fl�1

Fl ¼ MLP(LN(F̂
l
))þ F̂

l

F̂
lþ1 ¼ SW- MSA(LN(Fl))þ Fl

Flþ1 ¼ MLP(LN(F̂
lþ1

))þ F̂
lþ1

(10)

where F̂l and Fl denote the output features of the (S)W-MSA

module and the MLP module, respectively.

Finally, the output result is obtained by MLP, and the number

of output sequences is the same as that of the input. In the second
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stage, the adjacent 2 × 2 image blocks are stitched together by

merging layers, and the output of the feature dimension after

feature conversion is h/8 × w/8 × 2C. The process is repeated, and

the eigendimensions of stages 3 and 4, respectively, give output

as h/16 ×w/16 × 4C and h/32 ×w/32 × 8C.

After completing the execution of the Swin Transformer block,

the final ECG classification results are generated through

normalization, global pooling, and full connection.
3 Results

3.1 Eigenvalue analysis

Here, we exploited wavelet time-frequency maps to transform

one-dimensional ECG into two-dimensional images with time-

frequency features, thus presenting ECG results in a better way,

where the warm and cold colors of the wavelet time-frequency

maps indicated the wavelet energy values of the signals in the

time-frequency domain. The warm color represented the high-

energy regions, while the cold color referred to the low-energy

regions, and the horizontal and vertical axes of the images

indicated the time and frequency, respectively. Figure 2 shows

the raw signal maps of the five types of arrhythmias and the

wavelet time-frequency maps presented in the time-frequency

domain.

It can be observed that there are differences between the

wavelet time-frequency maps corresponding to different types of

cardiac beats. Different colors present an irregular block-like

distribution, with the warm color area of the N-shaped heart

beat being significantly larger than other types, and having the

largest range and higher energy. The cold color area of Q-shaped

heart beats is significantly more pronounced than other types.

Compared to the S-shaped heart beat, the V-shaped heart beat

exhibits a brighter overall color and a larger range. Additionally,

the color range of F-type heart beats is the smallest compared to

other types, indicating that the color distribution of wavelet time-

frequency maps can effectively characterize significant differences

between different types of arrhythmias. Therefore, wavelet time-

frequency maps have the potential to serve as evaluation

indicators for different types of ECG abnormalities. In this work,

we extracted the time-frequency features of ECG data for

different types of arrhythmias through wavelet time-frequency

maps, laying the foundation for subsequent classification tasks.
3.2 Performance evaluation

We utilized 10-fold cross-validation to compare the

performance of our proposed model with other commonly used

models for arrhythmia detection. To enhance the credibility and

robustness of our findings, we conducted intra-patient and

inter-patient paradigm analyses, respectively. Intra-patient

analyses evaluated the model’s ability to track heart rate

variability by partitioning the database into 10 groups, with one

group serving as the test set and the remainder as the training
frontiersin.org
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FIGURE 2

Raw signal maps and wavelet time-frequency maps of different types of arrhythmias, with raw signal maps on the left and corresponding wavelet
time-frequency maps on the right. (A) F type; (B) N type; (C) Q type; (D) S type; (E) V type.
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TABLE 1 Performance comparison between our model and previously reported models for arrhythmia detection in intra-patient paradigm. (unit: %).

Methodology Accuracy (CI) Precision (CI) Sensitivity (CI) Specificity (CI) F1-Score (CI) AUC (CI)
1D-CNN (42) 91.28 (89.49, 93.07) 93.58 (91.79, 95.37) 89.29 (87.50, 91.08) 92.83 (91.04, 94.62) 90.51 (88.72, 92.30) 93.27 (91.48, 95.06)

1D-CNN (28) 97.19 (94.93, 99.45) 95.62 (93.36, 97.88) 96.17 (93.91, 98.43) 91.73 (89.47, 93.99) 97.81 (95.55, 99.07) 96.51 (94.25, 98.77)

CNN-LSTM (43) 97.93 (96.86, 98.99) 95.37 (94.30, 96.44) 98.04 (96.97, 99.11) 97.62 (96.55, 98.69) 97.95 (96.88, 99.02) 97.38 (96.31, 98.45)

2D-CNN (42) 98.74 (97.10, 99.38) 97.69 (96.05, 99.33) 99.08 (98.44, 99.52) 94.82 (93.18, 96.46) 98.63 (97.99, 99.27) 98.14 (96.50, 99.78)

2D-CNN (44) 98.97 (98.83, 99.11) 94.24 (92.10, 96.38) 96.38 (94.24, 98.52) 99.53 (98.39, 99.67) 96.72 (94.58, 98.86) 98.95 (97.81, 99.08)

DBB, AdaBoos (45) 99.04 (98.25, 99.83) 98.37 (97.58, 99.16) 97.52 (96.73, 98.31) 99.31 (98.52, 99.47) 98.84 (98.05, 99.63) 97.62 (96.83, 98.41)

ECG DETR (46) 99.19 (98.56, 99.82) 97.91 (97.28, 98.54) 98.14 (97.51, 98.77) 99.27 (98.64, 99.90) 98.31 (97.68, 98.94) 99.08 (98.45, 99.71)

Proposed 99.34 (98.99, 99.69) 98.71 (98.36, 99.06) 99.49 (99.14, 99.84) 99.57 (99.22, 99.92) 98.96 (98.61, 99.31) 99.35 (99.00, 99.78)

CI: 95% confidence intervals (Lower–Upper bound).

The bold values represent the specific performance values of our proposed method.

Chen et al. 10.3389/fcvm.2024.1401143
set in each iteration. Table 1 illustrates an example of within-

patient analysis, showcasing the specific performance of 8

different methods for arrhythmia detection at 95% confidence

intervals. The evaluated metrics include accuracy, precision,

sensitivity, specificity, F1 score, and AUC. Through the

calculation of these confidence intervals in 10-fold cross-

validation, we were able to assess the stability and variability of

the models across different subsets of random data. This

approach aids in identifying and addressing potential overfitting

issues and ensures the model’s robust generalization capabilities.

However, for clinical applications, the training and testing sets

will not be sourced from the same patient. To address this

challenge, we conducted an inter-patient paradigm analysis. We

divided the 47 subjects into 10 groups. Each time, we randomly

selected one group and used their ECG data with different labels

as the test set, while the remaining ECG datasets were used as

the training set. In other words, the same subject cannot be part

of both the training and testing datasets simultaneously. We

trained the model using the above-described data and repeated

this process ten times, selecting different validation folds each

time. Finally, we obtained the average performance indicators, as

shown in Table 2.

Compared to the performance records of different methods in

detecting arrhythmia, our model achieved classification accuracies

of 99.34% and 98.37% in intra-patient and inter-patient case

analyses, respectively. These values are 0.15% and 0.63% higher

than the current best accuracy achieved by an arrhythmia

classification model. Additionally, the classification accuracy of

our model reached 98.71% and 96.64%, with sensitivity values of

99.49% and 97.20%, specificity values of 99.57% and 97.12%, F1
TABLE 2 Performance comparison between our model and previously report

Methodology Accuracy (CI) Precision (CI) Sensitivit
1D-CNN (42) 89.92 (88.10, 91.74) 90.89 (89.07, 92.71) 87.68 (85.86

1D-CNN (28) 94.48 (92.30, 96.66) 93.62 (91.44, 95.82) 94.35 (92.17

CNN-LSTM (43) 96.54 (94.97, 98.11) 92.66 (91.09, 94.23) 95.12 (93.55

2D-CNN (42) 97.28 (95.30, 99.26) 95.55 (93.57, 97.53) 97.93 (95.95

2D-CNN (44) 97.74 (96.20, 99.28) 91.82 (89.28, 94.36) 94.44 (91.90

DBB, AdaBoos (45) 96.73 (95.74, 97.72) 97.31 (96.32, 98.32) 96.14 (95.15

ECG DETR (46) 97.25 (96.18, 98.32) 95.22 (94.15, 96.29) 96.29 (95.22

Proposed 98.37 (97.75, 98.99) 96.64 (96.02, 97.26) 97.20 (96.58

CI: 95% confidence intervals (Lower–Upper bound).

The bold values represent the specific performance values of our proposed method.

Frontiers in Cardiovascular Medicine 07
scores of 98.96% and 97.64%, and AUC values of 99.35% and

97.68%, respectively. The AUC value (47) provides an overall

measure of the model’s performance across all possible

classification thresholds, so we have included this indicator in

Tables 1, 2. The high AUC value of our proposed method

demonstrates its strong ability to distinguish between different

classes. In summary, our model exhibits superior performance

compared to commonly used arrhythmia classification models.

Despite promising results of previous studies in classifying

arrhythmias, long-distance dependency remains a major challenge

in precise modeling for arrhythmia classification. However, the

present study demonstrated improved performances of the model

by adopting an advanced model architecture that comprehensively

captured long-distance dependencies in ECG.

The confusion matrix is one of the most important methods of

evaluating the performance of a classifier, and the confusion matrix

for five types of arrhythmias for the test set is illustrated in Figure 3.

Figure 3 shows that the wavelet time-frequency map combined

with the Swin Transformer model has a better recognition effect on

different arrhythmia states, thus providing reliable support in

arrhythmia detection. This result further confirmed that our

model could achieve effective classification of arrhythmia and

demonstrated the potential of practical applications of this model

in the medical field.
3.3 Feature visualization

In this study, we used the t-distributed stochastic neighbor

embedding (T-SNE) method (48) to visualize the extracted
ed models for arrhythmia detection in inter-patient paradigm. (unit: %).

y (CI) Specificity (CI) F1-Score (CI) AUC (CI)
, 89.52) 91.77 (89.95, 93.59) 87.61 (85.79, 89.43) 90.58 (88.76, 92.48)

, 96.53) 89.49 (87.31, 91.67) 95.44 (93.26, 97.62) 93.14 (90.96, 95.32)

, 96.69) 96.49 (94.92, 98.06) 96.42 (94.85, 97.99) 95.82 (94.25, 97.39)

, 99.91) 93.06 (91.08, 95.04) 97.01 (95.03, 98.99) 94.37 (92.39, 96.35)

, 96.98) 98.23 (95.69, 98.77) 93.95 (91.41, 96.49) 95.25 (92.71, 97.79)

, 97.13) 96.56 (95.57, 97.55) 95.98 (94.99, 96.97) 94.55 (93.56, 95.54)

, 97.36) 98.14 (97.07, 99.21) 97.18 (96.11, 98.25) 97.38 (96.31, 98.45)

, 97.82) 97.12 (96.50, 97.74) 97.64 (97.02, 98.26) 97.68 (97.06, 98.30)
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FIGURE 3

Wavelet time-frequency diagram-swin transformer confusion
matrix.
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multidimensional ECG features in a two-dimensional space

(Figure 4). T-SNE is a powerful downscaling and visualization

tool for transforming dimensions. It achieves visualization mainly

through iterative optimization of the position of high-

dimensional data points in the low-dimensional space, to

generate closely spaced similar data points in the low-

dimensional space.

Figure 4A displays that the raw data of the MIT-BIH

arrhythmia dataset has a high degree of imbalance, and the data

are arranged haphazardly, with a large number of overlapping

signals in different categories, thus presenting a confusing state.

Whereas Figure 4B, as the processed ECG data, demonstrates
FIGURE 4

Feature visualization map. (A) Raw data of different categories; (B) features
model.
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good separability, with five distinct categories of arrhythmias,

achieving an effective output for the different categories of the

dataset. Therefore, these observations further indicate that the

Swin Transformer model may have a reliable classification ability

for different forms of ECG datasets.
3.4 Time complexity

CWT is a highly suitable method for multi-scale time-frequency

analysis of signals. CWT analyzes signal characteristics at various

scales through wavelet transform, offering detailed scale and

translation steps, thus enhancing signal processing detail. For each

scale, CWT traverses the entire signal and performs convolution

operations, with a time complexity of approximately O(N2), where

N is the signal length. While this method demands significant

computation, it yields a highly accurate representation of time and

frequency, rendering it particularly suitable for the detailed

demands of heart rate anomaly detection.

The Swin Transformer reduces complexity by constraining the

computation of the self-attention mechanism to local windows,

with a complexity of O(w2 × d) within each window, where w is

the size of the window and d is the feature dimension.

Additionally, through a hierarchical window merging strategy,

the Swin Transformer further decreases the global computational

complexity to nearly O[N × log(N)]. This structural optimization

makes the Swin Transformer efficient and highly expressive when

processing large-scale data.

In summary, our method combines the detailed time-frequency

analysis of CWT with the efficient data processing capabilities of

the Swin Transformer, resulting in more accurate and detailed

anomaly detection capabilities. We believe that, for heart rate

anomaly detection applications requiring high-precision

diagnosis, the associated computational cost is reasonable.
of different categories as output from the fully connected layers of the
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4 Discussion

4.1 Comparison with other feature
extraction

ECG feature extraction refers to extracting the key information

from the original ECG waveform. The high-dimensional time

series data are then transformed into more resolved, simple, and

representative low-dimensional features, which not only facilitate

the early detection and diagnosis of diseases but also help

observe the development of diseases and better understand the

disease mechanism. The most common method of ECG feature

extraction involves extracting either the time domain or

frequency domain of ECG for research purposes.

Time domain analysis of ECG mainly includes measurement

and analysis of RR intervals, P and QRS wave clusters, T wave

duration, ST segments, and QT intervals. Alotaiby et al. (14)

first pre-processed ECG data from the PTB database by

detrending and inversion. Then, to construct feature vectors,

the pre-processed ECG data were segmented and 11 statistical

features were extracted from each segment. The median and

mean values were used to describe the concentration trend of

the ECG. While the standard deviation, range, and quartiles

were utilized to measure the degree of dispersion of the ECG.

By analyzing the kurtosis and skewness of the ECG, a deeper

understanding of the amplitude distribution characteristics as

well as the symmetry of the signals, can be obtained to

facilitate further analysis of the ECG. Extracting ECG features

from the time domain aspect has a low computational cost

and is relatively simple to implement. However, the method

may result in loss of information, rendering the extracted

features non-representative (49).

ECG frequency domain analysis involves converting the ECG

data from the time domain to the frequency domain by

analyzing the ECG spectrum and frequency bands. Merri et al.

(15) developed a model to characterize and quantify

measurement errors introduced due to limited sampling

frequency. The model takes into account the RR interval

measurement errors caused by the ECG sampling frequency

limitation and calculates the first- and second-order statistics of

errors to evaluate the influence of the error on the heart rate

variability power spectrum. We found that the error power

spectrum had an additional high-pass filter-like term for the

heart rate variability power spectrum, revealing the importance

of an equilibrium between heart rate variability and the error

power spectrum. The limitation of the sampling frequency might

introduce errors to the extracted ECG features, suggesting that

extracting only the frequency domain features may not accurately

represent ECG.

In contrast, time-frequency domain analysis considers both the

time and frequency characteristics of the signal within an

integrated framework, which provides a more comprehensive

understanding of the dynamic nature of the signal and reflects

the better performance of the model in analyzing cardiac

arrhythmias. Among them, wavelet time-frequency diagram

belongs to one kind of time-frequency domain analysis with a
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wide range of applications in biomedicine, signal processing, and

image processing (50–53). Wavelet time-frequency diagram

primarily relies on the characteristics of the signal, the selection

of a suitable wavelet family as the basis function, and the

calculation of the wavelet coefficients. Then the time-frequency

diagram is constructed by calculating the amplitude or energy of

the coefficients. Given that the wavelet time-frequency map can

comprehensively reflect the time-frequency information of the

ECG, this study focused on wavelet time-frequency maps to

analyze the ECG features of arrhythmia.
4.2 Comparison with other classification
models

Recent literature investigating the ECG signals using deep

learning models is increasing. Kiranyaz et al. (54) proposed an

adaptive one-dimensional convolutional neural network

(1D-CNN) that could be trained for different patients to

achieve an effective detection of ventricular and

supraventricular ectopic beats. Based on the CNN, but 1D-

CNN has a fixed requirement on the length of the input

signal, which can easily lead to information loss. Jangra et al.

(55) proposed an updated CNN, called visual geometry group

network (VGGNet), to increase the depth and width of the

network. Techniques such as small-size convolutional kernel,

pooling layer, batch normalization layer, and dropout layer

were used to achieve the extraction of more complex features,

thereby enhancing the generalization of the model. The

VGGNet achieved better results for arrhythmia classification

than the CNN alone. Wang et al. (56) used a long short-term

memory (LSTM) model to capture temporal information in

ECG data to identify abnormalities in arrhythmias, but the

model may suffer from gradient vanishing or gradient

explosion when dealing with long sequences. Zhang et al. (29)

employed an RNN model to learn strong correlations between

consecutive ECG signal points and achieved effective

classification of ECG signals at different heart rates, but model

may be limited in their ability to model long-term

dependencies. Jiang et al. (50) proposed a deep neural network

model called Multi-Model Multi-Scale Network (MMnet) for

more comprehensive analysis of ECG data, but the complexity

of the model as well as the computational cost is high.

Gokhan et al. (57) utilized a multi-stage classification system,

incorporating ECG waveforms and second-order difference

plot (SODP) features, along with a deep belief network (DBN)

classifier, to successfully distinguish five types of cardiac

arrhythmias. In a separate study, they introduced additional

techniques such as wavelet packet decomposition, high-order

statistics, morphology, and discrete Fourier transform to

enhance feature extraction in a multi-class DBN framework

(58). The results demonstrated the method’s effectiveness in

distinguishing a wide range of heartbeats, albeit requiring

substantial data and computational training. While these

models have achieved promising results, they also have certain

limitations, which we summarize in Table 3.
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TABLE 3 Comparison of advantages and disadvantages of different
models.

Method Advantage Disadvantage
1D-CNN
(54)

Able to effectively extract local
features.

May lead to information loss.

VGGNet
(55)

Capable of extracting complex
features and exhibiting good
generalization ability.

High computational and training
costs.

LSTM (56) Captures long-term
dependencies in time series.

May encounter gradient vanishing
or exploding issues when dealing
with long sequences.

RNN (29) Captures dynamic feature
relationships in ECG signals.

Limited modeling ability for long-
term dependencies.

MMnet
(50)

Provides comprehensive
recording of ECG information.

High model complexity and
computational costs.

DBN (57,
58)

Effectively extracts features. Requires a large amount of data
and computational resources.

Chen et al. 10.3389/fcvm.2024.1401143
In common deep learning models, the chain rule is typically

used to perform gradient multiplication across multiple layers. If

the gradient was less than 1, the chain multiplication led to a

decrease in gradient; if the gradient was greater than 1, the chain

multiplication led to an increase in gradient. Either decrease or

increase in gradients can seriously affect the model’s

performance, especially in dealing with long-range dependencies.

The transformer delayed the process of gradient loss or

increment by implementing certain manipulations, such as

residual linking and layer normalization, to facilitate an

uninterrupted gradient transfer across the layers. Ding et al. (59)

used the Transformer-based ECG reduced-dimensional stacked

self-encoder model to effectively overcome the long-distance and

the long-term dependence problems as well as accurately limit

the parallelization during signal processing for detecting

arrhythmia. However, Transformer requires high computational

and memory costs when facing large-scale images. While Swin

Transformer (60), as an emerging deep learning model, has

certain advantages in image processing, adopting the windowed

self-attention mechanism to partition the image into multiple

windows for reducing the computational cost, improving the

semantic understanding of the image through global modeling,

enhancing the information exchange between the windows by

alternately executing the windowed self-attention and

translational windowed self-attention, and adapting to different

scales of feature extraction by adjusting the size of the window.

Swin Transformer combines the advantages of CNN and

Transformer in extracting local features and location information,

which takes into account both local and global feature extraction

capabilities to achieve a precise feature classification. Therefore,

in this study, Swin Transformer was chosen to detect arrhythmia,

aiming to accurately record ECG information and achieve rapid

diagnosis of CVD.
4.3 Limitations and future research lines

Although our study demonstrates advancement in developing

an arrhythmia detection model through precise classification of
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ECG data, ECG-related studies are very complex in the sense

that the model classifier can also be susceptible to multiple

interfering factors such as muscle movement and external noise.

There are still certain errors in our model, even after pre-

processing the ECG dataset. When applying the classification

model, individual differences between different clinical patients

should be carefully considered. Therefore, in future studies, we

will plan to analyze larger patient ECG datasets, pay more

attention to the robustness of the model, test its accuracy, and

make it closer to real-world clinical applications.
5 Conclusion

In this study, we propose a novel method for detecting

arrhythmias using wavelet time-frequency maps and the Swin

Transformer. This technology is particularly adept at capturing

subtle and transient changes in ECG signals, which are crucial

for early arrhythmia diagnosis, especially in asymptomatic

patients. Accurate diagnosis facilitates timely interventions by

healthcare professionals, enables the development of personalized

treatment plans, and ultimately improves patient prognosis and

quality of life, highlighting the effectiveness of the Swin

Transformer classification model in diagnosing arrhythmias. In

our approach, we first employed the wavelet algorithm to denoise

the data from the MIT-BIH Arrhythmia Database, thereby

enhancing the quality of the original signal. Subsequently, we

utilized wavelet time-frequency maps to extract time-frequency

features from the ECG signals, effectively representing their

distribution. Finally, we applied the Swin Transformer for

automatic ECG classification, achieving accuracy rates of 99.34%

in intra-patient case analysis and 98.37% in inter-patient

case analysis.

Traditional ECG analysis is often limited by time and

frequency resolution. However, our proposed new method

overcomes this limitation, which is crucial for understanding

the complexity of arrhythmias. By combining wavelet time-

frequency maps with the Swin Transformer, doctors can

analyze electrocardiogram data more accurately and quickly

detect arrhythmias, thereby improving diagnostic speed and

accuracy. The introduction of the Swin Transformer aims to

utilize its advanced self-attention mechanism, which

demonstrates excellent performance in processing ECG signals

with high spatiotemporal dynamics. Our method achieves high

accuracy by analyzing ECG data at multiple frequency and

time scales, a crucial aspect in clinical applications as it can

provide a more comprehensive diagnostic perspective than

traditional methods.
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