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Machine learning-based
prediction of mortality in acute
myocardial infarction with
cardiogenic shock
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1Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou,
Fujian, China, 2Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical
University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China

Background: In the ICU, patients with acute myocardial infarction and cardiogenic
shock (AMI-CS) often face high mortality rates, making timely and precise mortality
risk prediction crucial for clinical decision-making. Despite existing models,
machine learning algorithms hold the potential for improved predictive accuracy.
Methods: In this study, a predictive model was developed using the MIMIC-IV
database, with external validation performed on the eICU-CRD database. We
included ICU patients diagnosed with AMI-CS. Feature selection was conducted
using the Boruta algorithm, followed by the construction and comparison of
four machine learning models: Logistic Regression (LR), eXtreme Gradient
Boosting (XGBoost), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes
(GNB). Model performance was evaluated based on metrics such as AUC (Area
Under the Curve), accuracy, sensitivity, specificity, and so on. The SHAP method
was employed to visualize and interpret the importance of model features.
Finally, we constructed an online prediction model and conducted external
validation in the eICU-CRD database.
Results: In this study, a total of 570 and 391 patients with AMI-CS were included
from the MIMIC-IV and eICU-CRD databases, respectively. Among all machine
learning algorithms evaluated, LR exhibited the best performance with a validation
set AUC of 0.841(XGBoost: 0.835, AdaBoost: 0.839, GNB: 0.826). The model
incorporated five variables: prothrombin time, blood urea nitrogen, age, beta-
blockers and Angiotensin-Converting Enzyme Inhibitors or Angiotensin II Receptor
Blockers. SHAP plots are employed to visualize the importance of model features
and to interpret the results. An online prediction tool was developed, externally
validated with the eICU-CRD database, achieving an AUC of 0.755.
Conclusion: Employing the LR algorithm, we developed a predictive model for
assessing the mortality risk among AMI-CS patients in the ICU setting. Through
model predictions, this facilitates early detection of high-risk individuals, ensures
judicious allocation of healthcare resources.
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MIMIC-IV, eICU-CRD, acute myocardial infarction, cardiogenic shock, machine learning,
hospital mortality

1 Introduction

Acute myocardial infarction (AMI) with cardiogenic shock (CS) presents as a critical

syndrome marked by a rapid decline in cardiac pump function, leading to systemic

circulatory failure and multi-organ dysfunction (1). Despite a downward trend in the

incidence and mortality of AMI (2, 3), patients presenting with concurrent CS continue
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to have a dire prognosis (4). In patients with AMI, the incidence

of CS is approximately 5%–10% (5–7). This often leads to multi-

organ dysfunction, including acute kidney injury, respiratory

failure, and neurological complications (8). The 30-day mortality

rate for AMI-CS approaches 40%, with the one-year mortality

reaching up to 50%, indicating its exceedingly high lethality

(7, 9, 10). AMI-CS patients frequently require emergency coronary

interventions and mechanical support, increasing treatment

complexity and cost (7). Accurately predicting mortality risk in

AMI-CS patients is vital for guiding clinical decisions, enabling

personalized treatment, and optimizing resources (11).

Currently, predictive models for in-hospital mortality among

AMI-CS patients are primarily constructed using logistic

regression methods (12–14). Commonly used severity scoring

systems such as APACHE II, APACHE III, SAPS II, and SOFA

often exhibit limited predictive performance (13, 14). The IABP-

SHOCK II score and CardShock score model exhibit satisfactory

performance in predicting mortality among CS patients, yet there

are certain limitations regarding the size of the model

construction cohort and external validation (15, 16). With the

rapid progress of precision medicine, machine learning is

increasingly utilized in healthcare for outcome prediction,

diagnosis, medical image interpretation, and treatment (17–19).

Machine learning exhibits superior clinical prediction accuracy

and performance compared to traditional statistical methods,

with the added advantage of faster processing speeds (20). With

the advent of interpretable techniques like SHAP, users can gain

a better understanding of the predictive outcomes generated by

machine learning models (21). Currently, interpretable machine

learning (ML) models for predicting in-hospital mortality in

patients with AMI-CS have not been established.

Our study aims to utilize diverse machine learning algorithms

to construct predictive models for assessing in-hospital mortality

risk among AMI-CS patients. We identified machine learning

models with superior predictive performance and clinical

relevance, established an online predictive system, and conducted

external validation. Furthermore, we employed the SHAP

methodology to identify key clinical predictive factors and

interpret the model outcomes.
2 Materials and methods

2.1 Data sources

This study utilized patient data from two databases: the

Medical Information Mart for Intensive Care IV (MIMIC-IV)

database and the eICU Collaborative Research Database dataset

(eICU-CRD). MIMIC-IV (version 2.2) is an extensive critical

care database, encompassing detailed records of over 190,000

ICU patients from 2008 to 2019. This dataset aggregates a wealth

of clinical information, including patients’ demographic profiles,

laboratory test results, medication histories, and additional

comprehensive data sets (22). The eICU Collaborative Research

Database (eICU-CRD) pools detailed data from more than

200,000 patients in various U.S. intensive care units, collected
Frontiers in Cardiovascular Medicine 02
between 2014 and 2015, making it an essential tool for

advancing research in critical care medicine (23).
2.2 Study population

This study focuses on patients with AMI-CS, and obtains the

relevant patient data from two databases using ICD-9 and ICD-

10 codes. The exclusion criteria for the study population are as

follows: (1) under the age of 18, and (2) no ICU experience or

an ICU stay less than 24 h. For patients with multiple admissions

or a history of ICU stays, only the first ICU experience during

their first admission is included. In our research, cardiogenic

shock (CS) was defined based on several clinical parameters,

primarily including the following: ① Systolic blood pressure

(SBP) < 90 mmHg or the need for vasopressor support to

maintain SBP≥ 90 mmHg; ② Signs of reduced cardiac output

leading to poor organ perfusion (e.g., low urine output, cold and

clammy skin, altered mental status); ③ Exclusion of other causes

of shock, such as hypovolemic or septic shock.
2.3 Data extraction and preprocessing

In this study, we included ICU patients diagnosed with AMI-

CS, from whom we extracted the following data: (1)

Demographics: age, gender, height, and weight; (2) Vital Signs:

temperature (T), heart rate (HR), respiratory rate (R), systolic

blood pressure (SBP), diastolic blood pressure (DBP), mean

blood pressure (MBP), and peripheral oxygen saturation (SpO2);

(3) Laboratory Indicators: complete blood count, liver and kidney

function tests, electrolytes, lipid profile, blood gases, coagulation

profile, and cardiac enzymes; (4) Comorbidities: hypertension,

diabetes mellitus, hyperlipidemia, chronic obstructive pulmonary

disease (COPD), pneumonia, chronic kidney disease (CKD), and

atrial fibrillation (AF); (5) Surgical Indicators: coronary

angiography (CAG), percutaneous coronary intervention (PCI),

percutaneous transluminal coronary angioplasty (PTCA), and

intra-aortic balloon pump (IABP); (6) Medication data:

angiotensin-converting enzyme inhibitors/angiotensin II receptor

blockers (aceiorarb), beta Blockers, furosemide, spironolactone,

dobutamine, dopamine, epinephrine, milrinone, norepinephrine,

and phenylephrine; and (7) Other Indicators such as Mechanical

Ventilation and APACHE II score. The primary outcome was

28-day all-cause mortality, defined as death from any cause

within 28 days starting from admission to the ICU.

The raw data is refined through advanced calculations. This

involves computing Body Mass Index (BMI) from height and

weight, and assessing in-hospital mortality within 28 days using

hospitalization duration and survival status. In both the MIMIC-

IV and eICU-CRD datasets, we rigorously addressed missing

data by eliminating entries with missing rates exceeding 30%.

Subsequently, we employed the K-Nearest Neighbors (KNN)

imputation method to handle remaining missing values. KNN

imputation leverages sample similarity, utilizing observed values

from the K nearest samples to predict and fill missing values
frontiersin.org
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effectively. Exploration of variable relationships was conducted

using Spearman correlation coefficients, visually represented

through heatmaps. Multicollinearity among variables was

meticulously assessed using Variance Inflation Factor (VIF)

values. To optimize predictive performance and prevent

overfitting, we selectively pre-screened predictive variables with

high correlations or VIF exceeding 5.
2.4 Model construction and evaluation

After preprocessing, we initially included 38 predictive factors to

construct a model for predicting in-hospital mortality within 28 days

for patients with AMI-CS. To improve the stability of the predictive

model, all continuous variables were standardized, scaled to have a

mean distribution of 0 and a standard deviation of 1. The Boruta

algorithm was used for feature selection. Its principle is to

determine the most relevant features in the dataset based on the

Random Forest by comparing with randomly generated “shadow”

features. This method has the advantage of not requiring

assumptions, which enhances the robustness of the model and

simplifies the feature selection process (24). The XGBoost method

was employed to rank the selected features based on their

importance in a professional manner. The MIMIC dataset was

used to construct the model, employing a 10-fold cross-validation

method to generate training and validation sets. Four machine

learning models were established and validated, including Logistic

Regression (LR), eXtreme Gradient Boosting (XGBoost), Adaptive

Boosting (AdaBoost), and Gaussian Naive Bayes (GNB). Model

comparisons are conducted on the validation set. The Area Under

the Receiver Operating Characteristic (ROC) curve (AUC) is

utilized to assess the model’s discriminative ability, while

calibration curves and Brier scores are employed to evaluate model

accuracy. Additionally, Decision Curve Analysis (DCA) curves are

utilized to assess clinical utility. Additionally, confusion matrix

metrics were included for evaluation, such as accuracy, sensitivity,

specificity, positive predictive value, negative predictive value, and

F1 score. We also compared the predictive performance of our

model with commonly used severity scoring systems such as

SOFA, APSIII, SAPSII, and OASIS.
2.5 Model interpretation

The SHAP (SHapley Additive exPlanations) method is an

approach for explaining machine learning model predictions

(25). It leverages Shapley values to decompose the impact of each

feature on the model output, providing insights into the

prediction process. By considering interactions between features,

SHAP offers intuitive explanations for individual predictions,

aiding in the identification of key features and prediction sources.

In SHAP plots, red and blue points represent the SHAP values

of each sample, with red indicating higher feature values and

blue indicating lower feature values. Observing the distribution of

red and blue points helps understand the contribution and

direction of each feature towards the model output.
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2.6 Statistical analysis

Patients were categorized into two groups based on their 28-

day mortality status. Continuous variables were summarized

using means and standard deviations and compared using t-tests

(or Wilcoxon rank-sum tests). Categorical variables were

presented as percentages of the total and compared using chi-

square tests (or Fisher’s exact tests). A P-value < 0.05 was

considered statistically significant. Statistical analyses were

conducted using R version 4.2.3 and Python version 3.11.4.
3 Results

3.1 Baseline characteristics

According to the inclusion and exclusion criteria, a total of 961

patients with AMI-CS were enrolled in this study, including 570 in

the MIMIC-IV database and 391 in the eICU-CRD database. The

screening process is illustrated in Figure 1. In the MIMIC-IV

database, 215 cases of AMI-CS patients died within 28 days

(mortality rate: 37.7%), compared to 102 cases in the eICU-CRD

(mortality rate: 26.1%). Differences in baseline characteristics are

summarized in Table 1. In both the MIMIC-IV and eICU-CRD

databases, patients who died had higher levels of age, blood urea

nitrogen (BUN), prothrombin time (PT), creatinine (Cr),

international normalized ratio (INR), respiratory rate (R), and

APACHE III score, as well as lower levels of serum albumin

(ALB) and pH (p < 0.05). Furthermore, differences were observed

in the use of angiotensin-converting enzyme inhibitors/angiotensin

receptor blockers (aceiorarb), beta-blockers, spironolactone,

epinephrine, and ventilation (p < 0.05) between the survival and

mortality groups. However, there were no significant differences in

comorbidities such as hypertension, diabetes, and chronic

obstructive pulmonary disease (COPD) between the two groups.

We removed features with a missing rate exceeding 30%, as

shown in the Supplementary Figure S1. Additionally, we

illustrated the correlation heat map for features with correlations

exceeding 0.5, along with the results of features with VIF

exceeding 5, as depicted in the Supplementary Figure S2 and

Supplementary Figure S3. For features exhibiting high correlation

and VIF, we conducted screening before model construction and

excluded the following features: red blood Cell count (RBC),

coronary angiography (CAG), aspartate aminotransferase (AST),

mean blood pressure (MBP), diastolic blood pressure (DBP),

international normalized ratio (INR).
3.2 Feature selection

We employed the Boruta algorithm for feature selection and

generated a plot, shown in Figure 2. Boruta assesses feature

importance by creating shadow features (derived from shuffling

original feature values) and training them alongside original

features in a random forest. In the plot, green denotes important

features, enhancing model prediction and thus included. Red
frontiersin.org
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FIGURE 1

Patient selection flowchart.
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represents unimportant features excluded from the model,

while yellow signifies uncertain importance, necessitating

further investigation. Blue indicates shadow features used for

comparison but not in model training. Through Boruta selection,

we identified 13 features for inclusion: angiotensin-converting

enzyme inhibitors or angiotensin II receptor blockers (aceiorarb),

beta blockers (betablockers), furosemide, dobutamine,

norepinephrine, age, albumin (ALB), glucose (GLU), alanine

aminotransferase (ALT), blood urea nitrogen (BUN), creatinine

(Cr), prothrombin time (PT), and temperature (T), along with

two potential features: hemoglobin (Hb) and sodium (Na).

We utilized the XGBoost method to rank the importance of

features, as depicted in Supplementary Figure S4. The top 10

variables, ranked from highest to lowest importance, are:

“aceiorarb”, “betablockers”, “PT”, “age”, “BUN”, “GLU”, “T”,

“Na”, “dobutamine”, and “Hb”.
3.3 Model construction

This study employed four binary classification machine

learning algorithms: Logistic Regression (LR), eXtreme Gradient

Boosting (XGBoost), Adaptive Boosting (AdaBoost), and

Gaussian Naive Bayes (GNB). Utilizing the MIMIC database, we

employed a 10-fold cross-validation technique to divide the

dataset into training and validation subsets, and evaluated the

model performance on the validation subsets. Figure 3A and

Table 2 describe the performance of these predictive models,

with results indicating that the LR model exhibits better

discriminative ability, achieving an AUC of 0.841 in the test
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queue, compared to other ML models (AUC: XGBoost = 0.835;

AdaBoost = 0.839, GNB = 0.826). Furthermore, LR’s calibration

curve closely approximated the ideal line (Figure 3B), exhibiting

the lowest Brier score, indicative of superior calibration. Decision

Curve Analysis (DCA) illustrated in Figure 3C revealed LR’s

highest net benefit within the 0%–80% threshold range. As

shown in the PR curve (Figure 3D), the LR model maintains

high precision while capturing more positive samples,

demonstrating superior performance. Hence, LR was selected for

model development, incorporating five predictive variables:

betablockers, aceiorarb, PT, age, and BUN. Model parameter

optimization through hyperparameter tuning and grid search

yielded the following settings: tol (convergence criterion) =

0.0001, penalty (regularization type) = l2, max_iter (maximum

number of iterations) = 100, and C (regularization factor) = 10.0.
3.4 Model interpretation

We utilize the SHAP method to interpret the model results. For

global interpretation, the absolute Shapley values are averaged

across all instances in the data, yielding importance values for

each feature. The results are visualized as SHAP summary plots,

where the Y-axis represents the features, and the X-axis indicates

the magnitude of the feature’s impact on the outcome. Each

point represents a sample, with red points indicating high-risk

values and blue points indicating low-risk values. As shown in

SHAP summary plot (Figure 4A), the feature importance from

top to bottom is: aceiorarb, betablockers, age, BUN, PT. Patients

using aceiorarb (red points) have a reduced risk of death, while
frontiersin.org
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TABLE 1 The baseline characteristics of the MIMIC-IV and eICU-CRD databases, categorized by survival and death groups.

MIMIC-IV eICU-CRD

Survival (N = 355) Death (N= 215) p Survival (N= 289) Death (N= 102) p
Age 69.9 (13.1) 75.2 (12.1) <0.001 66.8 (13.4) 73.8 (10.6) <0.001

Gender 0.177 1.000

Female 132 (37.2%) 93 (43.3%) 108 (37.4%) 38 (37.3%)

Male 223 (62.8%) 122 (56.7%) 181 (62.6%) 64 (62.7%)

BMI 28.7 (5.75) 28.4 (6.81) 0.646 29.0 (6.87) 27.6 (6.77) 0.082

WBC 15.0 (8.53) 14.9 (7.36) 0.872 14.8 (12.0) 17.4 (12.1) 0.065

RBC 3.93 (0.84) 3.64 (0.80) <0.001 3.99 (0.79) 3.92 (0.76) 0.436

PLT 234 (101) 225 (105) 0.317 209 (83.2) 209 (100) 0.987

Hb 11.7 (2.44) 10.8 (2.26) <0.001 12.0 (2.28) 11.8 (2.29) 0.633

ALB 3.21 (0.47) 3.04 (0.54) <0.001 2.97 (0.51) 2.78 (0.58) 0.003

Na 137 (4.92) 138 (5.70) 0.341 137 (4.05) 138 (7.21) 0.578

K 4.42 (0.80) 4.51 (0.90) 0.222 4.17 (0.72) 4.30 (0.85) 0.157

Cl 103 (6.25) 102 (6.66) 0.104 104 (5.66) 104 (8.13) 0.601

Ca 8.30 (0.75) 8.32 (0.92) 0.797 8.21 (0.80) 8.17 (0.79) 0.629

GLU 190 (99.7) 221 (136) 0.004 183 (96.4) 199 (107) 0.175

TBIL 0.85 (0.82) 1.06 (1.12) 0.020 0.96 (0.97) 0.92 (0.59) 0.580

ALT 187 (514) 339 (823) 0.015 210 (956) 312 (619) 0.218

AST 357 (903) 574 (1,368) 0.039 406 (1,350) 573 (1,292) 0.269

BUN 31.0 (20.0) 44.4 (27.8) <0.001 27.6 (17.1) 38.1 (22.0) <0.001

Cr 1.59 (1.11) 2.22 (1.71) <0.001 1.61 (1.57) 2.16 (1.54) 0.002

PH 7.34 (0.10) 7.31 (0.12) 0.002 7.35 (0.09) 7.31 (0.13) 0.004

PO2 122 (101) 127 (105) 0.623 128 (84.2) 143 (105) 0.189

PCO2 40.8 (9.49) 41.1 (11.5) 0.685 40.3 (9.79) 40.2 (15.2) 0.964

PT 16.5 (9.54) 19.6 (11.2) 0.001 16.0 (6.36) 20.9 (12.8) <0.001

INR 1.52 (1.04) 1.81 (1.05) 0.002 1.42 (0.67) 1.89 (1.50) 0.003

PTT 58.6 (38.4) 65.6 (43.4) 0.053 46.7 (26.1) 52.6 (32.8) 0.099

T 36.7 (0.71) 35.9 (4.79) 0.015 36.6 (0.78) 36.4 (1.18) 0.149

HR 90.1 (20.0) 90.4 (20.7) 0.860 90.0 (19.6) 93.8 (20.4) 0.103

R 19.9 (6.00) 21.4 (7.07) 0.011 19.8 (5.80) 23.0 (7.83) <0.001

SBP 113 (20.7) 112 (22.0) 0.593 111 (23.4) 111 (24.5) 0.941

DBP 67.0 (18.1) 64.6 (17.7) 0.118 66.0 (17.1) 63.9 (16.6) 0.291

MBP 78.7 (17.4) 76.5 (17.0) 0.142 81.0 (17.4) 79.5 (17.8) 0.448

SpO2 96.0 (4.83) 95.0 (6.77) 0.070 96.6 (5.45) 95.7 (8.14) 0.325

Hypertension 0.070 0.676

0 98 (27.6%) 44 (20.5%) 245 (84.8%) 84 (82.4%)

1 257 (72.4%) 171 (79.5%) 44 (15.2%) 18 (17.6%)

diabetes 0.068 0.528

0 222 (62.5%) 117 (54.4%) 278 (96.2%) 100 (98.0%)

1 133 (37.5%) 98 (45.6%) 11 (3.81%) 2 (1.96%)

Hyperlipidemia 0.943 0.070

0 166 (46.8%) 102 (47.4%) 251 (86.9%) 96 (94.1%)

1 189 (53.2%) 113 (52.6%) 38 (13.1%) 6 (5.88%)

COPD 0.407 0.949

0 320 (90.1%) 199 (92.6%) 266 (92.0%) 93 (91.2%)

1 35 (9.86%) 16 (7.44%) 23 (7.96%) 9 (8.82%)

Pneumonia 0.228 0.121

0 276 (77.7%) 177 (82.3%) 250 (86.5%) 81 (79.4%)

1 79 (22.3%) 38 (17.7%) 39 (13.5%) 21 (20.6%)

CKD <0.001 0.141

0 258 (72.7%) 121 (56.3%) 254 (87.9%) 83 (81.4%)

1 97 (27.3%) 94 (43.7%) 35 (12.1%) 19 (18.6%)

AF 0.042 0.227

0 209 (58.9%) 107 (49.8%) 231 (79.9%) 75 (73.5%)

1 146 (41.1%) 108 (50.2%) 58 (20.1%) 27 (26.5%)

CAG 0.011 0.806

0 230 (64.8%) 162 (75.3%) 184 (63.7%) 67 (65.7%)

1 125 (35.2%) 53 (24.7%) 105 (36.3%) 35 (34.3%)

(Continued)
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TABLE 1 Continued

MIMIC-IV eICU-CRD

Survival (N = 355) Death (N= 215) p Survival (N= 289) Death (N= 102) p
PCIorPTCA 0.076 0.375

0 274 (77.2%) 180 (83.7%) 224 (77.5%) 84 (82.4%)

1 81 (22.8%) 35 (16.3%) 65 (22.5%) 18 (17.6%)

IABP 1.000 0.455

0 316 (89.0%) 191 (88.8%) 195 (67.5%) 64 (62.7%)

1 39 (11.0%) 24 (11.2%) 94 (32.5%) 38 (37.3%)

Aceiorarb <0.001 <0.001

0 154 (43.4%) 192 (89.3%) 242 (83.7%) 101 (99.0%)

1 201 (56.6%) 23 (10.7%) 47 (16.3%) 1 (0.98%)

Betablockers <0.001 0.046

0 37 (10.4%) 106 (49.3%) 182 (63.0%) 76 (74.5%)

1 318 (89.6%) 109 (50.7%) 107 (37.0%) 26 (25.5%)

Furosemide 0.046 0.001

0 323 (91.0%) 206 (95.8%) 149 (51.6%) 72 (70.6%)

1 32 (9.01%) 9 (4.19%) 140 (48.4%) 30 (29.4%)

Spironolactone 0.006 0.025

0 44 (12.4%) 46 (21.4%) 276 (95.5%) 102 (100%)

1 311 (87.6%) 169 (78.6%) 13 (4.50%) 0 (0.00%)

Dobutamine 0.201 0.083

0 257 (72.4%) 144 (67.0%) 240 (83.0%) 76 (74.5%)

1 98 (27.6%) 71 (33.0%) 49 (17.0%) 26 (25.5%)

Dopamine <0.001 0.116

0 289 (81.4%) 144 (67.0%) 230 (79.6%) 89 (87.3%)

1 66 (18.6%) 71 (33.0%) 59 (20.4%) 13 (12.7%)

Epinephrine 0.015 0.007

0 294 (82.8%) 159 (74.0%) 261 (90.3%) 81 (79.4%)

1 61 (17.2%) 56 (26.0%) 28 (9.69%) 21 (20.6%)

Milrinone <0.001 0.067

0 166 (46.8%) 46 (21.4%) 262 (90.7%) 85 (83.3%)

1 189 (53.2%) 169 (78.6%) 27 (9.34%) 17 (16.7%)

Norepinephrine 0.271 0.001

0 253 (71.3%) 143 (66.5%) 179 (61.9%) 43 (42.2%)

1 102 (28.7%) 72 (33.5%) 110(38.1%) 59(57.8%)

Phenylephrine 0.789 0.002

0 308(86.8%) 189(87.9%) 248(85.8%) 73(71.6%)

1 47(13.2%) 26(12.1%) 41(14.2%) 29(28.4%)

Ventilation 0.002 <0.001

0 20(5.63%) 29(13.5%) 144(49.8%) 28(27.5%)

1 335(94.4%) 186(86.5%) 145(50.2%) 74(72.5%)

BMI, body mass index; WBC, white blood cell count; PLT, platelet count; Hb, hemoglobin; ALB, albumin; Na, sodium; K, potassium; Ca, calcium; GLU, glucose; TBIL, total bilirubin; ALT,

alanine aminotransferase; BUN, blood urea nitrogen; Cr, creatinine; PO2, partial pressure of oxygen; PCO2, partial pressure of carbon dioxide; PT, prothrombin time; PTT, partial
thromboplastin time; T, temperature; HR, heart rate; R, respiratory rate; SBP, systolic blood pressure; SpO2, oxygen saturation; COPD, chronic obstructive pulmonary disease; CKD,

chronic kidney disease; AF, atrial fibrillation; PCIorPTCA, percutaneous coronary intervention or percutaneous transluminal coronary angioplasty; IABP, intra-aortic balloon pump;

aceiorarb, angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers; Betablocker, beta-blockers.
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patients not using betablockers (blue points) have an increased risk

of death. Similarly, higher values of age, BUN, and PT are

associated with higher risk of death.

For local interpretation, each observation has its own set of

Shapley values, which can be utilized to explain the contribution

of each sample and feature to the prediction. The results are

visualized as SHAP force plots, where each Shapley value is

represented as an arrow that can either push the prediction up

(positive value) or down (negative value). Due to the

standardization of numerical variables, the age, BUN, and PT

values in the plot do not represent the actual values of

individuals. As depicted in Figure 4B for patient 1, as age
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increases, the predicted mortality risk rises, while a decrease in

BUN value corresponds to a decrease in predicted mortality risk.

As depicted in Figure 4C for patient 2, a decrease in age and the

use of ACEI or ARB drugs are associated with a reduction in

predicted mortality risk.
3.5 Model deployment and external
validation

Based on the LR model, which exhibited the best performance,

we established an online prediction model. As shown in Figure 5,
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FIGURE 2

Feature selection analyzed by boruta algorithm.
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we present the survival prediction for actual patients using the

online website. The patient is 64 years old, with PT of 17s, BUN

of 22.08 mg/dl, has used ACEI/ARB, and has used beta-blockers.

The probability of the occurrence of the disease is: 12.0% (the

threshold of the occurrence of the disease is: 45.7%). To facilitate

understanding, we randomly selected four survivors and four

deceased patients from the MIMIC-IV and eICU databases in the

past. We had used the online prediction model to estimate their

mortality risk. According to the LR model, when the predicted

mortality risk was less than 50%, the patient was inferred to have

survived beyond 28 days, and when it was greater than 50%, the

patient was inferred to have died within 28 days. The final

results, which were presented in Supplementary Table S3,

demonstrated a 100% accuracy in predicting the outcomes for

these eight patients. We extracted 391 cases of AMI-CS patients

from the eICU-CRD database as an external validation dataset.

The data characteristics are outlined in Table 2. The 28-day

in-hospital mortality rate in the eICU-CRD database was 26.1%,

lower than that in the MIMIC database. Prior to external

validation, we processed the eICU-CRD data using the same

methods as the MIMIC data. Due to the substantial imbalance

between survival and death cases, we applied Synthetic Minority

Over-sampling Technique (SMOTE) to balance the dataset. The

results of external validation revealed an AUC of 0.755 and a

Brier score of 0.229. Other metrics for external validation, such
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as accuracy, sensitivity, etc., are available in Table 2. Additionally,

an analysis of commonly used severity scores using the

MIMIC-IV dataset revealed model AUC values, including SOFA

(AUC = 0.620), APSIII (AUC = 0.710), SAPSII (AUC = 0.660),

and OASIS (AUC = 0.640).
4 Discussion

In this paper, we introduce for the first time an interpretable

machine learning algorithm for predicting in-hospital mortality in

patients with AMI-CS. This novel model outperforms traditional

prediction tools by effectively managing complex datasets and

identifying intricate nonlinear relationships. It demonstrates

superior accuracy in differentiating between survival and death

outcomes of patients, and shows commendable performance in

terms of calibration and clinical utility. The high interpretability of

the model facilitates ease of understanding and application of its

results. Moreover, the model utilizes a minimal number of easily

accessible predictive variables, which enhances its practicality in

clinical settings.

Several retrospective studies have utilized critical illness scoring

systems, including APACHE II, APACHE III, SAPS II, and SOFA,

to predict the in-hospital mortality risk of patients with AMI-CS

(13, 14). However, the discriminative ability of these models only
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FIGURE 3

Summary plot of machine learning performance evaluation. (A) ROC curve, (B) calibration plot, (C) DCA curve, (D) PR curve.

TABLE 2 Model performance compariso: AUC, accuracy, sensitivity, specificity; PPV, NPV, F1 score, brier score.

Models AUC Accuracy Sensitivity Specificity PPV NPV F1 Score Brierscore

Validation set
XGBoost 0.835 0.767 0.769 0.787 0.687 0.821 0.725 0.170

LR 0.841 0.750 0.799 0.760 0.664 0.816 0.722 0.159

AdaBoost 0.839 0.744 0.804 0.765 0.603 0.864 0.686 0.213

GNB 0.826 0.748 0.805 0.757 0.641 0.842 0.711 0.185

External validation
LR 0.755 0.630 0.827 0.623 0.580 0.855 0.681 0.229

LR, logistic regression; XGBoost, eXtreme gradient boosting; AdaBoost, adaptive boosting; GNB, gaussian naive bayes; AUC, area under the curve; PPV, positive predictive value; NPV, negative

predictive value.
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FIGURE 4

SHAP summary plot and SHAP force plot, (A) SHAP summary plot, (B) SHAP force plots for patient 1, (C) SHAP force plots for patient 2.
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falls within an AUC range of 0.67 to 0.79. Additionally, the models

have included a sample size of fewer than 100 individuals and lack

validation cohorts. The IABP-SHOCK II scoring system, derived

from multicenter, randomized, controlled trial data, is designed

to assess the short-term mortality risk in patients with AMI-CS

(16). It effectively categorizes patients into low, moderate, and

high-risk groups. However, the model is based on a limited

cohort study (n = 480) and has only been validated in two small

sample sizes of 137 and 98 patients, respectively. Consequently,

this model offers a valuable tool for physicians to more precisely

evaluate the risk profiles of AMI-CS patients and implement

timely interventions to improve their prognoses. CardShock

scoring model exhibits good discriminative ability in predicting

short-term mortality risk in CS (AUC = 0.85). However, in

external cohorts, the AUC of the CardShock scoring model drops

to 0.71, suggesting potential overfitting (26). Our model

outperforms common critical illness scoring systems.
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Additionally, with a larger cohort of AMI-CS patients, it

demonstrates strong performance in both training and validation

sets and shows good generalization ability in external validation.

Our study shows that the use of ACEI/ARB and beta-blockers

are significant prognostic factors for mortality in AMI-CS patients.

However, these results should be interpreted with caution, as they

do not imply a causal relationship between the use of these

medications and the prognosis of AMI-CS patients. It is likely that

patients who were able to use these medications were in better

overall condition, which could explain their better outcomes. These

medications are identified as the two most important predictive

factors. ACEI/ARB can dilate blood vessels by inhibiting the renin-

angiotensin system, reducing cardiac load, and improving

myocardial remodeling. Potential mechanisms may involve early

inhibition of neurohormonal activation and reduction in infarct

size, as well as an increase in regional wall motion and collateral

coronary flow (27, 28). Beta-blockers reduce myocardial oxygen
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FIGURE 5

An online prediction model based on LR algorithm.
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demand by attenuating sympathetic nervous system activity, leading

to improved cardiac function and prognosis by suppressing

ventricular arrhythmias (29). A retrospective study of 4,478 AMI

patients with SBP < 100 mmHg showed that early use of ACEI/

ARB significantly reduced MACE occurrence compared to non-

users (1.67% vs. 3.66%) (30). The timing of initiating ACEIs/ARBs

and beta-blockers in AMI patients with low blood pressure is

controversial in clinical practice due to their hypotensive effects.

The expert consensus recommends that in coronary heart disease

patients, if hypotension (systolic blood pressure <90mmHg) occurs

during ACEI treatment and the patient is asymptomatic, ACEI

should be continued (31). Beta-blockers are recommended as one

of the first-line medications for improving mortality rates in

patients with chronic heart failure (32, 33). As is well known, beta-

blockers are contraindicated in overt heart failure or low-output

states due to their negative inotropic effects. Research has indicated

that reducing the dosage or discontinuing beta-blockers in heart

failure patients previously treated with them may lead to adverse

outcomes (34). However, a meta-analysis found that although

beta-blockers reduce recurrent myocardial infarction, they increase

the risk of cardiogenic shock, without providing a mortality benefit

in treating AMI (35). Similarly, a large randomized controlled trial

indicated that early use of beta-blockers in acute myocardial
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infarction reduces the risk of recurrent infarction and ventricular

fibrillation but increases the risk of cardiogenic shock (36). Hence,

the general prudent approach is to initiate beta-blocker therapy in

the hospital setting only after achieving hemodynamic stability

following myocardial infarction.

Our study findings indicate that older age is associated with a

higher predicted risk of mortality, consistent with the CardShock

risk score (26). As age increases, there’s a decline in cardiac and

organ function. Elderly individuals are more likely to have multiple

chronic diseases, reducing their ability to cope with and recover

from cardiogenic shock, increasing mortality risk. Cinar et al. found

that age remains an important risk factor for mortality in AMI-CS

patients (37). Ming-Lung et al.’s study finds a significant positive

correlation between age and risk, showing that STEMI patients

aged 85 and above have a 3.42 times higher short-term risk

compared to those under 55 years old (38). The study suggests that

higher PT levels may be associated with poorer risk prediction.

Similarly, in mortality prediction models for acute myocardial

infarction, PT was observed as one of the top 8 predictors for

predicting death in AMI patients (39). Prolonged PT in these

patients may indicate a higher risk of mortality as it reflects

disruptions in the coagulation system, possibly leading to severe

complications. Additionally, it may serve as a marker of systemic
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illness severity and multi-organ dysfunction, correlating with elevated

mortality risk.

Our study indicates that higher BUN levels are associated with

an increased risk of mortality in AMI-CS patients, while creatinine

clearance rate is not a significant predictor. Yuan et al.’s study of

218 AMI-CS patients showed that higher admission BUN levels,

particularly those exceeding 8.95 mmol/L, were independently

associated with a greater risk of 30-day mortality (40). Some

research suggests that kidney function plays a crucial role in

predicting the prognosis of AMI-CS patients. In a subgroup

analysis of the IABP-SHOCK II trial, serum creatinine levels were

found to be a significant independent predictor of one-year

mortality (41). In the TRIUMPH multicenter trial, higher

creatinine clearance rates were associated with lower 30-day

mortality in univariate analysis (odds ratio 0.77) (42). In heart

failure patients, BUN has been observed to have the highest

predictive efficacy for predicting 30-day mortality among BUN,

creatinine, BUN-to-creatinine ratio, and GFR (43–45). Creatinine

is filtered in the renal glomeruli and not reabsorbed, while urea is

reabsorbed in the renal tubules. A decrease in urine flow in AMI-

CS patients can lead to increased urea reabsorption, resulting in

higher BUN levels, which may be a more sensitive indicator.

This study has several limitations. Firstly, being a retrospective

study, despite conducting internal and external validation using

two databases, it’s challenging to completely avoid selection bias.

Further multicenter and large-scale clinical studies are warranted.

Secondly, the clinical information collected is limited. Future

research should delve into and integrate imaging modalities such

as echocardiography, lung CT, and coronary imaging results to

enhance prediction accuracy. Lastly, our data originates from ICU

patients, potentially differing from those in other cardiovascular

units. Therefore, additional validation is necessary to ascertain its

applicability to other cardiovascular units.
5 Conclusion

This article uses machine learning algorithms to construct

models that can accurately predict the in-hospital mortality risk

of patients with AMI-CS in the ICU. The LR algorithm

demonstrates the best predictive performance, clear result

interpretation, and the predictive variables are easily accessible,

offering valuable guidance for clinical practice.
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