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Multidirectional myocardial
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tracking analysis
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Li Zhang1,2,3, Mingxing Xie1,2,3* and Jing Wang1,2,3*
1Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Clinical Research Center for Medical Imaging in Hubei
Province, Wuhan, China, 3Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
Purpose: The impact of aortic stenosis (AS) severity on multidirectional myocardial
function in patients with bicuspid aortic valve (BAV) remains unclear, despite the
recognized presence of early left ventricular longitudinal myocardial dysfunction
in BAV patients with normal valve function. The aim of the study was to evaluate
the multidirectional myocardial functions of BAV patients.
Methods: A total of 86 BAV patients (age 46.71 ± 13.62 years, 69.4% men) with
normally functioning (BAV-nf), mild AS, moderate AS, and severe AS with
preserved left ventricular ejection fraction (LVEF≥ 52%) were included. 30
healthy volunteers were recruited as the control group. Multidirectional strain
and volume analysis were performed by three-dimensional speckle tracking
echocardiography(3D-STE).
Results: Global longitudinal strain (GLS), and global radial strain (GRS) were
reduced in BAV-nf patients compared with the controls. With each categorical
of AS severity from BAV-nf to severe AS, there was an associated progressive
impairment of GLS and GRS (all P < 0.001). Global circumferential strain (GCS)
did not show a significant decrease from BAV-nf to mild AS but began to
decrease from moderate AS. Multiple linear regressions indicated that indexed
aortic valve area (AVA/BSA), as a measure of AS severity, was an independent
determinant of GLS, GCS and GRS.
Conclusions: Left ventricular longitudinal myocardial reduction is observed even
in patients with well-functioning bicuspid aortic valves. With each categorical
increase in the grade of AS severity from normally functioning to severe aortic
stenosis, there was an associated progressive impairment of longitudinal
myocardial function. Furthermore, circumferential myocardial function was
starting damaged from moderate AS. AVA/BSA was independently associated
with multidirectional myocardial function injuries.
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1 Introduction

BAV is the most common congenital cardiac malformation

commonly associated with aortic valve disease1. Aortic stenosis

(AS) is one of the most common valve complications in patients

with BAV, and 12%–37% of BAV patients had or developed

moderate to severe AS (1, 2). AS is known to significantly increase

left ventricular afterload. In the presence of normal myocardial

contractility, the number and diameter of myocardial fibers in the

left ventricle will increase to improve the contractility of the left

ventricle. As the disease progresses, heart failure occurs when the

contractility is unable to balance the afterload. Actually,

myocardial dysfunction and ventricular remodeling are widely

demonstrated in BAV patients (3, 4). In individuals with well-

functioning bicuspid aortic valves (BAV), including children, there

is already evidence of reduced left ventricular longitudinal systolic

function (5, 6). However, limited research has been conducted on

the impact of aortic stenosis progression on multidirectional

myocardial function in BAV patients.

Left ventricular systolic function serves as a crucial prognostic

factor and an essential reference for clinical decision-making in

patients with AS (7, 8). Similar to LVEF (9, 10), assessing

myocardial systolic function accurately through a single strain

measurement remains challenging (4). The clinical advantage of

three-dimensional speckle tracking echocardiography (3D-STE)

lies in its heightened sensitivity towards subtle functional

changes (11, 12). Multidirectional analyses of longitudinal,

circumferential, and radial myocardial strains can provide

insights into early changes in myocardial function with

increasing severity of aortic stenosis. The aims of this study were

(i) to describe changes in multidirectional myocardial functions

with increasing AS severity and (ii) to identify independent

determinants of these functions.
2 Methods

2.1 Subjects

In this study, we initially enrolled 215 BAV patients with aortic

stenosis. Following strict adherence to predefined inclusion and

exclusion criteria, a total of 86 BAV patients without more than

mild aortic regurgitation were ultimately included. All participants

underwent comprehensive medical history review, physical

examination, and transthoracic echocardiography at Wuhan Union

Medical College Hospital between September 2018 and January

2021.The clinical and demographic characteristics were collected

from electronic medical records or questionnaire surveys. Thirty

healthy volunteers were enrolled as controls.

The inclusion criteria were as follows: (1) patients aged

>18 years; (2) patients with BAV and aortic stenosis; (3) and

patients had left ventricular ejection fraction (LVEF)≥ 52% (13).

The exclusion criteria were as follows: (1) moderate or severe

co-existing aortic regurgitation (AR); (2) greater than moderate

mitral/tricuspid regurgitation; (3) history of myocardial infarction;

(4) hematologic and rheumatology diagnoses; (5) cardiomyopathy
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and Marfan Syndrome; (6) presence of atrial fibrillation; (7) poor

image quality. Following strict adherence to these inclusion and

exclusion criteria, the final population of BAV patients comprised

86 individuals (Supplementary Figure S1).

The echocardiographic subjects were divided into five groups,

including controls, bicuspid aortic valve (BAV) with normally

functioning valves, mild aortic stenosis (AS), moderate AS, and

severe AS. The study design, data collection methods, and

analysis procedures were approved by the Ethics Committee of

Tongji Medical College, Huazhong University of Science and

Technology (S900). Informed consent forms were signed by all

participants, and all data were anonymized.
2.2 Conventional 2D echocardiography

A standard transthoracic echocardiography (TTE) examination

was performed using the commercially available ultrasound

equipment Philips EPIC 7C (Philips Medical Systems, Andover,

MA, USA), following the recommendations of the American

Society of Echocardiography guidelines (13). The examination

included appropriate two-dimensional (2D) and Doppler imaging

techniques to assess left ventricular (LV) structure, systolic and

diastolic function. Left ventricular ejection fraction (LVEF) was

calculated using Simpson’s biplane method. Mitral inflow

velocities were obtained by pulsed-wave Doppler in the apical

four chamber view at early (E) and late (A) diastole stages to

determine the E/A ratio. Tissue Doppler images were used to

measure the average early diastolic peak velocity of both septal

and lateral walls (e′). LV mass was indexed to body surface area.

The severity of aortic stenosis was classified based on the aortic

peak velocity (AV), indexed aortic valve area, and mean pressure

gradient (MPG) according to the guidelines recommended by the

European Association of Echocardiography and American Society

of Echocardiography (14). Aortic valve area (AVA) was

calculated using the continuity equation, which relies on velocity

time integrals obtained from both the aorta and left ventricular

outflow tract. MPG was determined using the modified Bernoulli

equation. Aortic valve area was adjusted for body surface area

(AVA/BSA). Bicuspid aortic valve patients with normally

functioning valves (BAV-nf) were defined as those with AV <

2.0 m/s, MPG < 16 mmHg (15), and absence of visual signals

indicating AR in multiple views.
2.3 Three-Dimensional speckle tracking
echocardiography (3D-STE) analysis

The 3D echocardiographic imaging was performed using a

Philips X5-1 transducer (Philips Medical, Andover, Massachusetts,

USA) in the apical four-chamber view. Particular attention should

be paid to ensuring complete inclusion of the entire left

ventricular cavity within the pyramidal dataset. Three adjacent

subvolumes were captured over three consecutive cardiac cycles

under a full-volume acquisition pattern. If necessary, subjects were

instructed to hold their breath to minimize artifacts between
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subvolumes. The frame rate for 3D image acquisition ranged from 20

to 33 frames per second for patients and from 20 to 36 frames per

second for controls. All images were digitally archived at the

acquisition frame rate for subsequent offline analysis.

The 3D images were acquired using a commercially available

software (4D LV-Analysis 3.1, TomTec Imaging Systems,

Unterschleissheim, Germany). Following manual assignment of

endocardial contours in each of the three apical views, the

software automatically tracked 3D LV endocardial surface over

time in 3D space throughout the cardiac cycles. The 3D global

longitudinal strain (GLS), global circumferential strain (GCS) and

global radial strain (GRS) were provided as weighted averages of

the regional values of the 16 myocardial segments. The LV end-

diastolic volume (LVEDV), LV end-systolic volume (LVESV), 3D

left ventricular ejection fraction (3D LVEF), 3D LV mass, twist

and torsion, LVEDVI (ml/m2 = LVEDV/BSA), LVESVI (ml/m2 =

LVESV/BSA) were also obtained by 3D echocardiography.
TABLE 1 Clinical and echocardiographic data of total BAV patients.
2.4 Statistically analysis

All continuous variables are presented as mean ± standard

deviation. Shapiro–Wilk test confirmed normal distribution of

echocardiographic indices. In this study, we expressed categorical

variables as frequencies and percentages and compared them

using chi-square or exact Fisher tests. The Student’s t-test was

employed for comparing two groups of continuous data. One-

way analysis of variance (ANOVA) was used to evaluate

differences in continuous variables across subgroups of patients.

post hoc analysis using the Bonferroni correction was used when

the ANOVA P-value was less than 0.05. Univariate and multiple

linear regression analyses identified independent demographic,

clinical, and echocardiographic parameters associated with

longitudinal, circumferential, and radial strain while avoiding

multicollinearity between variables (tolerance set at <0.2). Due to

collinearity among indicators of AS severity (MGP, AV, AVA/

BSA), MGP and AV were removed from multiple linear

regression analysis leaving only AVA/BSA included. Statistical

analysis utilized SPSS version 19 (IBM SPSS, Chicago IL USA).
Variable Total BAV
Number 86

Age, year 46.71 ± 13.62

Sex, male (%) 59 (68.6)

Heart rate, bpm 72.69 ± 11.08

BSA, cm/m2 1.73 ± 0.17

SBP, mmHg 124.57 ± 16.78

DBP, mmHg 79.03 ± 12.65
2.5 Repeatability analysis

Intra- and inter-observer analysis was performed to assess

the values of GLS, GRS, GCS, LVEDV, and LVESV derived from

3D-STE. A total of 20 cases were randomly selected for

repeatability analysis.

Hypertension, n (%) 27 (31.4)

Dyslipidaemia, n (%) 12 (13.9)

Smoking, n (%) 27 (31.4)

Normal functioning, n (%) 24 (27.9)

Aortic stenosis, n (%) 62 (72)

Mild 21 (24)

Moderate 20 (23.2)

Severe 21 (24)

LVEF (%) 63.31 ± 4.13

Data were n (%), mean± SD. BSA, body surface area; SBP, systolic blood pressure;

DBP, diastolic blood pressure.
3 Results

3.1 Demographic characteristics

The clinical characteristics of the total BAV patients,

including cardiovascular risk factors, are summarized in

Table 1. A total of 86 BAV patients were included, with a mean

LVEF of 63.31 ± 4.13%.
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3.2 Clinical characteristics and left
ventricular function in BAV-nf patients

Table 2 outlines the clinical characteristics and

echocardiographic data of BAV-nf patients and controls. BAV-nf

patients exhibited higher heart rate and SBP compared to

controls (P < 0.05). There were no significant differences in

clinical features between the control group and the BAV-nf

group, such as age, sex, BSA, and cardiovascular risk factors

distribution (P > 0.05). The E/A ratio and average e′, as

indicators of left ventricular diastolic function, were significantly

lower in BAV-nf patients (P < 0.05). The AVA/BSA, MPG and

AV were significantly changed in BAV-nf patients (P < 0.05).

Compared to controls, the left ventricular volume indices

(LVEDV, LVESV) were larger in BAV-nf patients (P < 0.05).

Although there was a tendency for an increase in indexed LV

mass among BAV-nf patients, this trend was not statistically

significant (P > 0.05). In comparison to controls, both GLS

(absolute value) and GRS were significantly decreased in BAV-nf

patients (P < 0.05), while there was no significant difference

observed in GCS.
3.3 Changes of left ventricular function with
increasing aortic stenosis severity

Table 3 outlines the clinical characteristics and left ventricular

function of BAV according to severity of AS (BAV-nf, mild AS,

moderate AS, severe AS). Patients with moderate and severe AS

were older than those with mild AS and BAV-nf (P < 0.001). The

distribution of males with moderate AS was lower than that of

other groups (P < 0.001). BSA in the severe AS was smaller than

that in mild AS (P = 0.007). The incidence of hypertension

history in BAV patients with AS was significantly higher than

that in patients without AS (P = 0.03). There were no significant
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TABLE 2 Comparisons between BAV patients with normally function
and controls.

Variable Control
(n = 30)

BAV-nf
(n= 24)

P value

Demographic characteristics
Age, year 40.10 ± 13.37 37.95 ± 11.97 0.58

Sex, male (%) 18 (60) 20 (83.3) 0.07

Heart rate, bpm 70.50 ± 9.87 78.33 ± 13.29 0.02

BSA, m2 1.72 ± 0.18 1.77 ± 0.18 0.31

SBP, mmHg 117.00 ± 9.42 124.08 ± 15.77 0.04

DBP, mmHg 74.83 ± 8.00 80.21 ± 12.99 0.07

Hypertension, n (%) 3 (10) 3 (12.5) –

Dyslipidaemia, n (%) 0 3 (12.5) –

Smoking, n (%) 8 (26.7) 7 (29.2) 0.19

Conventional echocardiographic characteristics
E-wave, cm/s 0.89 ± 0.24 0.85 ± 0.18 0.41

A-wave, cm/s 0.66 ± 0.21 0.75 ± 0.24 0.18

E/A ratio 1.43 ± 0.47 1.18 ± 0.24 0.03

Average e′, cm/s 0.12 ± 0.02 0.11 ± 0.02 0.01

E/e′ ratio 7.63 ± 2.14 8.36 ± 2.73 0.27

AVA/BSA, cm2/m2 1.65 ± 0.37 1.39 ± 0.31 0.009

MPG, mmHg 3.38 ± 0.93 4.63 ± 1.98 0.003

AV, m/s 1.22 ± 0.15 1.39 ± 0.31 0.01

LV volume and multidirectional myocardial function
LVEDV, ml 83.25 ± 11.14 95.70 ± 12.31 0.002

LVESV, ml 24.79 ± 5.19 29.28 ± 5.23 0.005

LVEF, % 69.89 ± 5.11 69.34 ± 5.37 0.08

Indexed LV mass, g/m2 69.76 ± 8.67 73.38 ± 8.71 0.15

Global longitudinal strain, % −25.91 ± 2.36 −20.53 ± 1.12 <0.001

Global circumferential strain, % −38.36 ± 1.32 −37.12 ± 2.23 0.62

Global radial strain, % 51.41 ± 2.11 49.26 ± 3.27 0.001

Twist, ° 11.32 ± 5.29 11.15 ± 5.11 0.93

Torsion, ° 1.54 ± 0.66 1.53 ± 0.92 0.98

Data were n (%), mean ± SD. BAV-nf, bicuspid aortic valve with normally functioning;

BSA, body surface area; SBP, systolic blood pressure; DBP, diastolic blood pressure;

E-wave, peak early diastolic velocity of atrial filling; A-wave, peak late diastolic

velocity of atrial filling; E/A ratio, ratio of early-to-late diastolic mitral peak;

Average e’, the average of TDI-derived early diastolic peak velocity of the septal

and lateral wall; E/e′= ratio of E velocity to e’; MPG, mean pressure gradient; AV,

aortic peak velocity; LVEDV, left ventricular end-diastolic volume; LVESV, left

ventricular end-systolic volume; LVEF, left ventricular ejection fraction. P value

less than 0.05 was considered statistically significant.
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differences in heart rate, SBP, DBP, or smoking among the groups

(P > 0.05). The average e′ and 3D LVEF decreased in patients with

moderate and severe AS compared to those with mild AS or

without AS (P < 0.001). No significant change in LVEDV was

observed with increasing severity of AS (P > 0.001). Patients with

moderate and severe AS showed an increase in LVESV compared

to those with mild AS or without AS (P < 0.001).

The one-way ANOVA revealed a significant decrease in GLS

and GRS as the severity of AS increased (P < 0.001). post hoc

analysis demonstrated that there was a decrease in GLS and GRS

with each categorical increase in the grade of AS severity, from

BAV-nf to severe AS (P < 0.001). One-way ANOVA showed the

GCS declined with increasing AS severity (P < 0.001). Post hoc

analysis showed that there were no significant differences in GCS

between BAV-nf and mild AS, and between moderate AS and

severe AS. There were no significant differences in LV twist and

torsion with increasing AS severity (P > 0.05). Figures 1–3
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demonstrate a progressive impairment in GLS (absolute value),

GCS (absolute value), and GRS with increasing AS severity.
3.4 Independent factors associated with
myocardial function

Table 4 summarizes the independent factors associated with

GLS, GCS, GRS in total BAV patients. Factors that may affect

myocardial strains were included in the univariate regression

analysis. The AV and MPG were not included in the multivariate

regression analysis models due to significant collinearity with

SBP and AVA/BSA in our study. Results showed that the

AVA/BSA was independently associated with an impaired GLS

(β =−9.45, P < 0.001), GCS (β =−8.54, P < 0.001), GRS (β = 12.01,

P < 0.001), even after correcting for age, sex, heart rate, BSA, SBP,

DBP, hypertension, dyslipidemia, smoking, indexed LV mass.
3.5 Repeatability analysis

The intra- and inter-observer agreement of GLS, GRS, GCS,

LVEDV, LVESV values was analyzed using the interclass

correlation coefficient (ICC). We randomly selected 20 cases for

repeatability analysis. The intraclass correlation coefficients for

intra-and inter-observer variability were 0.97 [95% confidence

interval (CI) 0.94–0.99] and 0.98 (95% CI 0.95–0.99) for GLS,

0.91 (95% CI 0.79–0.96) and 0.93 (95% CI 0.84–0.97) for GCS,

0.88 (95% CI 0.73–0.95) and 0.84 (95% CI 0.64–0.93) for

GRS, 0.98 (95% CI 0.95–0.99) and 0.95 (95% CI 0.88–0.98) for

LVEDV, 0.97 (95% CI 0.92–0.99) and 0.97 (95% CI 0.91–0.99)

for LVESV, respectively.
4 Discussion

BAV is a genetically heterogeneous disease, and AS is one of its

most common complications (1). In general population, AS is an

important risk factor for cardiovascular morbidity and mortality

(16). It causes left ventricular remodeling with hypertrophy and

myocardial function impairment with the chronic pressure

overload (17, 18). Previous studies have shown that BAV

patients, even with normally functioning, have lower ventricular

longitudinal contraction compared with normal population.

However, there is limited data on the effects of development and

progression of AS on multidirectional myocardial function in

BAV patients.
4.1 Left ventricular systolic and diastolic
function in early stage

In our study, patients with bicuspid aortic valve (BAV) and

normal cardiac function exhibited significantly lower global

longitudinal strain (GLS) and global radial strain (GRS), while no

significant difference in ejection fraction (EF) was observed
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TABLE 3 Clinical characteristics and echocardiographic data of BAV patients according to severity of aortic stenosis.

Variable BAV-nf (n = 24) Mild AS (n = 20) Moderate AS (n = 20) Severe AS (n = 21) *P value

Demographic characteristics
Age, year 37.95 ± 11.97 42.80 ± 12.19 53.75 ± 7.68# 53.71 ± 14.14 <0.001

Sex, male (%) 20 (83.3) 19 (95) 7 (35) 13 (61.9) <0.001

Heart rate, bpm 78.33 ± 13.29 69.14 ± 7.31 70.60 ± 10.76 71.09 ± 9.88 0.29

BSA, m2 1.77 ± 0.18 1.81 ± 0.14 1.69 ± 0.13 1.65 ± 0.18 0.007

SBP, mmHg 124.08 ± 15.77 124.50 ± 18.03 126.60 ± 13.31 123.62 ± 20.08 0.96

DBP, mmHg 80.21 ± 12.99 81.85 ± 13.76 77.80 ± 11.57 76.19 ± 12.29 0.49

Hypertension, n (%) 3 (12.5) 6 (28.6) 8 (40) 10 (47.6) 0.03

Dyslipidaemia, n (%) 3 (12.5) 2 (10) 5 (25) 3 (14.3) –

Smoking, n (%) 7 (29.2) 10 (50) 6 (30) 4 (19) 0.19

Conventional echocardiographic characteristics
E-wave, cm/s 0.85 ± 0.18 0.80 ± 0.22 0.79 ± 0.19 0.86 ± 0.23 0.60

A-wave, cm/s 0.75 ± 0.24 0.69 ± 0.20 0.79 ± 0.18 0.84 ± 0.30 0.28

E/A ratio 1.18 ± 0.24 1.25 ± 0.53 1.04 ± 0.33 1.17 ± 0.54 0.46

Average e′, cm/s 0.11 ± 0.02 0.10 ± 0.02 0.08 ± 0.01# 0.07 ± 0.01 <0.001

E/e′ ratio 8.36 ± 2.73 8.51 ± 3.48 10.39 ± 3.20 13.05 ± 3.74 <0.001

AVA/BSA, cm2/m2 1.39 ± 0.31 1.08 ± 0.14# 0.71 ± 0.08# 0.48 ± 0.06# <0.001

MPG, mmHg 4.63 ± 1.98 14.94 ± 2.19# 28.74 ± 8.41# 55.67 ± 15.60# <0.001

AV, m/s 1.39 ± 0.31 2.67 ± 0.12# 3.55 ± 0.22# 4.76 ± 0.57# <0.001

LV volume and multidirectional myocardial function
LVEDV, ml 95.70 ± 12.31 110.18 ± 16.23 98.64 ± 42.43 120.66 ± 62.37 0.19

LVESV, ml 29.28 ± 5.23 33.16 ± 7.35 42.44 ± 20.29# 51.73 ± 28.48 <0.001

LVEF, % 69.34 ± 5.37 68.18 ± 3.56 59.10 ± 4.69# 56.63 ± 2.90 <0.001

Indexed LV mass, g/m2 73.38 ± 8.71 83.89 ± 13.23 93.29 ± 37.77 114.55 ± 47.18 <0.001

Global longitudinal strain, % −20.53 ± 1.12 −19.05 ± 1.02# −18.63 ± 1.06# −15.63 ± 2.30# <0.001

Global circumferential strain, % −37.12 ± 2.23 −36.46 ± 2.40 −30.17 ± 3.09# −28.32 ± 1.57 <0.001

Global radial strain, % 49.26 ± 3.27 47.36 ± 1.54# 39.88 ± 2.87# 35.57 ± 3.02# <0.001

Twist, ° 11.15 ± 5.11 16.50 ± 7.59 15.25 ± 8.29 17.22 ± 9.03 0.19

Torsion, ° 1.53 ± 0.92 2.07 ± 0.95 2.06 ± 1.11 2.06 ± 1.05 0.23

Data were n (%), mean ± SD. AS, aortic stenosis; BSA, body surface area; SBP, systolic blood pressure; DBP, diastolic blood pressure; E-wave, peak early diastolic velocity of

atrial filling; A-wave, peak late diastolic velocity of atrial filling; E/A ratio, ratio of early-to-late diastolic mitral peak; Average e’, the average of TDI-derived early diastolic peak

velocity of the septal and lateral wall; E/e′= ratio of E velocity to e’; AVA/BSA, aortic valve area normalized to body surface area; MPG, mean pressure gradient; AV, aortic

peak velocity; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVEF, left ventricular ejection fraction.

*P-value, calculated by ANOVA comparing the means of the variables for the four groups. Post hoc analysis using the Bonferroni correction was used when the ANOVA

P-value was <0.05.
#P < 0.05 vs. preceding AS category with Bonferroni correction.
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between BAV-nf group and controls. As the primary indicators of

diastolic function, the E/A ratio and average e′ (19) were lower in
both group but still within the normal range. It suggests that

diastolic function might be lower in BAV patients with normal

EF and normally functioning, which is in agreement with the

reported results (3, 20). It is a known fact that decreased aortic

elasticity and increased stiffness are the most prominent features

of the aorta in patients with BAV. Some studies have shown that

aortic stiffening is associated with left ventricular dysfunction

(21, 22), while others have shown weak or no association

between aortic stiffening and left ventricular dysfunction (3, 5).

Studies have demonstrated that the aortic valve area and

abnormal aortic flow patterns impact LV remodeling (4, 23).

Abnormal aortic flow patterns are closely related to aortic valve

area (23), but can increase ventricular afterload even without

significant AS (24). In our study, the aortic valve area index

(AVA/BSA) and hemodynamic parameters (AV, MPG) were

within the normal reference range in BAV-nf patients but

significantly different from controls (P < 0.05). The AVA/BSA

was independently associated with GLS and GRS. Thus,
Frontiers in Cardiovascular Medicine 05
abnormal aortic flow patterns and aortic stiffening can

theoretically increase ventricular afterload which may explain

early reduced left ventricular myocardial strain in BAV patients.

Furthermore, we speculate that reduced AVA at an early stage of

BAV may be indicative of early left ventricular remodeling

progression.
4.2 The effects of development of AS on
multidirectional myocardial function

In contrast to previous studies (25, 26) demonstrating a

reduced global longitudinal strain (GLS) and an increased global

circumferential strain (GCS) in TAV-AS, our study revealed no

significant alteration in GCS from normal to mild stenosis but

exhibited a decline starting from moderate AS. We speculate

that the reasons may be as follows: under normal myocardial

contraction force conditions, the middle circumferential

myocardium can enhance myocardial contractility to compensate

for the decreased motion of longitudinal and radial myocardium
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FIGURE 1

Impairment of left ventricular global longitudinal strain with
increasing aortic stenosis severity (P < 0.001 by ANOVA). With each
categorical increase in aortic stenosis severity grade from normally
functioning to severe aortic stenosis, there was an associated
progressive impairment of global longitudinal strain (all P < 0.05 by
Bonferroni correction).

FIGURE 2

Impairment of left ventricular global circumferential strain with
increasing aortic stenosis severity (P < 0.001 by ANOVA). There was
no significant difference in left ventricular global circumferential
strain between normally functioning and mild stenosis, and
moderate between severe stenosis (all P > 0.05 by Bonferroni
correction). But global circumferential strain progressively
worsened from mild to moderate (P < 0.05).

FIGURE 3

Impairment of left ventricular global radial strain with increasing
aortic stenosis severity (P < 0.001 by ANOVA). With each
categorical increase in aortic stenosis severity grade from normally
functioning to severe aortic stenosis, there was an associated
progressive impairment of global radial strain (all P < 0.05 by
Bonferroni correction).
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(18, 26). However, myocardial contractility was reduced in the early

stage of BAV patients with normal valve function. The middle

circumferential myocardium may compensate by maintaining

myocardial movement and/or myocardial thickening, which

could explain why GCS is not elevated in BAV patients with

mild AS. When left ventricular hypertrophy cannot adapt to
Frontiers in Cardiovascular Medicine 06
increased afterload, “afterload mismatch” occurs, resulting

eventually in a reduction of LVEF (27). This may explain why

LVEF and LVESV showed statistically significant changes from

moderate AS and were consistent with the trend of GCS.

However, a decrease in LVEF indicates poor prognosis for

patients (28, 29). Torsion and twist of the left ventricle are lower

in BAV patients with severe AS compared to those in the control

group, suggesting impaired left ventricular systolic function and

mechanical efficiency. Therefore, multiple deformation indices

of left ventricular myocardium function are essential for

understanding the pathophysiologic mechanics of LV dysfunction.

Univariate regression analysis showed that AVA/BSA was

correlated with GLS, GCS, and GRS in patients with BAV-AS.

Despite correcting for confounding risks on multivariable

analysis, AVA/BSA remained independently associated with left

ventricular strains, suggesting that the degree of stenosis is an

important factor for multidirectional myocardial functions.

Additionally, age and LVMI were also found to be associated

with myocardial injury. Age-related myocardial injury suggests a

possible atherosclerotic mechanism (30). Increased left

ventricular mass is associated with a higher risk of cardiovascular

adverse events (31).

Little data is available on the multidirectional myocardial

functions in the progression of AS, although early left ventricular

longitudinal myocardial dysfunction is known to be present in

BAV patients with normal functioning. 3D-STE imaging

technology can quantitatively assess the multidirectional

myocardial function of the left ventricle and has been extensively

recognized for its early detection of myocardial injury (12). In

our study, left ventricular myocardial injury began with

impairment of longitudinal fibers. This may be attributed to the
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TABLE 4 Univariate and multivariate linear regression analysis for multidirectional myocardial functions in BAV patients.

Variable Global longitudinal strain Global circumferential strain (%) Global radial strain (%)

Univariate Multivariate Univariate Multivariate Univariate Multivariate

β P β P β P β P β P β P
Age, year 0.14 <0.001 0.02 0.22 0.17 <0.001 0.02 0.57 −0.25 <0.001 −0.02 0.48

Sex, (female = 0, male = 1) −1.75 0.03 0.69 0.20 −3.51 0.01 −0.87 0.33 4.63 0.002 −0.16 0.86

Heart rate, bpm −0.06 0.047 −0.02 0.23 −0.10 0.02 −0.03 0.34 0.15 0.02 0.03 0.26

BSA, m2 −0.09 0.01 −1.42 0.30 −9.42 0.01 −2.61 0.25 14.17 <0.001 5.46 0.02

SBP, mmHg −0.004 0.85 −0.001 0.96 0.002 0.96

DBP, mmHg −0.03 0.36 −0.07 0.07 0.08 0.15

Hypertension 2.24 0.004 0.21 0.63 3.00 0.004 −0.53 0.47 −4.59 0.002 0.51 0.51

Dyslipidaemia −0.02 0.98 −0.44 0.76 0.06 0.97

Smoking −0.20 0.81 −0.83 0.45 0.96 0.52

Indexed LV mass, g/m2 0.04 <0.001 0.01 0.03 0.05 <0.001 0.18 0.11 −0.08 <0.001 −0.02 0.04

AVA/BSA, cm2/m2 −9.56 <0.001 −9.45 <0.001 −9.97 <0.001 −8.54 <0.001 13.77 <0.001 12.01 <0.001

BSA, body surface area; SBP, systolic blood pressure; DBP, diastolic blood pressure; AVA/BSA, aortic valve area normalized to body surface area. P value less than 0.05 was considered

statistically significant.
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fact that subendocardial longitudinal fibers are more sensitive to

increased wall stress and reduced myocardial perfusion (32).

Unlike strains in other directions, GRS refers to changes in wall

thickness along a vertical line from the endocardium to the

epicardium boundary at a specific point. In fact, GRS may not be

a meaningful indicator in clinical practice as it does not refer to

a certain level of muscle fiber function but exhibits great

variability (18, 33). Studies have demonstrated an association

between reduced left ventricular longitudinal myocardial function

and myocardial fibrosis (34, 35). As the disease progresses,

changes in AS-induced myocardial fibrosis begin in the

subendocardium and gradually progress towards transmural

involvement (36). Studies have indicated that GLS can provide

improved risk stratification for severe AS and may influence

optimal timing for AVR (37). Earlier detection of subclinical

myocardial dysfunction by speckle tracking echocardiography

may allow earlier identification of patients at risk for irreversible

myocardial damage.
4.3 Limitations

The present study employed a cross-sectional design, with data

collected from a single-center and a relatively small number of

patients. The sample size was limited due to stringent inclusion

criteria. Due to the limited sample size, we were unable to conduct

a comparative analysis between symptomatic and asymptomatic

patients with severe BAV-AS. Recently, left atrial function has

emerged as a novel and early indicator of left ventricular

dysfunction. However, in this study, we did not specifically evaluate

the performance of left atrial function. Moreover, the comparison

between BAV and tricuspid aortic valve in the context of aortic

stenosis (AS) was beyond the scope of this study. Additionally, the

long-term prognostic implications of multidirectional myocardial

strain remain unknown due to lack of follow-up studies; therefore,

future large-scale longitudinal studies are warranted.
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5 Conclusions

Patients with BAV exhibit early myocardial dysfunction in the

progression of stenosis, despite having a normal LVEF. Left

ventricular longitudinal myocardial reduction occurs even in

BAV patients with well-functioning aortic valves. With each

categorical increase in the severity grade of AS, ranging from

normally functioning to severe aortic stenosis, there is a

corresponding progressive impairment of longitudinal myocardial

function. Furthermore, circumferential myocardial function

begins to deteriorate from moderate AS onwards. The AVA/BSA

ratio serves as an independent indicator for assessing the severity

of AS and its association with multidirectional myocardial

functional impairments.
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