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Introduction: High-resolution whole-heart coronary magnetic resonance
angiography (CMRA) often suffers from unreasonably long scan times, rendering
imaging acceleration highly desirable. Traditional reconstruction methods used in
CMRA rely on either hand-crafted priors or supervised learning models. Although
the latter often yield superior reconstruction quality, they require a large amount
of training data and memory resources, and may encounter generalization issues
when dealing with out-of-distribution datasets.
Methods: To address these challenges, we introduce an unsupervised
reconstruction method that combines deep image prior (DIP) with compressed
sensing (CS) to accelerate 3D CMRA. This method incorporates a slice-by-slice
DIP reconstruction and 3D total variation (TV) regularization, enabling high-quality
reconstruction under a significant acceleration while enforcing continuity in the
slice direction. We evaluated our method by comparing it to iterative SENSE, CS-
TV, CS-wavelet, and other DIP-based variants, using both retrospectively and
prospectively undersampled datasets.
Results: The results demonstrate the superiority of our 3DDIP-CS approach, which
improved the reconstruction accuracy relative to the other approaches across both
datasets. Ablation studies further reveal the benefits of combining DIP with 3D TV
regularization, which leads to significant improvements of image quality over pure
DIP-based methods. Evaluation of vessel sharpness and image quality scores
shows that DIP-CS improves the quality of reformatted coronary arteries.
Discussion: The proposed method enables scan-specific reconstruction
of high-quality 3D CMRA from a five-minute acquisition, without relying on
fully-sampled training data or placing a heavy burden on memory resources.
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1 Introduction

Three-dimensional coronary magnetic resonance angiography (CMRA) is a promising

imaging modality for the assessment of coronary artery disease (CAD) due to its non-

invasiveness and freedom from ionizing radiation (1–3). Despite these benefits, CMRA

still suffers from a long scan time, because of the need to achieve millimeter-level 3D
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whole-heart imaging. To address this issue, highly undersampled

acquisition is often employed to accelerate CMRA, with

acceleration factors ranging from 7 to 10 (4). These high

acceleration rates can cause serious degradations of image quality

due to the incurrence of aliasing artifacts and noise amplification

in the image. Therefore, reconstruction algorithms that minimize

these artifacts and noise at high acceleration rates are highly desirable.

Various reconstruction methods have been developed to

improve image quality for accelerated MRI, and some have been

applied to the CMRA reconstruction. Early methods are often

based on the compressed sensing theory. These methods leverage

general image properties to accelerate imaging, such as sparsity

in the wavelet domain (5), finite total variation (6), or low-

rankness of signals extracted from non-local patches (7). Some of

these methods have achieved reconstructions of adequate quality

with a scan time of 5–7 min (4, 8, 9). Recently, learning-based

methods have emerged as a new genre of reconstruction methods

for fast MRI. These methods can learn image priors from

existing data and have shown the state-of-the-art performance in

various reconstruction tasks. Among these methods, some are

purely data-driven, such as AUTOMAP (10) and U-Net (11),

while others are partly model-driven, which include deep

unrolling (12–15), plug-and-play (16, 17), and methods based on

learned explicit priors (18, 19). Usually, model-driven methods

are more robust and generalizable than purely data-driven

methods. However, despite an improved generalizability for the

model-driven methods, a major challenge remains: they often

require a substantial amount of training data, which can be

scarce or unavailable in various scenarios, including 3D CMRA

(20). Additionally, performance degradation due to distribution

shifts between training and testing datasets is not negligible. For

instance, several studies have found performance degradation of

deep learning-based methods in reconstructions of out-of-

distribution data (21, 22). Finally, certain methods, such as deep

unrolling, are challenging to use in 3D imaging due to the high

memory demand of network training. Given these limitations of

supervised methods, there is a growing demand for database-free,

self-supervised, or unsupervised reconstruction approaches.

Deep imaging prior (DIP) (23) has emerged as a powerful

unsupervised technique for solving inverse problems in image

processing, including denoising, super-resolution, and inpainting.

DIP does not need external training data; instead, DIP optimizes

the parameters of a randomly initialized deep neural network

from scratch for each reconstruction. During training, the

network learns to map a vector of noise to the reconstructed

image, whose regularization is attributed to the inductive bias

captured by the network architecture. Recently, several DIP-based

methods have been proposed for MRI reconstruction, exhibiting

an improvement of image quality when compared with other

unsupervised methods (24–29). Compared with supervised

methods, DIP does not require any training data, reduces the

memory requirement compared with deep unrolling, and induces

less concern on its generalizability under different undersampling

patterns or anatomies (24, 25). Recently, the application of DIP
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has been extended to cardiac imaging, including cardiac

magnetic resonance fingerprinting (MRF) (27), functional CMR

(28), and 2D + t dynamic MRI (30). Some research has also

investigated the combination of DIP and classical regularization

methods within an iterative optimization framework (31, 32).

Although DIP has been used in 2D imaging, no prior study has

utilized DIP for 3D CMRA reconstruction. Thus, it remains

unclear whether 2D DIP can generalize well to 3D reconstruction

in terms of reconstruction quality and memory usage. In this

work, we fill this gap by proposing a novel hybrid DIP-CS

method for 3D CMRA reconstruction. This approach combines

the unsupervised DIP model and the total variation (TV)

regularization within a framework that uses the alternating

direction method of multipliers (ADMM). We compared the

proposed 3D DIP-CS method with several alternative methods,

including iterative SENSE, CS-wavelet, CS-TV, 2D slice-by-slice

DIP, and 2D slice-by-slice DIP equipped with 2D TV

regularization with both retrospective and prospective

undersampling experiments.
2 Theory and methods

2.1 Compressed sensing MRI and deep
image prior

The reconstruction of 3D MRI can be considered as an inverse

problem in the following format:

m ¼ Af þ e ¼ DFSf þ e (1)

Where f [ C
N is the 3D image, m [ C

M is the 3D k-space

measurement, e is the noise, and A is the matrix representation

of the forward imaging model. In parallel imaging, the forward

model consists of three linear operators: coil sensitivity encoding

S, the Fourier transform operator F, and k-space undersampling

operator D. Due to the undersampling, the inverse problem is

ill-conditioned. Consequently, regularization is usually required

to solve the problem. Many approaches based on compressed

sensing theory leverage the sparsity of images in a certain

transform domain to improve the conditioning. The objective

function of reconstruction is described as follows in Equation 2:

argmin
f

km� Af k22 þ lF(f ) (2)

where km� Af 22k is the data-fidelity term, F(f ) the regularization
term, and λ the regularization weight. Several algorithms like

ADMM can be used to solve Equation 2.

Deep image prior (23) is an approach proposed to solve image

recovery problems, such as image inpainting, denoising, and

reconstruction. In general DIP schemes, a random but fixed

latent noise variable z [ RL serves as the input to an un-trained
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deep convolutional neural network (CNN) G(z; u), where u [ Rd

are the parameters of the network, which are either randomly

initialized or tuned with pre-training. During training, u is

optimized to make the network output G(z ; u) minimize the

reconstruction loss with respect to the measurement m through

the model A:

u� ¼ argmin
u

km� AG(z; u)k22 (3)

Where u� is the optimized network weights. No prior information

is needed to solve Equation 3; instead, the inductive bias of the

convolutional neural network can implicitly enforce a natural

appearance in the reconstructed images (30). Typically, an over-

parameterized network G is used (33), which means that the

number of network parameters d is much larger than the output

dimension N.
2.2 Proposed framework

In this work, we propose a hybrid DIP-CS framework for 3D

image reconstruction. Because k-space is fully sampled in the

readout direction of MR acquisition, we firstly perform 1D

inverse Fourier transform in this direction to partition k-space

into a sequence {m(i)}, where m(i) is the k-space data for the ith

slice along the readout direction. We then solve the 3D

reconstruction problem by a slice-by-slice application of regular

2D DIP. However, a slice-by-slice reconstruction not only may

induce inter-slice inconsistency of image intensities, but also

lacks regularization power over the inter-slice direction. To
FIGURE 1

Overview of the proposed DIP-CS method for 3D CMRA reconstruction
optimization. To maintain inter-slice continuity of the reconstructed ima
slices. The reconstruction network in DIP-CS is a ConvDecoder with a f
parameters consists of two parts: the data-consistency loss and total-varia
the network output and undersampled k-space data. The total-variation lo
slice directions.
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address this issue, we combine 2D DIP with a 3D TV

regularization, which is separately applied along the intra-slice

dimension and the inter-slice dimension. The objective function

is shown below:

argmin
u

XNslice

i¼1

(km(i) � AG(z(i); u(i))k22 þ lkG(z(i); u(i))kTVyz
)

þ lkG(z; u)kTVx
(4)

where z(i) and u(i) are the corresponding latent

representation and network weights of each slice, G(z; u) is the
3D image obtained by concatenating all the network

output slices, and k � kTVyz
and k � kTVx

are the intra-slice and

inter-slice TV regularization, respectively. To minimize

this function, we combine the ADMM with the proposed

DIP-CS formulation by using variable splitting. The

problem is transformed into a constrained optimization as in

Equation 5:

argmin
u

XNslice

i¼1

(km(i) � AG(z(i); u(i))k22 þ lkG(z(i); u(i))kTVyz
)

þ lkvkTVx

s:t: v(i) ¼ G(z(i); u(i)) (5)

Where v is the auxiliary variable used to replace G(z; u) in the

inter-slice regularization term. Figure 1 shows an overview of

3D DIP-CS. The numbers denote the size of each object in

this framework. z is a vector of length 128. We solve
. The input of each slice is a noise vector that remains fixed during
ge, the noise vectors stay in a straight-line manifold across different
ully-connected mapping network. The loss for updating the network
tion loss. The data-consistency loss is the l2 loss between k-space of
ss is calculated from the output image over both intra-slice and inter-
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Equation 5 based on the ADMM algorithm, which recursively

executes Equations 6a–c:

utþ1 ¼ argmin
u

XNslice

i¼1

ðkm ið Þ � AG z ið Þ;u ið Þ
� �

k22

þ lkG z ið Þ; u ið Þ
� �

kTVyz
þ r

2
kG z ið Þ;u ið Þ

� �
� v ið Þ

t

þ u ið Þ
t k22Þ (6a)

vtþ1 ¼ argmin
v

lkvkTVx
þ r

2
kG(z; utþ1)� v þ utk22 (6b)

utþ1 ¼ ut þ G(z ; utþ1)� vtþ1 (6c)

Note that the first subproblem in Equation 6a is solved using

DIP with a 2D TV regularization slice-by-slice, whereas the

second subproblem in Equation 6b is solved along the inter-slice

direction only, which can be computed in parallel. Furthermore,

since adjacent slices should have similar appearances, we

hypothesize that {z(i)} across different slices should reside in a

connected manifold in the latent space. We thus add an

additional constraint on {z(i)}, as described in Equation 7, which

asks {z(i)} to reside in a learnable straight-line manifold:

z(i) ¼ (1� a(i))z(0) þ a(i)z(Nslice�1), a(i) ¼ i=(Nslice � 1) (7)

Where z(0) and z(Nslice�1) are sampled from the standard uniform

distribution U(0, 1), and a(i) controls the position on this

straight line. This constraint was inspired by a previous work of

DIP (30), which constrains the latent representation of dynamic

MRI to a learnable straight-line manifold.

To accelerate the reconstruction of each slice, we propose

initializing the network weights of the ith slice based on those of
FIGURE 2

Architecture of the proposed framework. (A) The diagram for how the mult
latent vectors. For each slice except the first, the network parameters were
reconstruction process. (B) Network architecture adopted in the proposed
connect layers that map the random noise to the input of the ConvDecod
an up-sampling layer, a convolutional layer, and a batch normalization la
imaginary parts.
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the (i-1)th slice, as shown in Figure 2A. The whole algorithm is

summarized in Algorithm 1 of Figure 3. Optimization in

Equation 6a was performed for NDIP times and the whole

iterative process of Equations 6a–c was T iterations.
2.3 Network architecture

Many network architectures can be selected as the backbone of

the un-trained model, such as CNN in the original DIP work (23),

ConvDecoder (25), MLP in DeepDecoder (34, 35), skip-connected

U-Net (36), and even Transformer (26, 37). In this paper, we

modified the architecture in ConvDecoder (25) to construct the

neural network G(z(i); u(i)) in DIP-CS. The network architecture

to model each image slice is illustrated in Figure 2B. The input

to the network is a fixed vector with length L, containing

uniformly distributed noise. Similar to the MapNet in 2D + t

time-dependent DIP (30) and the “Mapper” in zero-Shot

Learned Adversarial Transformer (37), we firstly used a mapping

network consisting of two fully-connected layers to map the

noise vector into the input space of the modified ConvDecoder.

The first layer in the mapping network outputs a 128-channel

vector, and the second transforms this vector into a 128-channel

16 × 16 feature map. The ConvDecoder module then produces

the output image by progressively increasing the image resolution

across layers. The input and output of ConvDecoder have two

channels for real and imaginary parts because of the complex-

valued MR images. Each block in this module comprises of a

nearest-neighbor up-sampling layer, a 3 × 3 128-channel

convolutional layer, ReLU function and a batch normalization

layer as in the original work. The final layer only uses a 1 × 1

convolution to linearly combine the channels.
i-slice reconstruction was performed using the network and multi-slice
initialized with those obtained from the previous slice to expedite the

3D DIP-CS framework. The latent mapping network comprises of fully-
er. The ConvDecoder comprises of 8 network blocks, each formed by
yer. The output is an image with two channels holding the real and
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FIGURE 3

The DIP-CS algorithm for 3D reconstruction.
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3 Experiments

3.1 Datasets preparation

We conducted both retrospective and prospective experiments

to investigate the effectiveness of the proposed DIP-CS method.

For the retrospective experiment, 10 healthy volunteers were

recruited and underwent CMRA imaging in a 3.0 T MRI scanner

(uMR 790, United Imaging Healthcare Co. Ltd., Shanghai,

China) with a 12-channel torso coil and 32-channel spine coil.

Written informed consent was obtained from all subjects before

the scan. No contrast agent was used in this study. A navigator-

gated, electrocardiogram-triggered, 2-point Dixon T2-prepared

spoiled gradient echo sequence was used for 3D CMRA (8, 38),

which generated two images of different echo times for each

subject. The acquisition window for each cardiac cycle was

164 ms, which was placed in the quiescent diastolic phase to

reduce cardiac motion. A four-chamber cardiac cine imaging was

performed prior to the CMRA scan to determine the subject-

specific optimal trigger delay to minimize cardiac motion during

the acquisition. Data were acquired with image readout in the

anterior-posterior (AP) direction, and phase encoding in the

left-right (LR) and feet-head (FH) directions. Scan parameters of

the 3D GRE sequence with Cartesian sampling include:

TE1/TE2 = 2.24/3.17 ms, TR = 5.21 ms, duration of T2 preparation

= 32 ms, filed of view (FOV) = 400 × 300 × 90 mm3(LR ×AP× FH),

acquisition matrix = 362 × 272 × 60 (10% oversampling in FH

direction), acquired resolution = 1.10 × 1.10 × 1.50 mm3, flip
Frontiers in Cardiovascular Medicine 05
angle = 10°, bandwidth = 1,070 Hz/pixel, and T2-prep TE = 32 ms.

Two-fold undersampling in the phase encoding direction ky was

performed on the basis of elliptical scanning to shorten the scan

time. Supplementary Figure 1A gives a demonstration of the

undersampling trajectory. Coil compression was used to

compress the multi-coil data into 12 channels (39) using the

BART toolbox (40). The 24 × 24 central reference lines were

fully-sampled and used for ESPIRiT (41) coil sensitivity

estimation. The mean scan time was 23 min 36 s. The 3D image

was then reconstructed using iterative SENSE with Tikhonov

regularization (regularization weight = 0.1). The result was treated

as the ground truth and used to generate retrospectively

undersampled data. Eight-fold undersampling was used based on

a pseudo-random poisson-disc mask in the ky-kz plane (as in

Supplementary Figure 1B). From the 2× accelerated acquisition

to the 8× undersampling, the scan time can be reduced to

approximately 5–6 min. Different reconstruction methods were

then used to reconstruct the images from the retrospectively

undersampled data.

For the prospective experiment, we scanned another 13

volunteers with a self-navigated, electrocardiogram-triggered,

2-point Dixon T2-prepared spoiled gradient echo sequence (38),

which is different from the navigator-gated sequence used in the

retrospective experiment. The sequence uses a variable-density

Cartesian undersampling trajectory in the ky-kz plane, where

the acquisition in each heartbeat passes the k-space center. The

k-space center sampling is then reconstructed by 1D inverse Fourier

transform to provide a self-navigating signal for retrospective
frontiersin.org
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binning of the data. All data were binned into 4 respiratory

phases, and data from the end-expiration bin were used for

reconstruction. Data were acquired with image readout in the

FH direction, and phase encoding in the LR and AP

directions in this sequence. The sequence had the following

imaging parameters: TE1/TE2 = 2.24/3.17 ms, TR = 5.21 ms,

FOV = 400 × 300 × 132–150 mm3(RL × FH × AP), acquisition

matrix = 362 × 272 × (88–100), flip angle = 10°, bandwidth =

1,070 Hz/pixel, and T2-prep TE = 32 ms. We scanned each

volunteer for 5 min to obtain the undersampled data. To provide

reference images as an evaluation of reconstruction quality, we

continued the scan for another 15 min to obtain nearly fully-

sampled data (R≈ 2.5 for the end-expiration bin). The reference

images were then reconstructed using iterative SENSE with

Tikhonov regularization (regularization weight = 0.1).
3.2 Ablation study

We performed the ablation study to evaluate the effectiveness

of 3D DIP-CS by comparing the method to (1) standard 2D DIP

applied slice-by-slice, where the TV regularization was completely

removed, and (2) 2D DIP-CS applied slice-by-slice, where only the

inter-slice TV regularization was removed. We then assessed the

performance of the three methods on the retrospective dataset.
3.3 Comparison methods

We applied four baseline methods for comparison to show the

advantage of the proposed method. These methods included (1)

zero-filling, which directly fills the unsampled k-space points

with zero followed by the inverse Fourier transform and coil

combination, (2) iterative SENSE, which is a classical

reconstruction method for parallel imaging, (3) CS-TV, which

uses total-variation regularization in the classic iterative CS-based

reconstruction, and (4) CS-wavelet, which is a CS-based

algorithm based on a l1-norm constraint on the wavelet

transform of the image. The last 3 methods were also compared

in multiple undersampling rates and patterns to investigate the

generalizability.
3.4 Image and statistical analysis

In our experiments, the two-echo acquisitions were

reconstructed separately as two 3D images. To quantitatively

evaluate the performance of the reconstruction methods, the peak

signal-to-noise ratio (PSNR), structural similarity index (SSIM),

and normalized mean-squared error (NMSE) were calculated on

each 3D image volume with respect to the reference image.

In addition to the generic reconstruction quality comparison,

we also compared the coronary vessel sharpness and conspicuity

between different methods. To evaluate vessel sharpness, we

firstly performed the two-point Dixon water-fat separation (43)

based on the method described in (44) to generate the water
Frontiers in Cardiovascular Medicine 06
image. We then reformatted the water image using curved planar

reformation based on 3D Slicer (Version 5.2.2) (42) to visualize

the coronary arteries. After that, we computed sharpness of the

left anterior descending artery (LAD) and the right coronary

artery (RCA) based on the intensity profile of vessel edges, using

the method previously described in Ref (45, 46). To evaluate the

coronary artery conspicuity, we invited a clinician (with more

than 5 years of experience in cardiology) and a MR physicist

(with more than 10 years of experience) to rate the images of

reformatted coronary arteries. The images of different

comparison methods were randomized, and their identity was

blinded to the readers. For each image, the visualized vessel was

given a rank using a five-point scoring system: score 1,

uninterpretable (vessels that were almost indiscernible); score 2,

poor (vessels that were visible but highly degraded by noise or

artifacts); score 3, fair (vessels with moderately blurred borders);

score 4, good (clear vessels but with slight blurring); score 5,

excellent (vessels with sharply defined borders and structure).

The average score from the two readers was used as the final score.

In tables, statistics for quantitative metrics were provided as

mean ± standard deviation across all the subjects. Statistical

significance of the difference between two methods was assessed

by using the Wilcoxon signed-rank test (for expert scoring) and

paired t-test (for others). Statistical significance of the difference

between multiple methods was assessed using repeated-measures

one-way analysis of variance (ANOVA) with Bonferroni correction.

A P value less than 0.05 was considered statistically significant.
3.5 Implementation details

A platform equipped with 4 Intel Xeon Platinum 8260

(2.4 GHz) CPU and two NVIDIA A100 GPU was used for the

experiments. Our framework was implemented with Pytorch

1.9.1 on Python 3.7.7. The proximal operator of total variation

was solved using proxTV toolbox (47, 48). For each slice, the

network of DIP was optimized for 1,000 iterations (NDIP in

Algorithm 1) using the Adam (49) optimizer with a learning rate

of 5 × 10−5. After parameter tuning, the parameters in Algorithm

1 were set to be ρ = 0.001 and λ = 0.006. The number of outer

loops was set to T = 3 for faster reconstruction. The results of

optimizing the parameters were demonstrated in Supplementary

Figure 2. The baseline CS-TV and CS-wavelet were implemented

with BART (40). The regularization parameter was optimized on

one sample and was finally set to be 0.01.
4 Results

4.1 Imaging with retrospective accelerations

4.1.1 Comparison with other methods
Figure 4 shows the comparison of iterative SENSE, CS-TV,

CS-wavelet, and the proposed method on R = 8. Compared with

the other two methods, DIP-CS produced results with fewer

artifacts in the image and lower reconstruction errors. The
frontiersin.org
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FIGURE 4

Reconstructions of CMRA in the transversal view from one representative subject, reconstructed with iterative SENSE, CS-TV, CS-wavelet, and the
proposed 3D DIP-CS (R = 8). Corresponding error maps with respect to the fully-sampled ground truth are also shown. 3D DIP-CS led to
improved reconstruction accuracy compared with these alternative methods.

FIGURE 5

Image quality metrics of zero-filling, iterative SENSE, CS-TV, CS-wavelet, and 3D DIP-CS at R = 8. The 3D DIP-CS method outperformed other
methods in terms of PSNR and NMSE. (*P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001).

Xue et al. 10.3389/fcvm.2024.1408351
quantitative values calculated from the entire volume were also in

accordance with the visual perception. Figure 5 shows the

statistical comparison of these quantitative metrics across 10

subjects. The 3D DIP-CS method achieved higher PSNR and
Frontiers in Cardiovascular Medicine 07
lower NMSE (PSNR: 33.20 ± 1.63 dB; NMSE: 0.0236 ± 0.0087)

compared with SENSE (PSNR: 30.75 ± 1.75 dB, P = 5 × 10−10;

NMSE: 0.0424 ± 0.0186, P = 2 × 10−6), CS-TV (PSNR: 31.22 ±

1.87 dB, P = 3 × 10−6; NMSE: 0.0382 ± 0.0174, P = 6 × 10−5), and
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1408351
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 Average PSNR, SSIM, and NMSE for different methods across a
variety of undersampling rates. Numbers indicatemean± standard deviation.

Sampling
rate

Method PSNR(dB) SSIM NMSE
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CS-wavelet (PSNR: 32.25 ± 1.76 dB, P = 2 × 10−5; NMSE: 0.0299 ±

0.0128, P = 4 × 10−4). Differences in SSIM between DIP-CS and

CS-wavelet were not statistically significant (SSIM: 0.862 ± 0.038

vs. 0.864 ± 0.038, P = 0.57) in our experiments.

R = 6 SENSE 31.86 ± 1.88 0.872 ± 0.044 0.0331 ± 0.0155

CS-TV 32.05 ± 1.92 0.881 ± 0.038 0.0317 ± 0.0142

CS-wavelet 33.32 ± 2.01 0.901 ± 0.041 0.0238 ± 0.0116

3D DIP-CS 35.98 ± 1.89 0.928 ± 0.032 0.0127 ± 0.0054

R = 8 SENSE 30.75 ± 1.75 0.848 ± 0.041 0.0424 ± 0.0186

CS-TV 31.22 ± 1.87 0.847 ± 0.049 0.0382 ± 0.0174

CS-wavelet 32.25 ± 1.76 0.864 ± 0.038 0.0299 ± 0.0128

3D DIP-CS 33.20 ± 1.63 0.862 ± 0.038 0.0236 ± 0.0087

R = 11 SENSE 28.98 ± 1.78 0.789 ± 0.045 0.0639 ± 0.0287

CS-TV 29.72 ± 1.61 0.0795 ± 0.051 0.0546 ± 0.0234

CS-wavelet 29.58 ± 1.78 0.808 ± 0.044 0.0556 ± 0.0252

3D DIP-CS 30.83 ± 1.69 0.0824 ± 0.030 0.0408 ± 0.0149

Bold value indicates the highest mean value of the metric among the comparison methods.
4.1.2 Performance on multiple acceleration
factors

Figure 6 shows performance of the methods under different

acceleration factors. We observed that under all the undersampling

rates, 3D DIP-CS provided overall better reconstructions than the

comparison methods. The generalizability to different acceleration

factors is useful because the actual acceleration factor can be

variant for a practical five-minute acquisition. Table 1 presents the

quantitative results for reconstruction quality metrics using

different undersampling rates. 3D DIP-CS led to overall better

PSNR, SSIM, and NMSE than other methods.
4.1.3 Performance on the changed sampling
pattern

To show the feasibility of the proposed method for uniform

sampling, which is more commonly used in practice, we

compared the reconstruction of each method with one-

dimensional uniform undersampling. Figure 7A shows a

representative result. In this example, only 3D DIP-CS

successfully removed the aliasing artifacts of uniform

undersampling, which can found in the reconstruction of other

methods (blue arrows). Figure 7B shows the results of

quantitative comparisons. 3D DIP-CS led to higher image
FIGURE 6

Reconstructions under different undersampling rates of R = 6, 8, and 11.

Frontiers in Cardiovascular Medicine 08
qualities compared with other methods when uniform sampling

was employed.
4.2 Ablation study

We employed ablation studies to investigate the effect of

the intra-slice and inter-slice total variation regularization in the

proposed 3D DIP-CS method. To do that, we compared the

method with 2D DIP, which employed no total variation, and

2D DIP-CS, which employed only intra-slice total variation.

Figure 8 shows the results. The proposed DIP-CS method
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FIGURE 7

Reconstructed images under the uniform sampling pattern. (A) The samplingmask was shown on the left. 3DDIP-CS suppressed the aliasing artifacts better
than the other methods, as pointed by the blue arrows. (B) Quantitative comparison of different methods under 1D uniform sampling. (****P < 0.0001).

FIGURE 8

Reconstructions of CMRA and the error map in the transversal view using 2D DIP, 2D DIP-CS and the proposed 3D DIP-CS.

Xue et al. 10.3389/fcvm.2024.1408351
achieved a better image quality compared with both 2D DIP and

2D DIP-CS. The 2D DIP method exhibited stronger noise in the

heart region. While both 2D and 3D DIP-CS methods reduced

noise, 3D DIP-CS yielded slightly higher values in image quality
Frontiers in Cardiovascular Medicine 09
metrics, suggesting the addition of inter-slice CS further

improved the reconstruction.

Table 2 shows the statistical comparison of different quantitative

metrics between 2D DIP, 2D DIP-CS, and 3D DIP-CS. The proposed
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TABLE 2 Comparisons of PSNR/SSIM/NMSE on 2D DIP, 2D DIP-CS, and 3D
DIP-CS.

Method PSNR (dB) SSIM NMSE
2D DIP 31.92 ± 1.97 0.850 ± 0.034 0.0344 ± 0.0248

2D DIP-CS 32.96 ± 1.63 0.852 ± 0.034 0.0249 ± 0.0091

3D DIP-CS 33.20 ± 1.63 0.862 ± 0.038 0.0236 ± 0.0087

Bold value indicates the highest mean value of the metric among the comparison methods.
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method achieved a higher PSNR/SSIM and lower NMSE (3D DIP-CS

vs. 2D DIP: P = 5 × 10−4/0.004/0.019 for PSNR/SSIM/NMSE; 3D

DIP-CS vs. 2D DIP-CS: P = 2 × 10−7/3 × 10−4/1 × 10−6 for PSNR/

SSIM/NMSE) compared to the other methods. 2D DIP-CS also

achieved a better PSNR and NMSE than 2D DIP (P = 0.003/0.037

for PSNR and NMSE), although SSIM was not significantly

different between the two methods (P = 0.71).
4.3 Imaging with prospective accelerations

We assessed our method using real CMRA data acquired

within 5 min, which had an acceleration factor of 7–11. An image

reconstructed from a 15 min scan was used as the reference.

Figure 9 shows a representative result. SENSE and CS-based
FIGURE 9

Reconstructions (in the coronal view) obtained using zero-filling, iterative
minutes. White arrows indicate the unsmooth details in the zoomed out im
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methods were able to give reconstructions with reduced

undersampling artifacts compared with zero-filling. However, noise

appeared stronger in the SENSE reconstruction compared to the

other methods. CS-TV significantly suppressed the noise but

caused visible blurring in the images. CS-wavelet reconstructions

mitigated some noise and undersampling artifacts; however, the

images still showed some unsmooth features compared with the

reference image (indicated by the white arrows in Figure 9). The

3D DIP-CS method removed most of the artifacts and well

suppressed the noise, generating an image quality more similar to

the reference image. Table 3 quantitatively compared the image

quality metrics among these methods with respect to the 15 min

reference images. DIP-CS achieved significantly higher PSNR,

SSIM, and lower NMSE compared to classical CS-wavelet (PSNR:

P = 0.001; SSIM: P = 0.015; NMSE: P = 0.001).
4.4 Evaluation of the coronary arteries

Figure 10A compares reformatted coronary arteries of different

methods using curved planar reformation. CMRA from SENSE

reconstruction was noisy compared to that from CS-TV,
SENSE, CS-TV, CS-wavelet and 3D DIP-CS from data acquired in five
ages. PSNR, SSIM, and NMSE were given at the bottom of each image.
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TABLE 3 Quantitative comparison of the reconstruction quality with
respect to reference images among all the methods on the dataset.

Method PSNR (dB) SSIM NMSE
Zero-filled 25.80 ± 0.96 0.738 ± 0.075 0.1161 ± 0.0315

SENSE 26.89 ± 0.97 0.768 ± 0.067 0.0889 ± 0.0194

CS-TV 29.16 ± 1.28 0.819 ± 0.044 0.0530 ± 0.0161

CS-wavelet 29.09 ± 1.10 0.826 ± 0.061 0.0564 ± 0.0166

DIP-CS 29.82 ± 0.94 0.841 ± 0.050 0.0472 ± 0.0130

Bold value indicates the highest mean value of the metric among the comparison methods.
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CS-wavelet and DIP-CS. The boundaries of vessels in CS-TV

reconstruction were slightly blurred. CS-wavelet reconstruction

better mitigated the noise, yet residual artifacts and unsmooth

edges of the coronary arteries were still visible. DIP-CS achieved

the best coronary visualization among the compared methods.

Since reconstruction error metrics like NMSE and SSIM do

not directly reflect the clinical quality of imaging, we

compared the sharpness and conspicuity of the coronary arteries

between different reconstruction methods. Figure 10B shows the

results of quantitative vessel sharpness evaluation. 3D DIP-CS

(47.2 ± 12.8%) significantly improved the vessel sharpness

compared with CS-TV (38.1 ± 10.2%, P = 0.005 < 0.01), and

SENSE (35.53 ± 12.5%, P = 9 × 10−3 < 0.001). 3D DIP-CS also led

to higher vessel sharpness compared with CS-wavelet (43.6 ±

10.9%, P = 0.20 > 0.05), although lacking statistical significance

after Bonferroni correction. No significant difference was

found between DIP-CS and the mildly undersampled reference

images. Figure 11 shows the results of conspicuity scores rated by

two readers. 3D DIP-CS resulted in significantly higher average

score (RCA: 4.0 ± 0.6; LAD: 4.3 ± 0.5) than SENSE (RCA: 2.3 ± 0.9,
FIGURE 10

Visualized coronary arteries (RCA and LAD) from the reconstructions of SEN
proximal segments of RCA and LAD in reconstructions of 3D DIP-CS showed
arrows). (B) Quantitative metrics of vessel sharpness between different recon
four reconstruction methods and the fully-sampled reference image. St
compared to the other methods. (*P < 0.05; ***P < 0.001, ****P < 0.0001).
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P = 2 × 10−4; LAD: 3.3 ± 0.8; P = 0.007), CS-TV (RCA: 2.9 ± 0.9,

P = 0.003; LAD: 3.4 ± 0.4, P = 0.003), and CS-wavelet (RCA: 3.0 ± 0.5,

P = 0.002; LAD: 3.5 ± 0.6; P = 0.002).
5 Discussion

In this work, we introduce a scan-specific 3D DIP-CS method

for accelerated CMRA reconstruction. The method demonstrates

sufficient accuracy in reconstructing the 3D image from a 7-to-

11-fold undersampling, which shortens the scan time of 3D

CMRA from more than 20 min–5 min. Compared to the baseline

methods such as iterative SENSE, CS-TV and CS-wavelet, our

method exhibits superior mitigation of artifacts and noise,

resulting in improved image quality for multiple k-space

sampling rates and sampling patterns, and improved coronary

artery sharpness and conspicuity. The short scan time

underscores the potential of our method for clinical application.

Many existing learning-based reconstruction methods rely on

large datasets for training. For example (50), trained a variational

neural network on 2.7k images to perform nine-fold accelerated

motion-compensated reconstruction (51). used data acquired

from 45 subjects with an extensive data augmentation to train an

unrolled MoCo-MoDL network for nine-fold accelerated CMRA.

A recent study (52) used an unrolled CS-AI framework trained

on 740k images of various anatomies and contrasts to accelerate

data acquisition with an acceleration factor of 6 (the mean scan

time was 8.1 min). Compared to these methods, our method has

a key advantage in that it does not need external training data.

Furthermore, since it is scan-specific, less concerns are present
SE, CS-wavelet, and 3D DIP-CS in a healthy subject. (A) The reformatted
better integrity and smoothness compared to other two methods (white
struction methods. The sharpness metrics were compared between the
atistical comparison shows DIP-CS achieved higher vessel sharpness
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FIGURE 11

Qualitative scoring results for the healthy volunteers (N= 13) undergoing self-navigated CMRA scan with the proposed 3D DIP-CS and the comparison
methods. A five-point scoring system was used to evaluate the quality of the reformatted vessels (5 = best). (A) Statistical comparison in RCA and LAD.
(B) Distributions of scores in these methods. (**P < 0.01; ***P < 0.001).
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regarding its generalizability compared to fully-supervised methods

(29). The method can thus have the potential to be used with

different CMRA sequences and scan parameters, as shown in our

experiments. Due to the same reason, it also holds promise for

extension to solving other 3D reconstruction problems in MRI

and other imaging modalities.

Compared with deep learning methods such as deep unrolling,

our method requires significantly less GPU memory during

optimization. In our experiment, 3D DIP-CS used less than 5 GB

of GPU memory, making it a more practical and memory-

efficient option. Owing to its efficient memory usage, the DIP-CS

method could potentially be expanded with a 3D DIP network

architecture, which has already been explored in a previous study

for 3D PET imaging (53). This 3D DIP architecture is

particularly useful for those 3D sampling trajectories that cannot

be transformed into 2D slice-by-slice sampling, such as 3D radial

sampling. In our initial validation, we have implemented such a

3D network architecture by changing the 2D convolutional layers

to 3D layers. However, reconstruction results from the 3D DIP

method were quite blurred, suggesting the presence of model

underfitting. We opine that this lack of fitting may be due to the

limited network capacity of a 3D DIP encoder compared to the

large number of voxels, as previous studies have found that 2D

DIP networks are often over-parameterized (20, 33, 54).

Therefore, more sophisticated modifications may be needed to

develop a 3D DIP method with high reconstruction quality.

In this work, we compared the performance of 3D DIP-CS with

several other unsupervised methods, including iterative SENSE,

CS-TV and CS-wavelet. We found that 3D DIP-CS led to
Frontiers in Cardiovascular Medicine 12
improved reconstruction accuracy and image quality. In addition

to these benefits, we also found that the incorporation of TV

regularization often resulted in faster convergence, with an example

shown in Figure 12. This may be an additional advantage for a

combination of DIP and the CS-based regularization.

The study design and the method have limitations. Firstly, due to

the absence of a large CMRAdataset, our experiments were conducted

on a relatively small dataset, which necessitates further studies on

larger datasets. A larger number of subjects can enhance the

statistical power of the analysis and increase reliability of the

conclusions. Furthermore, a larger, multicenter dataset also contains

more diverse data, providing a better vehicle for evaluating

generalizability of the proposed method. Secondly, the acquisition

window of our CMRA sequence was 164 ms, which was mildly

longer than acquisition windows in previous studies [90–130 ms in

(55)]. We will investigate the use of shorter acquisition window in

future to reduce the potential adverse effect of cardiac motion.

However, this limitation should not affect the relative differences

between different reconstruction methods, as the same sequence was

used for all of them. Thirdly, due to the limitation of computing

resources and time, we only explored one type of network

architecture. However, many other architectures such as

Transformer or U-Net have been proposed as the backbone of DIP

and may bring improvement to the results (26, 29, 37, 56). Finally,

our method needs approximately 3 h to reconstruct a single volume,

which needs acceleration before clinical translation. Long

reconstruction time is a common issue for DIP. For example, in

(24), the un-trained DIP-based method took 6 min for

reconstruction of a single slice even after acceleration. Furthermore,
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FIGURE 12

The variation of PSNR over each iteration of training. Initializations of network parameters were the same among the three methods for a fair comparison.
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due to the large data size, even classical CMRA reconstruction

methods like non-rigid motion-compensated PROST need ∼50 min

for reconstruction (9). Parallel computing and the use of 3D

networks may be feasible approaches for further exploration.
6 Conclusion

In conclusion, we propose a hybrid DIP-CS method for the

acceleration of 3D CMRA. By leveraging the implicit prior from

the CNN architecture and the sparsifying prior from total

variation, the proposed 3D DIP-CS method demonstrates the

capability to recover images from 7 to 11 folds of acceleration

without training on any external datasets. The superior image

quality obtained by the proposed method renders it a useful

method for accelerating 3D CMRA.
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