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Imaging for the diagnosis of
acute myocarditis: can artificial
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Myocarditis is a cardiovascular disease characterised by inflammation of the
heart muscle which can lead to heart failure. There is heterogeneity in the
mode of presentation, underlying aetiologies, and clinical outcome with
impact on a wide range of age groups which lead to diagnostic challenges.
Cardiovascular magnetic resonance (CMR) is the preferred imaging modality in
the diagnostic work-up of those with acute myocarditis. There is a need for
systematic analytical approaches to improve diagnosis. Artificial intelligence
(AI) and machine learning (ML) are increasingly used in CMR and has been
shown to match human diagnostic performance in multiple disease
categories. In this review article, we will describe the role of CMR in the
diagnosis of acute myocarditis followed by a literature review on the
applications of AI and ML to diagnose acute myocarditis. Only a few papers
were identified with limitations in cases and control size and a lack of detail
regarding cohort characteristics in addition to the absence of relevant
cardiovascular disease controls. Furthermore, often CMR datasets did not
include contemporary tissue characterisation parameters such as T1 and T2
mapping techniques, which are central to the diagnosis of acute myocarditis.
Future work may include the use of explainability tools to enhance our
confidence and understanding of the machine learning models with large,
better characterised cohorts and clinical context improving the diagnosis of
acute myocarditis.
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1 Introduction

Myocarditis is characterised by inflammatory cell infiltration into the myocardium

associated with a high risk of heart failure (1). Heterogenous aetiologies include direct

injury following cardiotropic viral infections, non-viral infective causes, drug reactions, as

well as organ-specific or multi-system autoimmunity. Regardless, immune mediated

damage, often mediated by infiltrating lymphocytes, is central to myocardial injury (2). The

annual occurrence of myocarditis has been estimated to be 1.8 million cases with the

prevalence ranging from 10 to 106 per 100,000 worldwide (3). There were 131,376 years

lived with disability and 1.26 million years of life lost attributable to myocarditis in 2017 in
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the Global Burden of Disease Study (3). Increasingly, myocarditis is

diagnosed more frequently with impact on a wide range of age

groups including young people (4). There are diverse modes of

presentation including via pathways for acute coronary syndromes,

life-threatening cardiac arrhythmias/sudden death, and acute/

chronic heart failure. Clinical outcomes include complete recovery,

the consequences of chronic stable myocardial injury, or those

attributable to chronic relapsing inflammatory states. This clinical

variability poses significant diagnostic challenges including:

establishing when to make a diagnosis in the patient pathway,

ascertaining key diagnostic features and evaluating their respective

clinical utilities, and achieving the aim(s) of the diagnostic

algorithm (e.g., to distinguish myocarditis from myocardial

infarction, or between chronic myocarditis and other causes of a

dilated cardiomyopathy).

Cardiac magnetic resonance (CMR) imaging is considered by

many to be the preferred non-invasive investigation for the

diagnosis of myocarditis. It is often under-utilised due to complex

protocols and contrast requirements as well as the lack of reporting

expertise and high expense (5, 6). CMR can detect hyperaemia,

myocardial oedema, and interstitial expansion; however, these

changes are not specific to myocarditis and will accompany any

cause of acute myocardial injury, emphasising the importance of a

well-defined clinical context when interpreting imaging results. In

contrast to endomyocardial biopsy (EMB), CMR cannot detect

causes of the inflammatory disorder, and cannot characterise the

inflammatory infiltrate mediating myocardial injury.

Although considered to be the reference standard for diagnosis,

EMB is performed in only a minority of suspected cases (5, 7). This

is in part due to its invasive nature and fear of complications such

as ventricular rupture, and a low diagnostic yield due to sampling

error and false negatives (8).

CMR has been validated against EMB-derived histology with

significant correlations between fibrosis and scar on non-invasive

assessment and histological fibrosis (9). Current consensus opinion is

to use CMR in all suspected cases with additional multi-modal

imaging including 18F-fluorodeoxyglucose positron emission

tomography (FDG-PET) in certain clinical contexts such as

sarcoidosis (10, 11). Despite the existence of current imaging-

based consensus guidelines such as the Lake Louise Criteria (LLC),

they are not consistently applied in clinical practice. Due to issues

around sampling inaccuracies underlying tissue characterisation

sequences and incomplete coverage of myocardium during CMR

acquisition, clinical CMR reporting of myocarditis often does not

conform to the LLC (5). Despite decades of research into

myocarditis, the prognosis is poor in the group of patients presenting

with heart failure or arrhythmias, highlighting the need for

systematic analytical approaches to enhance diagnosis and risk

stratification (1).

Machine learning (ML)—a subset of artificial intelligence (AI)

—is a collection of techniques that enable computers to learn tasks

from data. ML and AI applications are increasingly prevalent in

CMR (12, 13). For example, ML is reported to match diagnostic

human performance and augment phenotyping, with the added

benefit of discrimination between acute and chronic myocarditis

(14, 15). In addition, AI analytical tools may be more robust for
Frontiers in Cardiovascular Medicine 02
decision making, augmenting clinical workflows, saving clinicians

time and aiding diagnosis (16).

In this article, we will describe the role of CMR and other

imaging modalities used for the diagnosis of myocarditis

followed by a literature review on the applications of AI and ML

in CMR to diagnose acute myocarditis.
2 The role of imaging in the diagnosis
of myocarditis

2.1 Current role of cardiovascular magnetic
resonance in myocarditis

Multi-parametric measures provided by CMR are typically used

to diagnose myocarditis. Those outlined by the LLC working group

were most recently updated in 2018 to reflect evidence and

advances in CMR technology including T1 and T2 mapping. The

main diagnostic criteria are the presence of at least one CMR T1-

based marker for non-ischaemic myocardial injury [T1 mapping,

extracellular volume (ECV), or late gadolinium enhancement

(LGE)] and one T2-based marker for myocardial oedema (T2

mapping or T2-weighted imaging). The supporting criteria include

left ventricular systolic dysfunction and/or pericarditis or pericardial

effusion. For T2-weighted sequences, either signal hyperintensity in

T2-STIR sequences or if no focal signal change, the use of global

myocardial T2 to skeletal muscle T2 signal intensity ratio ≥2 fulfils

one major criterion for acute myocarditis (17). Mid-wall LGE and

T2 elevation correlate with worse outcomes (18–20). The

assessment of LGE pattern and oedema specific sequences such as

T2-weighting and T2 mapping are currently used to support the

diagnosis of acute myocarditis in clinical practice. One study

reported that a normal ECV appears to be the most sensitive

imaging biomarker in the acute setting of myocarditis to exclude

this as a diagnosis (21), although further evidence on its additional

value over T1/T2 mapping techniques is needed. Myocardial strain

using feature tracking adds incremental prognostic value beyond

clinical features, LGE and the left ventricular ejection fraction (22).

Additionally, CMR-based radiomics and texture analysis are

emerging as promising imaging markers to aid the diagnostic work-

up of myocarditis (14). Prior research has shown that tissue

tracking is a significant predictor of LGE in myocarditis when there

is preserved LV function and no visually-detected regional wall

motion abnormalities (23). This study did not employ machine

learning methodology, instead using receiver operating curves and

net reclassification analyses to assess the predictive yield of 2D and

3D tissue tracking derived strain parameters. Whilst there are issues

with reproducibility, using tissue tracking parameters alongside

other measures may be useful in those patients with a contra-

indication to contrast-enhanced CMR.

Global longitudinal strain (GLS) on CMR is sensitive to

changes in cardiac function and has been shown to be an

independent prognostic indicator associated with adverse

outcomes and may improve risk stratification of those with acute

myocarditis (22). GLS also shows significant correlations with

CMR parameters of myocardial oedema (24).
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There is no consensus in how CMR should be used in the

monitoring of myocarditis including the role for serial CMR scans

and data on the best time-interval to perform follow-up scans to

evaluate therapy response. CMR cannot directly detect inflammation

but instead can detect changes in T1 and T2 which are surrogate

markers for fibrosis and oedema. Fibrosis is more commonly

observed in chronic rather than acute myocarditis. Experimental

models of myocarditis show that findings in the acute phase parallel

that seen in humans and fibrosis occurs in chronic rather than acute

myocarditis (25, 26).

T1 and T2 mapping are promising tools for discriminating

between the acute phase and the healed phase of myocarditis or

diagnosing those with chronic symptoms given their higher

sensitivity for detection of myocardial oedema and fibrosis (27, 28).

T2 mapping appears to be more effective than T1 mapping at

detecting residual inflammation at four to eight weeks of follow up

(27). The MyoRacer Trial (28) also demonstrated similar results but

is complicated by shortcomings in methodology including sampling

errors from EMB and T1 values that are not comparable to those

reported elsewhere with similar CMR acquisition protocols. Further

research is required to assess whether T1 mapping may be suitable

for diagnosing those with chronic myocarditis and T1 mapping as a

imaging biomarker for diffuse myocardial fibrosis offers a ML

target (29). Using CMR to detect fibrosis may reflect cases which

have progressed from the acute to the chronic phase and those with

acute myocarditis with complete resolution may be missed by CMR.

An objective CMR based inflammation score may aid

standardisation of CMR reports and could potentially be

calculated using quantitative assessment of the CMR surrogates

reflecting myocardial strain, diffuse myocardial fibrosis and

oedema (30). ML algorithms may be well suited to analyse all

available data and allow the generation of an imaging-based

inflammation score, promoting novel diagnostic classifications of

myocarditis. Such scores may also have utility in following

disease progression, monitoring for features indicating recovery

as well as those providing early indicators of relapse.

In high-risk cases such as fulminant myocarditis with cardiogenic

shock, patients may be clinically unstable or unsuitable for CMR with

some requiring haemodynamic support (11). In this scenario, a

standard CMR protocol with contrast is not feasible due to the risk

of deterioration with arrhythmia and heart failure sequelae.

Application of ML on non-contrast data to predict LGE may

permit a shorter total CMR acquisition time helping to guide

decisions regarding diagnostics (including EMB or FDG-PET) and

acute therapy (e.g., immunosuppression, extracorporeal oxygenation

and mechanical support, transplantation).
2.2 The complementary role of 18f-
fluorodeoxyglucose positron emission
tomography to cardiovascular magnetic
resonance in myocarditis

FDG-PET is an alternative to CMR for detecting focal and

diffuse myocardial inflammation (11). It directly measures the

increased glucose metabolism which results from the activation
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of the local inflammatory infiltrate. A simultaneous hybrid PET/

CMR approach may yield an accurate diagnosis in cardiac

sarcoidosis and should be considered in the assessment of the

presence of disease and stage of disease (31).

There is a paucity of high-quality evidence including large

clinical trials to support the routine use of FDG-PET in the acute

setting (32, 33). One study reported the use of FDG-PET in the

diagnosis of myocarditis, and to guide withdrawal of

immunosuppressive therapy (34). In this study, 75 patients with

acute myocarditis and ventricular arrhythmia were enrolled

prospectively, and all underwent EMB and CMR evaluated

according to the LLC. FDG-PET was obtained either when there

was a contra-indication to CMR, or if there were discordant EMB

and CMR findings. Lymphocytic myocarditis was diagnosed in

88%, and 55% underwent ICD implantation. FDG-PET and CMR

were concordant in classifying 90% of patients with anteroseptal

vs. inferolateral patterns of inflammation with 10% discordance in

the localisation of these patterns by the different diagnostic

imaging modalities. The best match between CMR and those who

had a positive FDG-PET test were with standard LLC and T2

short tau inversion recovery (STIR) sequences (R2= 0.739).

This single centre study addressed highly selected myocarditis

patients admitted to hospital with ventricular arrhythmias; the

findings may not apply to less severe acute disease, or to more

chronic/borderline cases.

When compared with FDG-PET as a sole diagnostic imaging

modality, there is more widespread availability of CMR and CMR

is well suited to AI approaches given multiple facets on image

acquisition, reconstruction, segmentation, and quantification which

can be improved by ML approaches (35).
2.3 Machine learning in CMR relevant to
myocarditis

AI in cardiac imaging is an evolving field, with utility extending

well-beyond segmentation and quantification. This includes guiding

the diagnosis of cardiovascular disease, for example in identification

of features of pulmonary arterial hypertension on CMR (36). In the

context of myocarditis, the most obvious application of ML to CMR

is on scar and oedema quantification. Scar evaluation is an

important component of tissue characterisation in CMR, but

quantitative assessment can be so time consuming as to limit

clinical utility. Automatic segmentation of scar and oedema can be

challenging due to the multiple sequences of CMR data acquired

at different time points and breath-holds, and difficulties in

labelling the data with high interobserver variance making it

challenging to derive a consensus ground truth.

Convolutional neural networks (CNNs) are the most frequently

used type of deep neural network for image analysis. For example,

CNNs have been used to segment the extent of myocardial scar

on LGE images (37). A standard CNN typically consists of an

input layer, and functional layers which transform the input into a

specific form of output. A transformer-based method has been

proposed for the classification and segmentation of myocardial

fibrosis (38). Transformers are a type of neural network
frontiersin.org
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architecture “transforming” input data into output data by learning

the relationships between sequences and their context; for example,

in myocarditis in the context of high T2 and elevated troponin and

thickened myocardial walls, LGE represents oedematous interstitial

expansion rather than the mature “replacement” scar in

myocardial infarction.

Vision transformers, used in computer vision, can be used for

image classification and are a topic of interest (39). There is some

debate about the role of CNNs, vision transformers and other

architectures such as ConvNext v2 in classification and

segmentation (40, 41). Future work may feature hybrid CNN-

transformer methods (42). It is important to demonstrate that

these ML methods can improve healthcare delivery to encourage

their uptake and use in clinical practice. Papetti et al. applied ML

methodology to a myocardial infarction cohort, with

demonstrable time savings, accuracy and minimal required user

input for LV and scar segmentation (37).
3 Literature review

The search strategy to identify studies using ML in CMR to

diagnose acute myocarditis as summarised in Figure 1 yielded 6

results. Duplicate publications were removed, and manual review

of articles was performed against the criteria specified in Figure 1.

Various databases including PubMed, Embase, and Arxiv were

interrogated. Key terms included myocarditis, CMR or cardiac

MRI, machine learning, artificial intelligence, reinforcement

learning and diagnosis. Figure 2 summarises the range of causes of

myocarditis and the role of CMR and ML in diagnosis.
FIGURE 1

Literature review and filtering flowchart. Created with Lucid.com.
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Table 1 summarises the main objectives, input data, methods

and evaluation measures. Three out of the six publications were

based on a well-annotated CMR dataset from Tehran. The

Tehran dataset is publicly available along with the code for the

study by Sharifrazi et al.; however, metadata are not available

and the dataset can be considered of uncertain provenance

(45, 49). Patients with a clinical suspicion of myocarditis only

underwent CMR if it was thought likely that this test could

determine patient management which may have resulted in

selection bias. Healthy controls were included in the final dataset,

and the models are developed and tested on their ability to

differentiate between disease and normal controls. In reviewing

these studies, it must not be forgotten that the “real-world”

objective of diagnostic algorithms includes detecting

inflammation and distinguishing between different causes of

myocardial injury—and not simply discriminating between a

specified disease and normal controls.
3.1 Clustering with supervised learning

The study by Sharifrazi et al. classified images in the Tehran

dataset using a hybrid CNN and k-means clustering algorithm

(CNN-KCL) (45). After the dataset was pre-processed, images were

placed in several clusters with similar images placed in a cluster

and each cluster utilised by the CNN for classification of

myocarditis. No clear justification is given for why clustering is

necessary—the data is fully labelled which would suggest a

supervised learning approach would suffice. Initially, two clusters of

healthy and myocarditis were given as inputs to the model. Due to

heterogeneity in the input data the initial accuracy of the model
frontiersin.org
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FIGURE 2

Central illustration created with bioRender.com. A variety of triggers predispose to myocarditis which can be acute and/or chronic. Cardiac MRI
features are shown as inputs for machine learning aided diagnosis of acute myocarditis.

TABLE 1 Summary of identified publications for this review.

Objective Publication
date

Authors Input data
(CMR

sequences)

Dataset Methodological
considerations

Sample Evaluation

To distinguish
between
myocarditis and MI

19.12.19 Di Noto
et al. (43)

Cines, SSFP, T2,
LGE

University Heart
Center, University
Hospital Zurich

Exponential filter, wavelet
transform filter, recursive
feature elimination

173 patients (111
MI, 62
Myocarditis)

Training (90%);
Testing (10%). Nested
10-fold cross
validation

To predict the
presence of LGE in
myocarditis
patients

16.09.22 Cavallo et al.
(44)

Short Axis (STIR,
PSIR), T1, T2, LGE

Policlinico Tor
Vergata, Rome,
Italy

Weka data mining platform
Correlation-based Feature
Selection
Ensemble ML

19 patients Training (70%);
Testing (30%)
10-fold cross
validation

To distinguish
myocarditis from
healthy controls

04.01.22 Sharifrazi
et al. (45)

Cine, T1, T2, LGE
(PSIR)

Z-Alizadeh Sani
myocarditis
dataset

Convolutional neural network
combined with k means
clustering

32 myocarditis
patients, 15
healthy controls

Training (90%);
Testing (10%)

To distinguish
myocarditis from
healthy controls

30.06.22 Moravvej
et al. (46)

Cine, T1, T2, LGE
(PSIR)

Z-Alizadeh Sani
myocarditis
dataset

Reinforcement learning with
population-based weights
strategy

586 myocarditis
patients, 307
healthy controls

5-fold cross
validation

To distinguish
myocarditis from
healthy controls

26.10.22 Jafari et al.
(47)

Cine, T1, T2, LGE
(PSIR)

Z-Alizadeh Sani
myocarditis
dataset

Turbulence Neural
Transformer (TNT)
architecture
Explainable-based Grad Cam
method

32 myocarditis
patients, 15
healthy controls

10-fold cross
validation

To distinguish
myocarditis from
healthy controls

08.04.22 Ghareeb
et al. (48)

Cines, T1, T2, LGE
(PSIR)

Heart Hospital,
Hamad Medical
Corporation,
Qatar

Unsupervised learning- K
means clustering, Bayesian
factor analysis

169 patients Silhouette score

NB The reported sample sizes differ between the 3 studies using the Z-Alizadeh Sani myocarditis dataset– we are unable to ascertain the reasons for this and it is unclear in the manuscripts.

Shyam-Sundar et al. 10.3389/fcvm.2024.1408574
was low. The data was divided into more clusters (a total of four

clusters with myocarditis and healthy each divided into two

clusters) with similar images categorised in the same cluster

representing more distinct patterns. The CNN-KCL approach
Frontiers in Cardiovascular Medicine 05
significantly outperformed other traditional ML approaches such as

decision trees and random forests for this classification task. Model

performance metrics are summarised in Table 2. The accuracy of

this model was 97.41%, but the clusters used in the model are of
frontiersin.org
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TABLE 2 Model performance metrics (%) for the diagnosis of acute myocarditis in CMR.

Models Accuracy Precision Recall Specificity F1-score AUC
CNN-KCL [Sharifrazi et al. (45)] 97.41 97.6 95.7 98.56 96.5 97.05

RLMD-PA [Moravejj et al. (46)] 88.6 84 86.3 90.1 85.1 N/A

TNT [Jafari et al. (47)] 99.68 99.47 99.59 99.72 99.53 99.94

Inception v4 [Jafari et al. (47)] 99.7 99.44 99.69 99.71 99.57 99.94

NB for RLMD-PA, G means (88.2%) instead of AUC was calculated.

CNN-KCL, convolutional neural network k-means clustering; RLMD-PA, reinforcement learning-based myocarditis population-based algorithm; TNT, turbulence neural transformer.

Shyam-Sundar et al. 10.3389/fcvm.2024.1408574
uncertain clinical significance and the diagnostic aim of this model

differs from that used in clinical practice as described previously.
3.2 Reinforcement learning

In the study by Moravej et al., the authors attempted to address

concerns with CNN-KCL using the artificial bee colony (ABC), a

population-based algorithm and the reinforcement learning (RL)

method with the Tehran dataset (46). One concern relates to the

pre-processing stage, where the image matrix was considered as a

vector in k-means, resulting in missed pixels around a specific pixel.

This may have led to the loss of relevant input imaging data to the

model. RL allows the model to learn through trial and error using

feedback from its actions. The main advantage of this RL approach

is that it’s fully supervised as opposed to the CNN-KCL approach

which combines both supervised and unsupervised methods and

may not perform as well. ABC emulates the foraging behaviour of

bees to arrive at an optimal result. Classification of images was

thought of as a sequential decision-making process with the initial

optimal weighting values calculated using reinforcement learning-

based myocarditis diagnosis combined with a population-based

algorithm (RLMD-PA) to address the problem of imbalanced data.

Table 2 shows the model performance metrics for RLMD-PA.

This outperformed conventional and metaheuristic algorithms

with improvements in the error in recall (25%) and F-score

(22%). The RLMD-PA model reduced error by more than 43%

with mean performance metrics superior to other methods such

as CNN-KCL, CNN + RL, and CNN +ABC. This study presents

a new model for classifying myocarditis images and showed that

RLMD-PA was an effective classifier for myocarditis images.
3.3 Deep learning and explainable artificial
intelligence

Jafari et al. applied a deep learning (DL)model to the Tehran dataset

to diagnose myocarditis (47). Pre-processing steps included filtering,

resizing and use of the data augmentation methods, CutMix and

MixUp to create new training examples and synthetic CMR images

(50, 51). CutMix uses patches from one image and pastes them onto

another image, whilst MixUp uses linear interpolation to combine

two images. These strategies can reducing the risk of overfitting by

creating variations and improving the diversity of the training set that

the model can learn from and improve generalisability to unseen data

(52). Pre-trained models and transformers were then used for feature

extraction and classification of the synthetic CMR data. Pre-trained
Frontiers in Cardiovascular Medicine 06
models are CNN architectures based on supervised learning that have

been trained on large datasets, including the ImageNet dataset. This

can then be applied to myocarditis and other cardiovascular disease

datasets which often have small numbers of subjects through transfer

learning approaches (53). Jafari et al. aim to build image classification

models with several architectures analysed in this study (47).

Various pre-trained models for diagnosis using CMR images

were compared with and without data augmentation. Inception

V4 and Turbulence Neural Transformer (TNT) were most

successful, and the metrics of these models are shown in Table 2.

One of the main criticisms of ML and DL is their “black box”

nature. The authors attempted to address this by using

explainability techniques, a form of interpretability methods.

These can be used to extract relevant knowledge from the image

data illustrating how a given model yields individual predictions.

Jafari et al. used explainable AI as a final step in post-processing

(47). The grad-cam method was used and helped to visually

identify suspicious areas on imaging that could potentially help

clinicians to diagnose myocarditis in the early stages (54).

All three studies that use the Tehran dataset have limitations,

and these include those that derive from the dataset’s relatively

small size, its single centre nature, and the lack of external

validation. Furthermore, there was evidence of selection bias and

an absence of other cardiovascular disease controls. Patient-level

data, including baseline characteristics, are not available.

Variance in demographic factors including medical conditions,

sex and age may also influence the results and their generalisability.
3.4 Supervised and unsupervised learning
with radiomics

A study by Di Noto et al. compared the diagnosis of myocardial

infarction (MI) vs. myocarditis using CMR-based radiomic features

from LGE (43). The diagnosis of MI was based on clinical

presentation, ECG and laboratory findings, whilst the diagnosis of

myocarditis was also defined by clinical parameters including two

out of the three LLC (5). CMR sequences included steady state free

precession cines, T2-weighted images in three short-axis slices

(using a double-inversion black-blood spin-echo sequence) and

LGE images in three short-axis slices. LGE images were analysed by

two independent readers for discrimination between myocarditis

and MI. Both supervised [recursive feature elimination (RFE)] and

unsupervised [prinicipal component analysis (PCA)] feature

selection techniques were applied to the radiomics of LGE on

retrospective data. Feature selection can simplify the model, reduce

training time, and improve model generalisability. Five different ML
frontiersin.org
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algorithms from different classifier families were trained: k-nearest

neighbour, linear discriminant analysis, multilayer perceptron,

support vector machine and TreeBagger. As expected, better

performance metrics were obtained for the more experienced reader

compared to a less experienced reader for subjective visual analysis

discriminating myocarditis and MI.

Performance of the feature selectors was defined by classification

modelmetrics including accuracy, sensitivity, specificity and precision

but only reported for RFE feature selection of 2D features and PCA

guided selection of 3D features which led to the highest

performances. The more experienced reader ultimately performed

better than ML in distinguishing MI from myocarditis, whilst the

less experienced reader was outperformed by the ML algorithm.
3.5 Predicting late gadolinium
enhancement using radiomics and
supervised machine learning

A study by Cavallo et al. was the first to use radiomics in STIR

sequences to predict the presence of LGE in myocarditis, and also

aimed to develop abbreviated scan protocols for patients with

suspected acute myocarditis (44). Prediction of LGE from non-

contrast data has been studied for MI (55). The investigators

studied 19 patients that underwent CMR for clinically suspected

myocarditis within 30 days of symptom onset. 228 STIR and

PSIR images were analysed with 57 images excluded due to

suboptimal quality or non-diagnostic images. The mean time

from the start of the examination to the last slice of the PSIR

sequence was 46.13 ± 11.16 min.

The authors performed an additional analysis on 19 age- and sex-

matched patients with normal STIR and LGE imaging, in order to

demonstrate that noise or artefact was not affecting the data. After

training, ML models with accuracy of greater than 70% were selected

and then the probability of presence of LGE was calculated on the

test set. These models were grouped together using an Ensemble ML

model averaging the predictions obtained. Six radiomics features

showed statistically significant differences. The Ensemble ML model

showed accuracy of 0.75, sensitivity of 0.80 and a specificity of 0.73

with a NPV of 0.81 and a PPV of 0.70 and AUC of 0.79 (95% CI:

0.66–0.92). The study outlined the population characteristics

including age, sex, biochemical data and past medical history. Age

and sex were comparable between controls and myocarditis patients.

Limitations of this study include the retrospective nature of the

study, a small sample number and data from a single MRI scanner.

There is also the possibility that the sample may have included

patients with undetected coronary artery disease, although none of

the LGE images contained LGE in a subendocardial pattern.
3.6 Unsupervised machine learning to
assess cardiac magnetic resonance
inflammation patterns

A study by Ghareeb et al. used unsupervised ML and Bayesian

factor analysis to investigate patterns of inflammation (48). The
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investigators included an ethnically diverse cohort that was

retrospectively identified with acute myocarditis detected by

CMR and defined by LLC. The exposures studied were LGE and

T2 mapping as surrogates for inflammation and oedema

respectively. The primary outcome and aim of this study was a

clinical combined endpoint of cardiac death, arrhythmia, and

dilated cardiomyopathy. The relationship between demographics

and geographical differences and CMR parameters including

LGE, T2, T1 and T2 mapping was investigated in a separate

exploratory analysis.

Anteroseptal inflammation was associated with worse

outcomes which is consistent with previous research including as

the ITAMY study (18). Geographical location of the patient not

appear to explain the variance of CMR inflammation patterns.

However, sex did appear to influence inflammation pattern with

females (22% of the cohort) less likely to have oedema by T2

mapping and sub-epicardial inferolateral inflammation.

K-means clustering indicated that these patients could be

divided between two predominant clusters. One had elevated T2

alongside subepicardial LGE in anterior and inferolateral

segments. The other predominant cluster were more likely to

have early gadolinium enhancement (EGE), elevated T1 and T2

on parametric mapping and mid-wall and infero-lateral LGE.

However, there is overlap between the two clusters with poor

delineation. This approach requires some degree of clinical

interpretation which is informed by the Bayesian factor analysis.
4 Discussion

4.1 Limitations in current literature

Current literature highlights the relative paucity of ML

applications in imaging to aid the diagnosis of acute myocarditis.

Limitations include cohort and control size with cohort

characteristics often unavailable and lack of relevant controls.

Cavallo et al. predicted LGE data utilising radiomics but this was

based on cases alone: the same approach may have limited utility

if applied to the more common clinical objective of distinguishing

acute myocarditis from other cardiovascular diseases such as MI

or heart muscle disease (44). In the interesting paper published by

Ghareeb et al., the number of cardiac events was low and further

inferences are challenging given the size of the cohort (48).

Additionally, although comparisons between the clusters was

completed with factor analysis these are statistically

underpowered. All the reviewed papers analyse imaging data from

single centres, and in some studies the sample size is very small

with the risk that models may be overfitted to the training data.

As outlined, T1 and T2 are important CMR parameters in the

diagnostic imaging evaluation of myocarditis. T1 and T2 were not

included in analyses (Di Noto et al.) or not part of the imaging

dataset (Ghareeb et al.) (43, 48). In the paper by Di Noto et al.,

segmentation was performed by an individual as opposed to by

semi-automated or automated processes (43). Future CMR

studies are likely to incorporate more automation of
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segmentation of multiple tissue characterisation parameters given

the inaccuracies with manual processing of images.

The available publications demonstrate a variety of approaches

including supervised, unsupervised and reinforcement learning but

there are limitations with the AI/ML methods utilised. Jafari et al.

whilst utilising novel techniques in the context of myocarditis

diagnosis are applying existing algorithmic architectures and

methods developed for use in different cardiovascular conditions

rather than a specialised approach to myocarditis.

Generalisability to an external dataset and patient groups in

other hospitals/regions may be challenging. Given that the

Tehran dataset is fully labelled, the combination of supervised

and unsupervised techniques used by Sharifrazi et al. seems

unnecessary where a fully supervised learning method would

suffice (45). The RL approach used by Moravejj et al. is fully

supervised but seems arbitrary and overly complex and not

comparable to other alternative approaches such as CNNs (46).

In general, confidence in AI/ML tools and their applicability is

an ongoing area of debate and it will be important to exploit more

recent techniques and compare them with the Grad cam method

which was used in the paper by Jafari et al. (47). Explainable

Artificial Intelligence (XAI) plays a vital role in enhancing

human understanding and trust in DL systems and as models get

larger with more widespread uses explainability will minimise the

adverse consequences of model mistakes. At present, XAI

including that used in healthcare tends to depend on a single

explainer with the risk of disagreement in explainability methods

systematically applied to the same dataset.

Myocarditis varies by sex and age, with acute myocarditis

occurring predominantly in young males while limited data suggests

women get myocarditis post menopause (56). An understanding of

age and sex differences is critical for improving the efficacy of

diagnosing acute myocarditis using ML. Training data will likely be

imbalanced in terms of sex distribution which reflects the natural

prevalence of myocarditis. Accordingly, the training model may not

generalise well to models with female subjects.

Existing AI models are trained on physician interpreted CMR

datasets. CMR has limitations in achieving myocarditis diagnosis

including the inability to determine aetiology unlike this is a

barrier towards routine clinical implementation of AI in

myocarditis. The complexity and unfamiliarity of AI coupled

with the heterogeneity in myocarditis will compound the above

with regards to difficulty in achieving user clinician confidence in

“AI for myocarditis” as a tool to advance patient care.
4.2 Future work

There are several ways in which the issues above may be

mitigated. Large well characterised cohorts incorporating greater

clinical context and long term follow up as additional variables

alongside CMR image data may lead to better predictions with a

more accurate diagnosis of myocarditis. In addition, pooling image

data in a federated fashion, with individual centres training their

models on larger datasets may lead to more robust results. A well

curated publicly available dataset will allow algorithms to
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benchmark against comparable methods aiming to achieve similar

AI/ML imaging objectives. Data augmentation in the pre-

processing of CMR images may assist by generating synthetic

CMR images which can aid model predictions. Combining CNNs

using an ensemble method might lead to higher model

performance. It is also the case that AI-derived clustering could

allow novel ways of stratifying myocarditis with the potential to

conduct outcome studies based upon this approach.

Explainability tools may supplement the intuitive

understanding of AI/ML. We envisage judicious application of

post-hoc XAI methods such as Grad-cam to address “black box”

criticisms of ML models. A more intuitive human-oriented

approach might be more helpful to clinicians with arrows and

text indicating and justifying the diagnosis. As far as we are

aware, there are no clinically validated studies of XAI in clinical

cardiology practice and no XAI methods have undergone

regulatory approval. Demonstrating that the predictions of ML

models can be both explained and the models themselves are

interpretable will aid integration into clinical diagnostic

workflows in cardiology. We expect that XAI will be increasingly

deployed in healthcare and careful design of XAI outputs which

are clinically acceptable is important given the high stakes nature

of medical decision making. T2 in clinical CMR is thought to be

a sensitive marker for acute myocarditis and to our knowledge

the heterogeneity of T2 distribution in this population has not

been described. This imaging biomarker could aid the diagnosis

of acute myocarditis and we postulate it may have prognostic

implications for these patients.
5 Conclusions

We have evaluated AI/ML applications to CMR in the

diagnosis of acute myocarditis. The studies described whilst

classifying myocarditis images lack metadata and the majority

differ in their aim from the clinical diagnostic objective which is

to differentiate between distinct cardiac diseases that share

similar clinical presentations. Whilst in some cases the image

dataset is publicly available, often imaging datasets for ML in

cardiovascular disease are not accessible for researchers and we

anticipate that increasing availability of large cardiac imaging

datasets will be leveraged to drive ML augmented diagnosis of

cardiovascular diseases including myocarditis with a direct

positive impact on patient care.
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