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Identification of iron metabolism-
related genes in coronary heart
disease and construction of a
diagnostic model
Lin Zhu, Jianxin Zhang, Wenhui Fan, Chen Su and Zhi Jin*

Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
Background: Coronary heart disease is a common cardiovascular disease,
yferroptosiset its relationship with iron metabolism remains unclear.
Methods: Gene expression data from peripheral blood samples of patients with
coronary heart disease and a healthy control group were utilized for a
comprehensive analysis that included differential expression analysis, weighted
gene co-expression network analysis, gene enrichment analysis, and the
development of a logistic regression model to investigate the associations and
differences between the groups. Additionally, the CIBERSORT algorithm was
employed to examine the composition of immune cell types within the samples.
Results: Eight central genes were identified as being both differentially expressed
and related to iron metabolism. These central genes are mainly involved in the
cellular stress response. A logistic regression model based on the central
genes achieved an AUC of 0.64–0.65 in the diagnosis of coronary heart
disease. A higher proportion of M0 macrophages was found in patients with
coronary heart disease, while a higher proportion of CD8T cells was observed
in the normal control group.
Conclusion: The study identified important genes related to iron metabolism in
the pathogenesis of coronary heart disease and constructed a robust diagnostic
model. The results suggest that iron metabolism and immune cells may play a
significant role in the development of coronary heart disease, providing a basis
for further research.
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1 Introduction

Coronary heart disease (CAD) is a cardiovascular disease, often caused by

arteriosclerosis. Arteriosclerosis is characterized by the deposition of cholesterol and

calcium in the inner layer of the arterial walls, forming plaques that narrow the arterial

lumen and obstruct blood flow (1). Coronary heart disease primarily affects the

coronary arteries, which are responsible for supplying oxygen and nutrients to the heart

(2). When the coronary arteries are damaged, the heart muscle may not receive enough

oxygen and nutrients, leading to myocardial ischemia and angina. In severe cases,

coronary heart disease can lead to myocardial infarction, where heart muscle tissue dies

due to lack of blood supply (3). Symptoms of coronary heart disease include chest pain,

shortness of breath, palpitations, and fatigue. Coronary heart disease is a common and

deadly disease, significantly affecting patients’ quality of life and lifespan.
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In recent years, an increasing number of studies have focused

on the important role of iron metabolism in the development

and progression of CAD (4). As an essential trace element in the

human body, iron plays a crucial role in various physiological

processes, including oxygen transport, energy metabolism, and

cell signaling (5). However, imbalances in iron metabolism,

whether iron overload or deficiency, can have significant adverse

effects on the cardiovascular system (5). Iron is a highly redox-

active metal that can participate in the Fenton reaction,

producing large amounts of hydroxyl radicals (·OH). These

highly reactive free radicals can attack cell membranes, proteins,

and DNA, leading to widespread tissue damage (5). In blood

vessels, this oxidative damage directly compromises the integrity

of endothelial cells, increases vascular permeability, and promotes

the infiltration of inflammatory cells, thereby accelerating the

process of atherosclerosis. Excess iron ions can catalyze the

oxidation of low-density lipoprotein (LDL) (6). Oxidized LDL is

more easily phagocytosed by macrophages than normal LDL,

leading to the formation of foam cells. These foam cells are

major components of atherosclerotic plaques, and their

accumulation can cause narrowing of the vascular lumen,

reduced blood flow, and increased risk of myocardial ischemia

(7). Excess iron can stimulate the production and release of

inflammatory factors such as interleukin-6 (IL-6), tumor necrosis

factor-α (TNF-α), and C-reactive protein (CRP). These

inflammatory factors not only directly participate in the

formation and destabilization of atherosclerotic plaques but can

also further activate immune cells, creating a vicious cycle that

continuously exacerbates the vascular inflammatory state (8, 9).

Healthy vascular endothelium is crucial for maintaining vascular

tone and preventing thrombosis. Excess iron can directly damage

endothelial cells and reduce the bioavailability of nitric oxide

(NO). NO is an important vasodilator, and its reduction can lead

to increased vascular contractility, decreased blood flow, and

consequently increased risk of myocardial ischemia (10, 11).

Ferroptosis is a newly discovered iron-dependent form of

programmed cell death characterized by excessive intracellular

iron accumulation and lipid peroxidation (12). In CAD,

especially in myocardial ischemia-reperfusion injury, ferroptosis

may be an important mechanism of myocardial cell damage.

These mechanisms work together to potentially accelerate the

formation of atherosclerosis, increase plaque instability, and

ultimately lead to cardiovascular events (4, 13). On the other

hand, iron deficiency can also increase the risk of CAD. The

most direct consequence of iron deficiency is anemia, which

leads to reduced oxygen-carrying capacity of the blood (14). In

patients with already narrowed coronary arteries, anemia can

further exacerbate myocardial hypoxia, increasing the frequency

and severity of angina attacks. Long-term anemia can also lead

to compensatory cardiac enlargement, increasing cardiac load.

Iron is an important component of many iron-containing

enzymes that play key roles in mitochondrial respiratory chain

and ATP generation processes (15, 16). Iron deficiency may

affect the energy metabolism of myocardial cells, reducing

cardiac contractility and overall function. Studies have shown

that iron deficiency may increase platelet activation and
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aggregation. Activated platelets are more prone to form thrombi,

which is particularly dangerous in coronary arteries with existing

atherosclerosis and may lead to acute coronary syndrome (16, 17).

It is worth noting that the relationship between iron

metabolism and CAD presents a “U-shaped” curve, meaning that

both high and low iron levels may be detrimental to

cardiovascular health. This complex relationship provides new

insights into the prevention and treatment of CAD while also

presenting challenges. A deeper understanding of the interaction

mechanisms between iron metabolism and CAD not only helps

to elucidate the pathogenesis of the disease but may also provide

important bases for developing new diagnostic markers and

treatment strategies.

Leveraging abundant public datasets and bioinformatics

approaches, this research pinpointed hub genes associated with

iron metabolism and coronary artery disease (CAD) through

differential analysis and weighted gene co-expression network

analysis (WGCNA). It proceeded to develop a diagnostic model

for CAD using stepwise and logistic regression analyses, which

was subsequently validated across two additional blood sample

datasets. The model demonstrated robust diagnostic capabilities,

underscoring its potential utility in the clinical identification of

CAD. Additionally, the study delved into immune infiltration

within these samples, examining the relationship between various

immune factors and the identified hub genes, our study design

process is illustrated in Figure 1. This investigation lays the

groundwork for understanding the significance of iron

metabolism in the context of CAD, offering a novel perspective

for future research.
2 Methods and materials

2.1 Data source

The gene expression data related to coronary heart disease was

sourced from the publicly accessible NCBI Gene Expression

Omnibus (GEO) database, under the specific study dataset

identifier GSE12288 (18). This dataset examined the gene

expression patterns in the peripheral blood of 110 individuals with

coronary heart disease and 112 healthy controls. Additional

validation was conducted using data from GSE236610 (19) and

GSE221911 (20). Data related to ferroptosis were obtained from

the public FerrDb database (http://www.zhounan.org/ferrdb),

including genes that promote, inhibit, or are markers of

ferroptosis, with a total of 264 unique genes after removing

duplicates (21). In our sample selection process, we exclusively

included studies focusing on CHD to minimize interference from

other conditions. We prioritized studies with larger sample sizes to

obtain more comprehensive data. Regarding demographic

matching, we selected studies that demonstrated balanced control

of age range, gender ratio, and ethnic composition, while also

recording and matching lifestyle factors. In terms of comorbidities,

we specifically chose studies that included participants with

relevant comorbid conditions (such as hypertension, diabetes, and

dyslipidemia). This careful selection strategy was implemented to
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FIGURE 1

Study flowchart.

Zhu et al. 10.3389/fcvm.2024.1409605
ensure the robustness and reliability of our findings. By focusing on

CHD-specific studies with well-documented comorbidities, we

aimed to better understand the disease’s characteristics while

acknowledging the common coexistence of these conditions in

real-world clinical settings. The inclusion of larger sample sizes

enhanced the statistical power of our analysis, while the balanced

demographic matching helped minimize potential confounding

factors. This methodological approach allowed us to generate more

reliable and clinically relevant results while maintaining the

ecological validity of our research.
2.2 Differential expression analysis

The analysis of differential gene expression was conducted

utilizing the “limma” package (version 3.48.3) in R (version

4.1.2), comparing samples from the group with coronary heart

disease to those from the control group. The raw gene expression

data were first normalized using the quantile normalization

method. Genes were identified as differentially expressed (DEGs)

based on adjusted p-values (p_adj) < 0.05, calculated using the

Benjamini-Hochberg and Bonferroni method to control for false

discovery rate, and an absolute log2 fold change (|log2FC|)

greater than 0.585 (corresponding to a linear fold change of 1.5).

Visual representations of these DEGs were generated using the

“pheatmap” package (version 1.0.12) for heatmaps and the

“ggplot2” package (version 3.3.5) for volcano plots. The heatmap

utilized hierarchical clustering with complete linkage method and

Euclidean distance metric, displaying the top 100 DEGs ranked

by adjusted p-value. The volcano plot showed log2 fold change

on the x-axis and -log10(adjusted p-value) on the y-axis, with

upregulated genes colored red, downregulated genes colored blue,

and non-significant genes colored gray. Gene names for the top

50 most significantly differentially expressed genes were labeled
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on the plot. All analyses were performed on a high-performance

computing cluster with 64 GB RAM and 16 CPU cores to ensure

efficient processing of large-scale gene expression data.
2.3 Weighted gene co-expression network
analysis (WGCNA)

The “WGCNA” package (version 1.70-3) was utilized in R

(version 4.1.2) to construct gene co-expression networks and

pinpoint differentially expressed genes. As a cornerstone in

systems biology, WGCNA (Weighted Gene Co-expression

Network Analysis) detects and categorizes gene co-expression

patterns, grouping genes into modules based on expression

similarities. In this study, we employed a soft-thresholding

power of 6, determined by the scale-free topology criterion

(R2 > 0.8). The minimum module size was set to 30 genes, and

the deep split parameter was set to 2 for medium sensitivity in

cluster splitting. Modules were identified using the dynamic

tree-cutting algorithm with a height cutoff of 0.25. The

module eigengene dissimilarity threshold for merging was set

at 0.25. Pearson correlation was used to calculate the adjacency

matrix, and the topological overlap matrix (TOM) was

computed using the TOMsimilarity function. Gene significance

was calculated as the absolute correlation between gene

expression and trait data, while module membership was

determined by correlating gene expression profiles with

module eigengenes. The network was shown using Cytoscape

(version 3.8.2), with a edge weight cutoff of 0.2 to display only

strong connections. This process enhances the analysis of gene

expression data, facilitating the discovery of gene correlations

and clusters linked to various biological states, ultimately

providing insights into the underlying molecular mechanisms

of coronary heart disease (22).
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2.4 Gene enrichment analysis

This study pinpointed crucial genes linked to ferroptosis and

coronary heart disease by leveraging the “VennDiagram” package

in R to identify commonalities among Differentially Expressed

Genes (DEGs), genes found via Weighted Gene Co-expression

Network Analysis (WGCNA), and genes involved in iron

metabolism. The expression differences of these essential genes

between the coronary heart disease group and control subjects

were illustrated using violin plots, with the significance of these

variations determined through t-tests or Mann–Whitney U tests

(p < 0.05). Furthermore, an enrichment analysis of these pivotal

genes was carried out to explore their association with coronary

heart disease. Gene Ontology (GO) analysis was performed to

uncover their roles in biological processes (BP), with the results

shown through the “GOplot” package in R.
2.5 Logistic regression model

In this study, logistic regression, a common method in automated

disease diagnosis, was leveraged to distinguish between samples with

coronary heart disease and control samples, marked by response

variables 1 and 0, respectively. The analysis commenced with a

stepwise regression to refine the model, focusing on eliminating

non-significant predictors while keeping those of importance. This

method enhances the model by iteratively adding or removing

variables based on the optimization of the Akaike Information

Criterion (AIC), ensuring a streamlined and effective predictor set.

Following this, logistic regression was applied to understand the

significant predictors’ relationship with the occurrence of coronary

heart disease. The model’s diagnostic accuracy was evaluated by

generating a receiver operating characteristic (ROC) curve and

computing the area under this curve (AUC), utilizing R’s “stats”

and “pROC” packages for this purpose.
2.6 Immune infiltration analysis

The CIBERSORT algorithm was applied to evaluate the

infiltration of immune cells within the microenvironment. This

analysis encompassed a comprehensive set of 547 biomarkers

and included 22 distinct human immune cell types, ranging from

plasma cells, B cells, and T cells to various subgroups of bone

marrow cells. The methodology of this computational tool

involves conducting deconvolution analysis on the expression

matrix of immune cells, leveraging the principles of linear

support vector regression for accurate assessment and

characterization of immune cell populations.
2.7 Statistical analysis

All statistical analyses were performed using R software

(version 4.1.2) for comprehensive data processing and analysis.

The selection of statistical tests strictly adhered to data
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distribution characteristics: initially, the Shapiro-Wilk test and

Q–Q plots were employed to assess data normality. For

continuous variables following normal distribution (such as

certain gene expression data), independent samples t-tests were

conducted for between-group comparisons. For non-normally

distributed data (such as some immune cell infiltration indices),

non-parametric Mann–Whitney U tests (also known as Wilcoxon

rank-sum tests) were applied for statistical inference.

To control the false discovery rate (FDR) in multiple

comparisons, both Benjamini-Hochberg and Bonferroni methods

were implemented for p-value adjustment. For differential

expression analysis, the “limma” package (version 3.48.3) was

utilized for data processing, and quantile normalization was

applied to standardize the raw gene expression data, effectively

removing batch effects and systematic biases.

In the Weighted Gene Co-expression Network Analysis

(WGCNA), Pearson correlation coefficients were calculated to

evaluate gene-gene expression correlations, enabling the identification

of highly interconnected gene modules. For immune cell infiltration

analysis, the CIBERSORT algorithm was employed to assess the

distribution of 22 immune cell types, followed by appropriate

statistical methods to compare differences between groups.

This comprehensive statistical framework ensured robust and

reliable results while maintaining appropriate control over type I

error rates across multiple statistical comparisons. All statistical

tests were two-sided, with statistical significance defined as

p < 0.05, unless otherwise specified.
3 Results

3.1 Acquisition of iron metabolism central
genes related to coronary heart disease

The application of the criteria “p_adj < 0.05, |logFC| > 0.585”

resulted in the identification of 9,487 differentially expressed

genes from the GSE12288 dataset. The top 50 differentially

expressed genes were shown in a volcano plot (Figure 2A) and

heatmap (Figure 2B). After removing outliers and filtering genes,

a weighted gene co-expression network was constructed using a

dataset comprising 12,347 genes and 211 samples. Setting the

soft-thresholding power to 4 led to a scale independence of 0.91

(Figure 3A) and an average connectivity of 12.68 (Figure 3B).

In this research, clustering was applied to both samples and

genes (as shown in Figures 3C, D, respectively) to discern

patterns of similarity in their expression, which helps in

understanding gene relationships and the variance in expression

across different samples. The correlation between gene modules

and clinical traits was explored (Figure 3E), integrating central

genes from limma analysis, genes implicated in iron metabolism

identified by WGCNA, and other related genes, pinpointed 8

overlapping genes (CIRBP, USP7, ELAVL1, ATG13, ALOXE3,

PRKAA2, USP11, SLC38A1), highlighted in Figure 4A. Among

these, USP11 and SLC38A1 were found to have statistically

significant differential expression. The outcomes of these analyses

were visually represented through violin plots in Figure 5.
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FIGURE 2

Gene expression differences between CAD and control samples. (A) Genes with significantly higher expression in CAD are marked in red, those with
significantly higher expression in the control group are in blue, and genes with no significant changes are in gray. (B) Displays the top 50 genes with
significantly higher expression in either CAD or control group samples.
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3.2 Enriched biological processes and
pathways associated with central genes

Enrichment analysis was performed to gain insights into the

potential biological functions of these genes. GO analysis revealed

that 6 out of the 8 genes were associated with various biological

processes, such as cytoplasmic stress granule, cytoplasmic

ribonucleoprotein granule, ribonucleoprotein granule, regulation

of cellular catabolic process, regulation of catabolic process, stress

granule assembly, cellular catabolic process, catabolic process,

mRNA stabilization, and negative regulation of cellular catabolic

process (Figure 4B).
3.3 Construction and performance of the
diagnostic model

The multigene predictive model derived from stepwise logistic

regression analysis exhibited strong diagnostic performance, with

an AUC value of 0.64 (Figure 6A). Furthermore, this model was

subsequently validated in blood samples, showing higher AUC

values in GSE60993 and GSE66360, at 0.65 and 0.63 respectively

(Figures 6B, C). These results suggest that the model has

potential clinical application prospects in diagnosing patients

with coronary heart disease.
3.4 Immune infiltration

In this research, the impact of the microenvironment, which

includes immune cells, the extracellular matrix, inflammatory

mediators, and growth factors, on the sensitivity to clinical

treatments and diagnostic accuracy was examined. Specifically,

the study analyzed the composition of 9 different immune cells
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in 112 samples from patients with coronary heart disease and

110 samples from a healthy control group using the CIBERSORT

algorithm. The findings, depicted in a histogram (Figure 7A) and

a box plot (Figure 7B), showed that the levels of M0

macrophages were elevated in the coronary heart disease group

compared to the healthy controls. Conversely, CD8T cells were

found in greater abundance in the healthy group than in the

coronary heart disease group.
4 Discussion

Coronary heart disease is a cardiovascular disease closely

related to oxidative stress and inflammatory reactions, and iron is

an important mineral in many physiological and biochemical

reactions in the human body. Iron possesses reactive redox

capabilities, leading to the accumulation of reactive oxygen

species (ROS) and lipid peroxidation (23). Studies have shown

that iron metabolism disorder is involved in the pathological

progression of coronary heart disease, and the consequences of

iron metabolism disorder are related to iron overload-induced

programmed cell death (ferroptosis) (24).

The metabolism and regulatory mechanisms of iron in

myocardial cells play a crucial role in iron-mediated damage in

many cardiovascular diseases (25). The pathways of iron import

and export, as well as the intracellular distribution of iron, are

essential for heart function and the development of coronary

heart disease (26). Iron overload can lead to an increase in free

iron within cells, triggering lipid peroxidation and organelle

damage, ultimately resulting in cardiac injury (27, 28). Moreover,

iron overload also promotes the development of endothelial cells

and atherosclerosis.

The accumulation of iron impacts ischemic and hypoxic

damage in the heart, leading to abnormal cascades of cell death
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FIGURE 3

WGCNA analysis results. (A) Displays the scale-free fit index for various soft-thresholding powers. (B) Shows the average connectivity for different soft-
thresholding powers. (C) A dendrogram of sample clustering. (D) A dendrogram showing gene clustering. (E) The correlation between different gene
modules and clinical features.
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Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2024.1409605
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

Central genes and functional analysis. (A) Identification of eight central genes through the intersection of DEGs, WGCNA, and genes related to iron
metabolism. (B) The biological processes involving these central genes.
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signals. In addition to the effects of iron, iron metabolism and

oxidative stress are closely related to autophagy (15, 29). Proper

autophagy can protect myocardial cells by reducing oxidative

stress and attenuating myocardial inflammation, but excessive

autophagy can lead to myocardial cell death, exacerbating cardiac

dysfunction (30). Iron accumulation also induces the release of

intracellular iron, further exacerbating myocardial damage (16).

Additionally, ferroptosis, as a novel iron-dependent form of

regulatory cell death driven by lipid peroxidation, has been found

to play a significant role in ischemic heart disease (4). Studies

have shown that myocardial infarction leads to high levels of
FIGURE 5

Expression patterns of central genes in CAD vs. Control groups in CAD exp
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ROS production in myocardial cells, and ferroptosis inhibitors

can significantly reduce the area of myocardial infarction (31).

The relationship between iron and coronary artery disease

(CAD) involves various aspects such as iron metabolism and

regulation, oxidative stress, autophagy, and ferroptosis (32).

We identified eight hub genes (CIRBP, USP7, ELAVL1,

ATG13, ALOXE3, PRKAA2, USP11, SLC38A1) that exhibited

significant differences between coronary heart disease (CAD)

patients and healthy controls. These genes are primarily involved

in cellular stress responses, autophagy, and metabolic regulation,

suggesting that dysregulation of iron metabolism may promote
erimental samples.
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FIGURE 6

ROC curves and AUC metrics for expression groups. (A) For samples from GSE12288. (B) For blood samples from GSE60993. (C) For blood samples
from GSE66360.
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the development of CAD by affecting these key cellular processes.

Specifically, USP11, a member of the ubiquitin-specific protease

family, serves as a critical regulator of protein homeostasis

through its deubiquitinating activity. This enzyme plays a

fundamental role in modulating intracellular iron homeostasis by

controlling the stability and turnover of key iron metabolism-

related proteins (33, 34). Dysregulation of USP11 expression can

significantly disrupt the precise balance of iron metabolism protein

degradation pathways, leading to pathological accumulation of

iron ions within cellular compartments (35). The resultant excess

of free iron ions acts as a potent catalyst for the generation of

reactive oxygen species (ROS), triggering oxidative stress cascades

that can inflict substantial damage on cardiomyocytes (36).

Concurrently, SLC38A1, a sophisticated amino acid transport

system, functions as an essential mediator of intracellular amino

acid homeostasis. Alterations in SLC38A1 expression patterns

can profoundly impact the biosynthesis of iron-regulatory

proteins, particularly ferritin, the primary iron storage protein.

Compromised ferritin synthesis creates a deleterious cycle where

elevated levels of free iron further amplify oxidative stress

damage (37, 38). This pathological cascade can subsequently

compromise mitochondrial integrity and function, ultimately

disrupting the critical energy metabolism pathways in

cardiomyocytes, which are essential for maintaining proper

cardiac function. CIRBP is a stress response protein that is

upregulated under hypoxic and oxidative stress conditions (39).

In the context of CAD, abnormal expression of CIRBP may

reflect the hypoxic and oxidative stress status faced by

myocardial cells, which is closely related to myocardial ischemia

caused by coronary artery stenosis (40). USP7 and USP11 are

ubiquitin-specific proteases that participate in the regulation of

protein homeostasis. Changes in their expression may affect the

stability of iron metabolism-related proteins, thereby disrupting

the intracellular balance of iron (41–43).ELAVL1 (HuR) is an

RNA-binding protein that plays a pivotal role in mRNA stability

and translational regulation. Its abnormal expression may

influence the expression of genes related to iron metabolism,
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consequently affecting iron homeostasis (44, 45). ATG13 is a key

regulatory factor in the autophagy process, and changes in its

expression suggest alterations in autophagy activity, which may

affect the cell’s ability to respond to iron overload (46). ALOXE3

is involved in lipid metabolism, and its abnormal expression may

be associated with lipid peroxidation and iron-dependent cell

death (ferroptosis) (47). PRKAA2 (the α2 subunit of AMPK) is

an important regulator of cellular energy metabolism (48). In

CAD, changes in PRKAA2 expression may reflect metabolic

dysregulation in myocardial cells, linked to mitochondrial

dysfunction caused by iron overload (49). SLC38A1 is an amino

acid transporter, and alterations in its expression may affect

the intracellular balance of amino acids, further influencing the

synthesis of ferritin and other iron metabolism-related proteins

(50).The functional network of these hub genes reveals that

dysregulation of iron metabolism may participate in the

pathological processes of CAD through multiple pathways,

including oxidative stress, energy metabolism dysregulation,

protein homeostasis imbalance, and autophagy abnormalities.

This provides new insights into the molecular mechanisms

underlying coronary heart disease.

Furthermore, in our study, we found that macrophages play a

crucial role in naive CD4+ T cells in healthy coronary artery

disease. Macrophages play a significant role in coronary artery

disease (CAD). CAD is a coronary artery vascular disease caused

by atherosclerosis and is a major cause of cardiovascular diseases

(51, 52). During the development of CAD, macrophages

participate in the formation and stability regulation of

atherosclerotic plaques (53).

The main roles of macrophages in atherosclerotic plaques

include promoting inflammation, regulating plaque stability, and

participating in the regression process of plaques (54, 55). They

form foam cells by ingesting and accumulating lipoproteins within

the vascular wall, promoting lipid deposition and continuous

growth of plaques (56, 57). Additionally, macrophages participate

in maintaining local inflammatory responses by secreting pro-

inflammatory cytokines, chemokines, and generating reactive
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FIGURE 7

Immune cell composition in CAD vs. ND Samples. (A) The proportion of 22 immune cell types in each sample. (B) The variation in immune cell
infiltration between CAD and ND samples.
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oxygen and nitrogen species, further promoting plaque

development (58, 59). In the regression process of CAD, the

transformation of macrophages into anti-inflammatory M2

macrophages may help reduce plaque inflammation, promote

plaque regression and stability (60, 61).
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CD4+ T cells play a crucial role in adaptive immune responses.

Studies have shown that different subgroups of CD4+ T cells are

associated with atherosclerosis and coronary artery disease in the

atherosclerosis process. Specifically, naive CD4+ T cell subgroups

are correlated with atherosclerosis and coronary artery disease
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(62, 63). Naive CD4+ T cells play a role in the development of

atherosclerosis (64). These cells may be activated during the

development of atherosclerosis and participate in inflammatory

responses (65). Therefore, the number and activity of naive CD4+

T cells may be related to the development of atherosclerosis and

coronary artery disease (66). Additionally, analyzing CD4+ T cell

subgroups using multi-parameter/multi-color flow cytometry and

their correlation with atherosclerosis has been studied (67, 68).

The results suggest a correlation between naive CD4+ T cells and

atherosclerosis, further supporting the potential role of naive CD4

+ T cells in atherosclerosis (69).

In conclusion, the immune system plays a critical role. Immune

cells and inflammatory mediators participate in processes such as

plaque formation, plaque instability, and thrombus formation,

promoting the development and worsening of CAD. The

activation and regulation of the immune system have a

significant impact on the pathophysiological processes of CAD,

making immune modulation a crucial strategy for the treatment

and prevention of CAD.

Although this study successfully established a robust diagnostic

tool through a multi-gene prediction model (with AUC values

ranging from 0.63 to 0.65) and validated it across multiple

independent datasets (GSE60993 and GSE66360), certain

limitations remain. The diagnostic accuracy of the model has

room for improvement, which may somewhat restrict its clinical

utility. Future large-scale prospective cohort studies are needed to

further validate and optimize the diagnostic performance of this

model, with the aim of developing a more precise diagnostic tool

for coronary heart disease.
5 Conclusion

This study successfully identified iron metabolism genes

associated with coronary heart disease by analyzing peripheral

blood gene expression data and constructed a logistic regression

model with good diagnostic performance. The results indicate

that iron metabolism plays a significant role in the pathogenesis

of coronary heart disease. Additionally, immune cell type analysis

revealed differences between coronary heart disease patients and

normal controls. These findings provide important reference for
Frontiers in Cardiovascular Medicine 10
further research on the diagnosis and treatment of coronary

heart disease, and offer new research directions for the role of

iron metabolism in coronary heart disease.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material, further inquiries can be

directed to the corresponding author.
Author contributions

LZ: Data curation, Writing – original draft. JZ: Methodology,

Writing – original draft. WF: Software, Writing – original draft.

CS: Investigation, Writing – original draft. ZJ: Supervision,

Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Escobar E. Hypertension and coronary heart disease. J Hum Hypertens. (2002) 16
(Suppl 1):S61–3. doi: 10.1038/sj.jhh.1001345

2. Smith TW. Intimate relationships and coronary heart disease: implications for
risk, prevention, and patient management. Curr Cardiol Rep. (2022) 24(6):761–74.
doi: 10.1007/s11886-022-01695-4

3. Ducimetière P, Cambien F. Coronary heart disease aetiology: associations and
causality. C R Biol. (2007) 330(4):299–305. doi: 10.1016/j.crvi.2007.02.016

4. Fan X, Li A, Yan Z, Geng X, Lian L, Lv H, et al. From iron metabolism to
ferroptosis: pathologic changes in coronary heart disease. Oxid Med Cell Longevity.
(2022) 2022:6291889. doi: 10.1155/2022/6291889

5. Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during
aging - role of inflammation and proteolysis. Mech Ageing Dev. (2023) 215:111869.
doi: 10.1016/j.mad.2023.111869
6. Bai T, Li M, Liu Y, Qiao Z, Wang Z. Inhibition of ferroptosis alleviates
atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction
in mouse aortic endothelial cell. Free Radical Biol Med. (2020) 160:92–102. doi: 10.
1016/j.freeradbiomed.2020.07.026

7. Lv Y, Zhang S, Weng X, Huang J, Zhao H, Dai X, et al. Estrogen deficiency
accelerates postmenopausal atherosclerosis by inducing endothelial cell ferroptosis
through inhibiting NRF2/GPX4 pathway. FASEB J. (2023) 37(6):e22992. doi: 10.
1096/fj.202300083R

8. Gao F, Zhang B, Sun Z, Gao Y, Liu C, Dou X, et al. Regulation of endothelial
ferroptosis by SESN1 in atherosclerosis and its related mechanism. Aging. (2023) 15
(11):5052–65. doi: 10.18632/aging.204777

9. Yegin ZA, İyidir ÖT, Demirtaş C, Suyanı E, Yetkin İ, Paşaoğlu H, et al. The
interplay among iron metabolism, endothelium and inflammatory cascade in
frontiersin.org

https://doi.org/10.1038/sj.jhh.1001345
https://doi.org/10.1007/s11886-022-01695-4
https://doi.org/10.1016/j.crvi.2007.02.016
https://doi.org/10.1155/2022/6291889
https://doi.org/10.1016/j.mad.2023.111869
https://doi.org/10.1016/j.freeradbiomed.2020.07.026
https://doi.org/10.1016/j.freeradbiomed.2020.07.026
https://doi.org/10.1096/fj.202300083R
https://doi.org/10.1096/fj.202300083R
https://doi.org/10.18632/aging.204777
https://doi.org/10.3389/fcvm.2024.1409605
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zhu et al. 10.3389/fcvm.2024.1409605
dysmetabolic disorders. J Endocrinol Investig. (2015) 38(3):333–8. doi: 10.1007/
s40618-014-0174-6

10. Zhang J, Song Y, Li Y, Lin HB, Fang X. Iron homeostasis in the heart: molecular
mechanisms and pharmacological implications. J Mol Cell Cardiol. (2023) 174:15–24.
doi: 10.1016/j.yjmcc.2022.11.001

11. Paterek A, Mackiewicz U, Mączewski M. Iron and the heart: a paradigm shift
from systemic to cardiomyocyte abnormalities. J Cell Physiol. (2019) 234
(12):21613–29. doi: 10.1002/jcp.28820

12. Wu X, Qin K, Iroegbu CD, Xiang K, Peng J, Guo J, et al. Genetic analysis of
potential biomarkers and therapeutic targets in ferroptosis from coronary artery
disease. J Cell Mol Med. (2022) 26(8):2177–90. doi: 10.1111/jcmm.17239

13. Wang Y, Zhao Y, Ye T, Yang L, Shen Y, Li H. Ferroptosis signaling and regulators
in atherosclerosis. Front Cell Dev Biol. (2021) 9:809457. doi: 10.3389/fcell.2021.809457

14. Savarese G, von Haehling S, Butler J, Cleland JGF, Ponikowski P, Anker SD. Iron
deficiency and cardiovascular disease. Eur Heart J. (2023) 44(1):14–27. doi: 10.1093/
eurheartj/ehac569

15. von Haehling S, Jankowska EA, van Veldhuisen DJ, Ponikowski P, Anker SD.
Iron deficiency and cardiovascular disease. Nat Rev Cardiol. (2015) 12(11):659–69.
doi: 10.1038/nrcardio.2015.109

16. Mokhtari H, Bagheri B, Rasouli M. Iron hypothesis and coronary artery disease
in geriatric patients. Arch Physiol Biochem. (2020) 126(1):17–22. doi: 10.1080/
13813455.2018.1486429

17. Silva C, Martins J, Campos I, Arantes C, Braga CG, Salomé N, et al. Prognostic
impact of iron deficiency in acute coronary syndromes. Rev Port Cardiol. (2021) 40
(8):525–36. doi: 10.1016/j.repc.2020.09.007

18. Sinnaeve PR, Donahue MP, Grass P, Seo D, Vonderscher J, Chibout SD, et al.
Gene expression patterns in peripheral blood correlate with the extent of coronary
artery disease. PloS One. (2009) 4(9):e7037. doi: 10.1371/journal.pone.0007037

19. Widlansky ME, Liu Y, Tumusiime S, Hofeld B, Khan N, Aljadah M, et al.
Coronary plaque sampling reveals molecular insights into coronary artery disease.
Circ Res. (2023) 133(6):532–4. doi: 10.1161/CIRCRESAHA.123.323022

20. McCaffrey TA, Toma I, Yang Z, Katz R, Reiner J, Mazhari R, et al. RNAseq
profiling of blood from patients with coronary artery disease: signature of a T cell
imbalance. J Mol Cell Cardiol Plus. (2023) 4:100033. doi: 10.1016/j.jmccpl.2023.100033

21. Tang C, Yang J, Zhu C, Ding Y, Yang S, Xu B, et al. Iron metabolism disorder
and multiple sclerosis: a comprehensive analysis. Front Immunol. (2024) 15:1376838.
doi: 10.3389/fimmu.2024.1376838

22. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. (2008) 9:559. doi: 10.1186/1471-2105-9-559

23. Jelani QU, Katz SD. Treatment of anemia in heart failure: potential risks and
benefits of intravenous iron therapy in cardiovascular disease. Cardiol Rev. (2010)
18(5):240–50. doi: 10.1097/CRD.0b013e3181e71150

24. Weidmann H, Bannasch JH, Waldeyer C, Shrivastava A, Appelbaum S, Ojeda-
Echevarria FM, et al. Iron metabolism contributes to prognosis in coronary artery
disease: prognostic value of the soluble transferrin receptor within the AtheroGene
study. J Am Heart Assoc. (2020) 9(9):e015480. doi: 10.1161/JAHA.119.015480

25. Liu Y, Clarke R, Bennett DA, Zong G, Gan W. Iron status and risk of heart
disease, stroke, and diabetes: a Mendelian randomization study in European adults.
J Am Heart Assoc. (2024) 13(6):e031732. doi: 10.1161/jaha.123.031732

26. Kansagara D, Dyer E, Englander H, Fu R, Freeman M, Kagen D. Treatment of
anemia in patients with heart disease: a systematic review. Ann Intern Med. (2013) 159
(11):746–57. doi: 10.7326/0003-4819-159-11-201312030-00007

27. Rymer JA, Rao SV. Anemia and coronary artery disease: pathophysiology,
prognosis, and treatment. Coron Artery Dis. (2018) 29(2):161–7. doi: 10.1097/MCA.
0000000000000598

28. Meng H, Wang Y, Ruan J, Chen Y, Wang X, Zhou F, et al. Decreased iron Ion
concentrations in the peripheral blood correlate with coronary atherosclerosis.
Nutrients. (2022) 14(2):319. doi: 10.3390/nu14020319

29. Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T. Pathological
roles of iron in cardiovascular disease. Curr Drug Targets. (2018) 19(9):1068–76.
doi: 10.2174/1389450119666180605112235

30. Guo S, Mao X, Li X, Ouyang H. Association between iron status and incident
coronary artery disease: a population based-cohort study. Sci Rep. (2022) 12
(1):17490. doi: 10.1038/s41598-022-22275-0

31. Das De S, Krishna S, Jethwa A. Iron status and its association with coronary
heart disease: systematic review and meta-analysis of prospective studies.
Atherosclerosis. (2015) 238(2):296–303. doi: 10.1016/j.atherosclerosis.2014.12.018

32. Barywani SB, Östgärd Thunström E, Mandalenakis Z, Hansson PO. Body iron
stores had no impact on coronary heart disease outcomes: a middle-aged male
cohort from the general population with 21-year follow-up. Open Heart. (2022) 9
(1):e001928. doi: 10.1136/openhrt-2021-001928

33. Rong Y, Fan J, Ji C, Wang Z, Ge X, Wang J, et al. USP11 Regulates autophagy-
dependent ferroptosis after spinal cord ischemia-reperfusion injury by
deubiquitinating Beclin 1. Cell Death Differ. (2022) 29(6):1164–75. doi: 10.1038/
s41418-021-00907-8
Frontiers in Cardiovascular Medicine 11
34. Zhu J, Sun R, Sun K, Yan C, Jiang J, Kong F, et al. The deubiquitinase USP11
ameliorates intervertebral disc degeneration by regulating oxidative stress-induced
ferroptosis via deubiquitinating and stabilizing Sirt3. Redox Biol. (2023) 62:102707.
doi: 10.1016/j.redox.2023.102707

35. Zhang Y, Hailati J, Ma X, Midilibieke H, Liu Z. Ubiquitin-specific protease 11
aggravates ischemia-reperfusion-induced cardiomyocyte pyroptosis and injury by
promoting TRAF3 deubiquitination. Balkan Med J. (2023) 40(3):205–14. doi: 10.
4274/balkanmedj.galenos.2023.2022-12-15

36. Zeng M, Wei X, He Y, Yang Y. Ubiquitin-specific protease 11-mediated CD36
deubiquitination acts on C1q/TNF-related protein 9 against atherosclerosis. ESC
Heart Fail. (2023) 10(4):2499–509. doi: 10.1002/ehf2.14423

37. Liu L, Su S, Ye D, Yu Z, Lu W, Li X. Long non-coding RNA OGFRP1 regulates
cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer. Anti-
Cancer Drugs. (2022) 33(9):826–39. doi: 10.1097/cad.0000000000001328

38. Li XN, Yang SQ, Li M, Li XS, Tian Q, Xiao F, et al. Formaldehyde induces
ferroptosis in hippocampal neuronal cells by upregulation of the Warburg effect.
Toxicology. (2021) 448:152650. doi: 10.1016/j.tox.2020.152650

39. Kang H, Kim J, Park CH, Jeong B, So I. Direct modulation of TRPC ion channels
by gα proteins. Front Physiol. (2024) 15:1362987. doi: 10.3389/fphys.2024.1362987

40. Garcia R, Bouleti C, Sirol M, Logeart D, Monnot C, Ardidie-Robouant C, et al.
VEGF-A plasma levels are associated with microvascular obstruction in patients with
ST-segment elevation myocardial infarction. Int J Cardiol. (2019) 291:19–24. doi: 10.
1016/j.ijcard.2019.02.067

41. Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang JJ, Luo XJ, et al. Ubiquitin-specific
protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat
hearts after ischemia/reperfusion. Free Radical Biol Med. (2021) 162:339–52.
doi: 10.1016/j.freeradbiomed.2020.10.307

42. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522
suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol
Cancer. (2020) 19(1):43. doi: 10.1186/s12943-020-01168-8

43. Wang C, Zhu Y, Zhu X, Chen R, Zhang X, Lian N. USP7 regulates HMOX-1 via
deubiquitination to suppress ferroptosis and ameliorate spinal cord injury in rats.
Neurochem Int. (2023) 168:105554. doi: 10.1016/j.neuint.2023.105554

44. Chen HY, Xiao ZZ, Ling X, Xu RN, Zhu P, Zheng SY. ELAVL1 Is
transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial
ischemia/reperfusion injury by regulating autophagy. Mol Med. (2021) 27(1):14.
doi: 10.1186/s10020-021-00271-w

45. Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, et al. Activation of
ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate
ferroptosis in hepatic stellate cells. Autophagy. (2018) 14(12):2083–103. doi: 10.
1080/15548627.2018.1503146

46. Montella-Manuel S, Pujol-Carrion N, Mechoud MA, de la Torre-Ruiz MA. Bulk
autophagy induction and life extension is achieved when iron is the only limited
nutrient in Saccharomyces cerevisiae. Biochem J. (2021) 478(4):811–37. doi: 10.
1042/BCJ20200849

47. Qin Y, Pei Z, Feng Z, Lin P, Wang S, Li Y, et al. Oncogenic activation of YAP
signaling sensitizes ferroptosis of Hepatocellular carcinoma via ALOXE3-mediated
lipid peroxidation accumulation. Front Cell Dev Biol. (2021) 9:751593. doi: 10.3389/
fcell.2021.751593

48. Virginia DM, Patramurti C, Fenty SC, Julianus J, Hendra P, Susanto NAP. Single
nucleotide polymorphism in the 3′ untranslated region of PRKAA2 on
cardiometabolic parameters in type 2 diabetes Mellitus patients who received
metformin. Ther Clin Risk Manag. (2022) 18:349–57. doi: 10.2147/TCRM.S349900

49. Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, et al. Hyperglycemia-driven
inhibition of AMP-activated protein Kinase α2 induces diabetic cardiomyopathy by
promoting mitochondria-associated endoplasmic reticulum membranes in vivo.
Circulation. (2019) 139(16):1913–36. doi: 10.1161/CIRCULATIONAHA.118.033552

50. Chen S, Diao J, Yue Z, Wei R. Identification and validation of ferroptosis-related
genes and immune cell infiltration in thyroid associated ophthalmopathy. Front Genet.
(2023) 14:1118391. doi: 10.3389/fgene.2023.1118391

51. Arnold KA, Blair JE, Paul JD, Shah AP, Nathan S, Alenghat FJ. Monocyte and
macrophage subtypes as paired cell biomarkers for coronary artery disease. Exp
Physiol. (2019) 104(9):1343–52. doi: 10.1113/EP087827

52. Erbel C, Wolf A, Lasitschka F, Linden F, Domschke G, Akhavanpoor M, et al.
Prevalence of M4 macrophages within human coronary atherosclerotic plaques is
associated with features of plaque instability. Int J Cardiol. (2015) 186:219–25.
doi: 10.1016/j.ijcard.2015.03.151

53. Li K, Kong R, Ma L, Cao Y, Li W, Chen R, et al. Identification of potential M2
macrophage-associated diagnostic biomarkers in coronary artery disease. Biosci Rep.
(2022) 42(12):BSR20221394. doi: 10.1042/bsr20221394

54. Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler, Thromb, Vasc
Biol. (2020) 40(1):20–33. doi: 10.1161/ATVBAHA.119.312802

55. Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in
atherosclerosis. Immunol Rev. (2014) 262(1):153–66. doi: 10.1111/imr.12218

56. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic
balance. Nat Rev Immunol. (2013) 13(10):709–21. doi: 10.1038/nri3520
frontiersin.org

https://doi.org/10.1007/s40618-014-0174-6
https://doi.org/10.1007/s40618-014-0174-6
https://doi.org/10.1016/j.yjmcc.2022.11.001
https://doi.org/10.1002/jcp.28820
https://doi.org/10.1111/jcmm.17239
https://doi.org/10.3389/fcell.2021.809457
https://doi.org/10.1093/eurheartj/ehac569
https://doi.org/10.1093/eurheartj/ehac569
https://doi.org/10.1038/nrcardio.2015.109
https://doi.org/10.1080/13813455.2018.1486429
https://doi.org/10.1080/13813455.2018.1486429
https://doi.org/10.1016/j.repc.2020.09.007
https://doi.org/10.1371/journal.pone.0007037
https://doi.org/10.1161/CIRCRESAHA.123.323022
https://doi.org/10.1016/j.jmccpl.2023.100033
https://doi.org/10.3389/fimmu.2024.1376838
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1097/CRD.0b013e3181e71150
https://doi.org/10.1161/JAHA.119.015480
https://doi.org/10.1161/jaha.123.031732
https://doi.org/10.7326/0003-4819-159-11-201312030-00007
https://doi.org/10.1097/MCA.0000000000000598
https://doi.org/10.1097/MCA.0000000000000598
https://doi.org/10.3390/nu14020319
https://doi.org/10.2174/1389450119666180605112235
https://doi.org/10.1038/s41598-022-22275-0
https://doi.org/10.1016/j.atherosclerosis.2014.12.018
https://doi.org/10.1136/openhrt-2021-001928
https://doi.org/10.1038/s41418-021-00907-8
https://doi.org/10.1038/s41418-021-00907-8
https://doi.org/10.1016/j.redox.2023.102707
https://doi.org/10.4274/balkanmedj.galenos.2023.2022-12-15
https://doi.org/10.4274/balkanmedj.galenos.2023.2022-12-15
https://doi.org/10.1002/ehf2.14423
https://doi.org/10.1097/cad.0000000000001328
https://doi.org/10.1016/j.tox.2020.152650
https://doi.org/10.3389/fphys.2024.1362987
https://doi.org/10.1016/j.ijcard.2019.02.067
https://doi.org/10.1016/j.ijcard.2019.02.067
https://doi.org/10.1016/j.freeradbiomed.2020.10.307
https://doi.org/10.1186/s12943-020-01168-8
https://doi.org/10.1016/j.neuint.2023.105554
https://doi.org/10.1186/s10020-021-00271-w
https://doi.org/10.1080/15548627.2018.1503146
https://doi.org/10.1080/15548627.2018.1503146
https://doi.org/10.1042/BCJ20200849
https://doi.org/10.1042/BCJ20200849
https://doi.org/10.3389/fcell.2021.751593
https://doi.org/10.3389/fcell.2021.751593
https://doi.org/10.2147/TCRM.S349900
https://doi.org/10.1161/CIRCULATIONAHA.118.033552
https://doi.org/10.3389/fgene.2023.1118391
https://doi.org/10.1113/EP087827
https://doi.org/10.1016/j.ijcard.2015.03.151
https://doi.org/10.1042/bsr20221394
https://doi.org/10.1161/ATVBAHA.119.312802
https://doi.org/10.1111/imr.12218
https://doi.org/10.1038/nri3520
https://doi.org/10.3389/fcvm.2024.1409605
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zhu et al. 10.3389/fcvm.2024.1409605
57. Eligini S, Cosentino N, Fiorelli S, Fabbiocchi F, Niccoli G, Refaat H, et al.
Biological profile of monocyte-derived macrophages in coronary heart disease
patients: implications for plaque morphology. Sci Rep. (2019) 9(1):8680. doi: 10.
1038/s41598-019-44847-3

58. Schroecksnadel K, Frick B, Winkler C, Fuchs D. Crucial role of interferon-
gamma and stimulated macrophages in cardiovascular disease. Curr Vasc
Pharmacol. (2006) 4(3):205–13. doi: 10.2174/157016106777698379

59. Liang W, Wei R, Zhu X, Li J, Lin A, Chen J, et al. Downregulation of HMGB1
carried by macrophage-derived extracellular vesicles delays atherosclerotic plaque
formation through caspase-11-dependent macrophage pyroptosis. Mol Med. (2024)
30(1):38. doi: 10.1186/s10020-023-00753-z

60. Gatto L, Paoletti G, Marco V, La Manna A, Fabbiocchi F, Cortese B, et al.
Prevalence and quantitative assessment of macrophages in coronary plaques. Int
J Cardiovasc Imaging. (2021) 37(1):37–45. doi: 10.1007/s10554-020-01957-8

61. Christofidou P, Nelson CP, Nikpay M, Qu L, Li M, Loley C, et al. Runs of
homozygosity: association with coronary artery disease and gene expression in
monocytes and macrophages. Am J Hum Genet. (2015) 97(2):228–37. doi: 10.1016/
j.ajhg.2015.06.001

62. Zhang J, Zhan F, Liu H. Expression level and significance of tim-3 in CD4(+) T
lymphocytes in peripheral blood of patients with coronary heart disease. Braz
J Cardiovasc Surg. (2022) 37(3):350–5. doi: 10.21470/1678-9741-2020-0509

63. Sun W, Cui Y, Zhen L, Huang L. Association between HLA-DRB1, HLA-
DRQB1 alleles, and CD4(+)CD28(null) T cells in a Chinese population with
Frontiers in Cardiovascular Medicine 12
coronary heart disease. Mol Biol Rep. (2011) 38(3):1675–9. doi: 10.1007/s11033-010-
0279-8

64. Ye ZL, Lu HL, Su Q, Li L. Association between the level of CD4(+) T lymphocyte
microRNA-155 and coronary artery disease in patients with unstable angina pectoris.
J Geriatr Cardiol. (2018) 15(10):611–7. doi: 10.11909/j.issn.1671-5411.2018.10.003

65. Pan Y, Zhang J, Li J, Zhao W. Identification and validation of immune markers
in coronary heart disease. Comput Math Methods Med. (2022) 2022:2877679. doi: 10.
1155/2022/2877679

66. Dumitriu IE, Araguás ET, Baboonian C, Kaski JC. CD4+ CD28 null T cells in
coronary artery disease: when helpers become killers. Cardiovasc Res. (2009) 81
(1):11–9. doi: 10.1093/cvr/cvn248

67. Saigusa R, Vallejo J, Gulati R, Suthahar SSA, Suryawanshi V, Alimadadi A, et al.
Sex differences in coronary artery disease and diabetes revealed by scRNA-seq and
CITE-seq of human CD4+ T cells. Int J Mol Sci. (2022) 23(17):9875. doi: 10.3390/
ijms23179875

68. Ding R, Gao W, He Z, Wu F, Chu Y, Wu J, et al. Circulating CD4(+)CXCR5
(+) T cells contribute to proinflammatory responses in multiple ways in coronary
artery disease. Int Immunopharmacol. (2017) 52:318–23. doi: 10.1016/j.intimp.
2017.09.028

69. Tang C, Lei X, Ding Y, Yang S, Ma Y, He D. Causal relationship between
immune cells and neurodegenerative diseases: a two-sample Mendelian
randomisation study. Front Immunol. (2024) 15:1339649. doi: 10.3389/fimmu.2024.
1339649
frontiersin.org

https://doi.org/10.1038/s41598-019-44847-3
https://doi.org/10.1038/s41598-019-44847-3
https://doi.org/10.2174/157016106777698379
https://doi.org/10.1186/s10020-023-00753-z
https://doi.org/10.1007/s10554-020-01957-8
https://doi.org/10.1016/j.ajhg.2015.06.001
https://doi.org/10.1016/j.ajhg.2015.06.001
https://doi.org/10.21470/1678-9741-2020-0509
https://doi.org/10.1007/s11033-010-0279-8
https://doi.org/10.1007/s11033-010-0279-8
https://doi.org/10.11909/j.issn.1671-5411.2018.10.003
https://doi.org/10.1155/2022/2877679
https://doi.org/10.1155/2022/2877679
https://doi.org/10.1093/cvr/cvn248
https://doi.org/10.3390/ijms23179875
https://doi.org/10.3390/ijms23179875
https://doi.org/10.1016/j.intimp.2017.09.028
https://doi.org/10.1016/j.intimp.2017.09.028
https://doi.org/10.3389/fimmu.2024.1339649
https://doi.org/10.3389/fimmu.2024.1339649
https://doi.org/10.3389/fcvm.2024.1409605
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Identification of iron metabolism-related genes in coronary heart disease and construction of a diagnostic model
	Introduction
	Methods and materials
	Data source
	Differential expression analysis
	Weighted gene co-expression network analysis (WGCNA)
	Gene enrichment analysis
	Logistic regression model
	Immune infiltration analysis
	Statistical analysis

	Results
	Acquisition of iron metabolism central genes related to coronary heart disease
	Enriched biological processes and pathways associated with central genes
	Construction and performance of the diagnostic model
	Immune infiltration

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


