Check for updates

OPEN ACCESS

EDITED BY Pasqualino Sirignano, Sapienza University of Rome, Italy

REVIEWED BY Edoardo Pasqui, University of Siena, Italy Zoltan Ruzsa, University of Szeged, Hungary

*CORRESPONDENCE Jie Wang ⊠ wangjie0103@126.com

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 08 April 2024 ACCEPTED 24 June 2024 PUBLISHED 09 July 2024

CITATION

Lian W, Chen C, Wang J, Li J, Liu C and Zhu X (2024) Application of optical coherence tomography in cardiovascular diseases: bibliometric and meta-analysis. Front. Cardiovasc. Med. 11:1414205. doi: 10.3389/fcvm.2024.1414205

COPYRIGHT

© 2024 Lian, Chen, Wang, Li, Liu and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Application of optical coherence tomography in cardiovascular diseases: bibliometric and meta-analysis

Wenjing Lian^{1†}, Cong Chen^{1†}, Jie Wang^{1*}, Jun Li¹, Chao Liu¹ and Xueying Zhu²

¹Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China, ²Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China

Significance: Since the advent of Optical Coherence Tomography (OCT) two decades ago, there has been substantial advancement in our understanding of intravascular biology. Identifying culprit lesion pathology through OCT could precipitate a paradigm shift in the treatment of patients with Acute Coronary Syndrome. Given the technical prowess of OCT in the realm of cardiology, bibliometric analysis can reveal trends and research focal points in the application of OCT for cardiovascular diseases. Concurrently, meta-analyses provide a more comprehensive evidentiary base, supporting the clinical efficacy of OCT-guided Percutaneous Coronary Intervention (PCI).

Design: This study employs a dual approach of Bibliometric and Meta-analysis. **Methods:** Relevant literature from 2003 to 2023 was extracted from the Web of Science Core Collection (WoSCC) and analyzed using VOSviewer, CiteSpace, and R for publication patterns, countries, institutions, authors, and research hotspots. The study compares OCT-guided and coronary angiography-guided PCI in treating adult coronary artery disease through randomized controlled trials (RCTs) and observational studies. The study has been reported in the line with PRISMA and AMSTAR Guidelines.

Results: Adhering to inclusion and exclusion criteria, 310 publications were incorporated, demonstrating a continual rise in annual output. Chinese researchers contributed the most studies, while American research wielded greater influence. Analysis of trends indicated that research on OCT and angiography-guided PCI has become a focal topic in recent cohort studies and RCTs. In 11 RCTs (n = 5,277), OCT-guided PCI was not significantly associated with a reduction in the risk of Major Adverse Cardiac Events (MACE) (Odds ratio 0.84, 95% CI 0.65–1.10), cardiac death (0.61, 0.36–1.02), all-cause death (0.7, 0.49–1.02), myocardial infarction (MI) (0.88, 0.69–1.13), target lesion revascularization (TLR) (0.94, 0.7–1.27), target vessel revascularization (TVR) (1.04, 0.76–1.43), or stent thrombosis (0.72, 0.38–1.38). However, in 7 observational studies (n = 4,514), OCT-guided PCI was associated with a reduced risk of MACE (0.66, 0.48–0.91) and TLR (0.39, 0.22–0.68).

Conclusion: Our comprehensive review of OCT in cardiovascular disease literature from 2004 to 2023, encompassing country and institutional origins, authors, and publishing journals, suggests that OCT-guided PCI does not demonstrate significant clinical benefits in RCTs. Nevertheless, pooled results from observational studies indicate a reduction in MACE and TLR.

KEYWORDS

optical coherence tomography, cardiovascular diseases, bibliometric analysis, metaanalysis, percutaneous coronary intervention

1 Introduction

Recent evidence suggests that MACE in chronic ischemic heart disease correlates more with the overall atherosclerotic burden than with specific flow-limiting luminal lesions (1-6). Traditional models simplistically link CAD complications to severe obstructions from narrow atherosclerotic plaques (7-10). However, this perspective is increasingly recognized as overly reductionist. Longitudinal studies on the natural progression of individual coronary plaques have revealed that even those lesions perceived as high-risk and potentially ischemia-inducing maintain stability over several years, seldom progressing to instability or resulting in MACE (11-16). The limitations of angiography in direct PCI, including inaccurate assessments of lesion morphology and the underlying mechanisms of STEMI, as well as suboptimal recognition of post-stent outcomes, underscore the necessity for a more holistic understanding of atherosclerosis within the entire arterial system (17).

OCT provides the highest resolution (1-15 µm) among current intravascular imaging technologies, enabling detailed exploration of microscopic vascular structures (18). In cardiovascular clinical applications, the significance of OCT encompasses: (1) Comprehensive plaque assessment: OCT provides detailed information about plaque size, type, and composition, aiding in understanding the total burden of atherosclerosis, not merely localized stenosis (19); (2) Vulnerable plaque identification: OCT can provide detailed views of potentially hazardous plaques by analyzing tissue characteristics, such as the size of the lipid core and the thickness of the fibrous cap (20); (3) Enhanced risk stratification: The detailed plaque and vascular information provided by OCT can help more accurately assess the risk of cardiovascular events, thus improving the accuracy of risk stratification (21); (4) Complementing traditional imaging techniques: By offering direct observation of vessel walls and plaques, OCT supplements the limitations of traditional imaging methods, providing a more comprehensive cardiovascular health assessment (22). Thus, OCT is not only a potent diagnostic tool but also adds a new dimension to the risk assessment and management of cardiovascular diseases. Its application highlights a deeper and more nuanced understanding of cardiac diseases, contributing to the refinement of existing risk stratification methods for greater precision.

We analyzed trends and applications of OCT in cardiovascular treatment over the past two decades using bibliometric techniques (23, 24). Our meta-analysis indicates OCT as a prominent focus in recent PCI trials. Previous studies comparing OCT-guided with angiography-guided PCI treatment in Meta-analyses have encountered several issues. Firstly, they did not include all significant related studies. Secondly, these meta-analyses did not separate observational studies from RCTs, a methodological rigor essential for enhancing the credibility of results. Therefore, we conducted a stringent Meta-analysis, differentiating RCTs from observational studies, aiming to provide more accurate and reliable evidence to guide clinical practice and future research directions.

2 Methods

2.1 Data sources and search strategy

The Web of Science, esteemed for its extensive interdisciplinary coverage, comprehensive citation indexing, and rich analytical metrics, serves as an exemplary database for bibliometric analysis. This resource enables researchers to identify hotspots and trends within their respective fields. Our study utilized data retrieved from the WoSCC database concerning OCT and cardiovascular diseases for bibliometric analysis. To mitigate data variability due to updates, search activities, data extraction, and downloading were conducted on the same day. The types of literature studied were confined to articles and reviews. The search strategy, specific outcomes, and search terms are detailed in Figure 1 (refer to Supplementary eMethods S1). Overall, 2,758 literature sources were analyzed, with 310 articles ultimately included and downloaded in text format (complete records and referenced citations).

2.2 Data analysis and visualization

In this study, the bibliometrix package in R (version 4.3.2) was utilized to analyze major countries, active authors and institutions, contributing journals, and keyword trends (25). Additionally, CiteSpace (version 6.1), a Java-based freeware developed by Chen (26), was employed for clustering and burst analysis of keywords. Collectively, these two software programs facilitated visual analyses, offering deep insights into the advancements in OCT research within the cardiovascular field and uncovering research frontiers using extensive data.

2.3 Meta-analysis

This work has been reported in line with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and AMSTAR (Assessing the methodological quality of systematic reviews) Guidelines (27, 28). A systematic review and meta-analysis were conducted on data from 11 RCTs and 7 observational studies. These 18 cohorts were identified through searches of electronic databases including PubMed, Cochrane Library, Embase, and Web of Science, employing a combination of text and MeSH headings in the search strategy (refer to Supplementary eMethods S2 and eTableS1). For this study, primary outcomes of interest were MACE, Cardiac death, and All-cause death, with secondary endpoints including Myocardial Infarction (MI), TVR, TLR, and stent thrombosis. All details regarding the search strategy, data extraction, and study selection are presented in the Supplementary (eMethods S3–S5).

2.4 Statistical analysis

The outcomes of interest were dichotomous variables, and rates of events with the total sample size were extracted for analysis. The

Mantel-Haenszel method's random-effects model was employed to calculate Odds Ratio (OR) and their 95% Confidence Intervals (CI). For inter-study variance, Restricted Maximum Likelihood (REML) was used. An OR estimate and its corresponding 95% CI not including the vertical line at 1 (*p*-value < 0.05) was considered statistically significant. The extent of heterogeneity was approximated using the I^2 test, with 0%–40% indicating negligible, 30%–60% moderate, 50%–90% substantial, and 75%–100% considerable heterogeneity. Given the limited number of studies included, a funnel plot for pre-specified publication bias analysis was deemed inappropriate.

2.5 Cardiovascular clinical research and patients involvement

Following the completion of our initial manuscript, we consulted a patient with cardiovascular disease and a frontline cardiovascular clinical scholar, both of whom suggested acceptance or implementation of PCI for coronary artery disease. The feedback received indicated that the certainty of the evidence

presented in our study was highly useful for evaluating the efficacy of OCT-guided vs. angiography-guided PCI in the treatment of acute coronary syndrome (ACS).

3 Results

3.1 Bibliometric results

3.1.1 Annual growth trends in publications

From 2003 to 2023, a total of 2,758 papers were retrieved from the WoSCC database. After eliminating duplicates and other types of literature, 310 articles were ultimately included for analysis, comprising 246 articles and 64 reviews. Figure 2A displays the annual statistics of publications in this field, revealing a trend in three distinct phases: (1) From 2004 to 2012, the annual publication count did not exceed 10 papers; (2) From 2013 to 2019, the number of annual publications remained relatively stable; (3) A notable increase in publication volume was observed from 2020 to 2023, with a significant spike exceeding 40 papers in 2022. By fitting the data to construct a publication trend,

results indicate a high correlation between the annual number of publications and the years ($y = 0.0541x^{2} + 0.8396x - 1.0807$, R^2 = 0.8841) (Figure 2B). The publication trend suggests that by 2024, over 400 articles on this topic are projected to be published, signifying an increasing scholarly focus on this field over time.

In this field, the top 10 countries accounted for over 80% of the total publication output compared to all other countries combined. Statistically, the five countries and regions with the most published

articles were China (77 articles), the United States (68 articles), Germany, Japan, and Italy (Table 1). In terms of the growth rate in the number of publications (Figure 3A), the United States consistently maintained a high output, slightly outperforming China, while Germany, Italy, and Japan showed relatively stable production levels. Moreover, among the top 20 countries for corresponding authors, those with the highest proportions of multiple countries publication (MCP) relative to their total publication output were Canada, the United States, Italy, the United Kingdom, and China. Although the U.S. had the most MCPs (23 articles), it did not rank first in MCP ratio. While China had the highest total number of articles, it had fewer publications in collaboration with other countries (22 articles), thus a lower MCP Ratio (Table 1). Among the limited international collaborations from China, those with the United States were the most frequent (Figure 3B).

These articles were authored by 659 institutions, among which 21 institutions published at least 5 articles each. The top 10 institutions alone authored 176 articles, accounting for 56.8% of the total (Figure 3C). The institutions with the highest number of publications included Harvard University, Harvard Medical School, Harbin Medical University, Icahn School of Medicine, Massachusetts General Hospital, National University of

TABLE 1 Corresponding author's countries.

Rank	Country	Articles	SCP	МСР	MCP Ratio
1	China	77	55	22	0.286
2	Usa	68	45	23	0.338
3	Germany	20	15	5	0.25
4	Japan	20	20	0	0
5	Italy	18	12	6	0.333
6	Canada	12	6	6	0.5
7	United Kingdom	10	7	3	0.3
8	Spain	9	7	2	0.222
9	France	8	6	2	0.25
10	Korea	7	4	3	0.429

MCP, multiple countries publication; SCP, single countries publication.

Singapore, University College London, Case Western Reserve University, and Columbia University, all with over 10 articles each. Chinese institutions such as Harbin Medical University, Tongji University, and Capital Medical University each produced more than 8 articles. As depicted in Figure 3D, institutional collaboration was more extensive than inter-country cooperation, with Harvard University and Harbin Medical University engaging in significant collaborations with numerous universities and research centers in China, as well as institutions in the UK, the US, and other countries.

3.1.2 Author analysis

Figure 4A, created using VOSviewer software, visualizes the author collaboration network in OCT research within the cardiovascular field. The minimum criterion for an author's inclusion was set at 10 publications, encompassing nearly 2000 contributing authors. Among the top 10 most productive authors, Professor Mehran Roxana possessed the highest m-INDEX; Professor Yu Bo boasted the greatest G-index; and Professor Virmani Renu held the highest h-index and total citations (TC) (Figures 4A-B).

Figure 4C presents the network map of co-cited authors, where higher weightage of a co-cited author corresponds to larger labels and circles in the visualization. In the field of OCT research, prominent figures like Professor Yu Bo from China, and Professor Maehara Akiko and Professor Virmani Renu from the United States, hold significant influence and citation weight.

Analysis of countries/regions engaged in OCT research. (A) Top 5 countries with the largest number of publications over time; (B) country cooperation network; (C) top 18 institutions by number of publications; (D) institutional collaboration-network.

Among the authors with the highest publication volumes, Professor Yu Bo is the only one from China, while the others are predominantly from the United States. Many of these authors have collaborated on publications in journals such as the "New England Journal of Medicine" and "JACC Cardiovascular Imaging" (29, 30). This indicates close collaboration among authors within this field.

3.1.3 Analysis of journals

According to our analysis, 179 journals published papers related to OCT and cardiovascular diseases. The top 5 most productive journals — "International Journal of Cardiology", "Frontiers in Cardiovascular Medicine", "Catheterization and Cardiovascular Interventions", "Revista Espanola de Cardiologia", and "Scientific Reports" — showed notable publication numbers and growth trends, as depicted in Figure 5A. Figure 5B illustrates the journal's thematic distribution through a dual-map overlay, with citing journals positioned on the left and cited journals on the right of the map. The labels represent journals covering specific themes, and colored lines trace the reference pathways. Two distinct citation pathways are evident. Two green citation paths indicate that studies from medical/clinical/surgical journals are often cited by those in molecular physiology/medical/clinical journals.

3.1.4 Citation analysis

The results of the citation analysis are presented in Figure 6 and Table 2. Among the top 10 most cited articles, 6 are clinical

trial studies, with one published in "The Lancet" (37), three in "Circulation" (31, 35, 36), and other high-impact journals. Three reviews discussed the application of OCT technology in detecting atherosclerosis in clinical practice. The 2005 randomized controlled trial by Professor Ik-Kyung Jang, "*in vivo* Characterization of Coronary Atherosclerotic Plaque by Use of Optical Coherence Tomography," ranks first with 694 citations.

3.1.5 Co-occurrence analysis

In the study of the structure of scientific knowledge, keyword co-occurrence analysis is an effective bibliometric method to grasp current hotspots. We analyzed the co-occurrence of keywords in the field and the top 50 keywords (Figure 7A), centering around OCT. Figure 7B employs a log-likelihood ratio analysis to generate eight clusters, including: coronary artery disease, deep learning, coronary stenosis, heart transplantation, rupture, OCT, congenital heart disease, plaque and cardiovascular diseases. Burst analysis of keywords was also conducted, revealing overall trends in OCT research in the cardiovascular field, encompassing topics like bare metal stents, acute myocardial infarction, intravascular ultrasound, aortic valve implantation, artery disease, elevation myocardial infarction, coronary disease, and coronary artery disease (Figure 7C).

3.1.6 Changes in trends of research in the recent years

The thematic word analysis method was employed to explore the core issues in OCT research within the cardiovascular field.

Figure 8A indicates that well-developed themes focus on atherosclerotic diseases, blood pressure, stent implantation, and plaque characteristics. The impact of surgery, post-operative care, and survival on disease treatment and prognosis are also noteworthy. Emerging research in areas such as molecular biology and cell biology is also beginning to emerge. Researchers are focusing on the roles and potential molecular mechanisms of "inflammation, oxidative stress, mitochondria, cytokines, and metabolism" in disease development.

Moreover, using multidimensional scaling, we categorized the most frequently occurring keywords and generated a conceptual structure map, resulting in three clusters (Figure 8B). Current research continues to focus on clinical manifestations, diagnosis, interventions, and prognosis of diseases like "coronary stenosis, acute myocardial infarction, atherosclerosis" (red cluster), as well as exploring pathogenic mechanisms and intervention methods related to diseases, such as "interventional methods, post-stent thrombosis formation, and potential impacts of PCI" (blue-green cluster).

Additionally, we visualized the temporal trends of keywords (Figure 8C). In the past five years, new trends in the field include coherence tomographic vascular scanning technology, coronary heart disease, microvascular lesions, vascular pressure, retinal arteriolar abnormalities, atherosclerotic risk, as well as the etiology, pathomechanisms, and clinical outcomes of cardiovascular diseases, all of which are worthy areas for continued exploration. The thematic word analysis method was employed to explore the

core issues in OCT research within the cardiovascular field. Figure 8A indicates that well-developed themes focus on atherosclerotic diseases, blood pressure, stent implantation, and plaque characteristics. The impact of surgery, post-operative care, and survival on disease treatment and prognosis are also noteworthy. Emerging research in areas such as molecular biology and cell biology is also beginning to emerge. Researchers are focusing on the roles and potential molecular mechanisms of "inflammation, oxidative stress, mitochondria, cytokines, and metabolism" in disease development.

Moreover, using multidimensional scaling, we categorized the most frequently occurring keywords and generated a conceptual structure map, resulting in three clusters (Figure 8B). Current

research continues to focus on clinical manifestations, diagnosis, interventions, and prognosis of diseases like "coronary stenosis, acute myocardial infarction, atherosclerosis" (red cluster), as well as exploring pathogenic mechanisms and intervention methods related to diseases, such as "interventional methods, post-stent thrombosis formation, and potential impacts of PCI" (blue-green cluster).

Additionally, we visualized the temporal trends of keywords (Figure 8C). In the past five years, new trends in the field include coherence tomographic vascular scanning technology, coronary heart disease, microvascular lesions, vascular pressure, retinal arteriolar abnormalities, atherosclerotic risk, as well as the etiology, pathomechanisms, and clinical outcomes of cardiovascular diseases, all of which are worthy areas for continued exploration.

Frontiers in Cardiovascular Medicine

Rank	k Representative author	Title	Key points	Journal	Citations (2023)	Year	Type	IF (2022)
-1	Ik-Kyung Jang (31)	<i>in vivo</i> Characterization of Coronary Atherosclerotic Plaque by Use of Optical Coherence Tomography	This is the first study to compare detailed <i>in vivo</i> plaque morphology in patients with different clinical presentations.	Circulation	694	2005	RCT	37.8
7	Jagat Narula (32)	Histopathologic Characteristics of Atherosclerotic Coronary Disease and Implications of the Findings for the Invasive and Noninvasive Detection of Vulnerable Plaques	It defines the histomorphological characteristics of vulnerable plaques, helping to identify such plaques in patients at high risk of acute coronary events.	Journal of the American College of Cardiology	358	2013	RCT	24.0
3	Fumiyuki Otsuka (33)	Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment	It explaines the introduction of OCT has facilitated the detection of new atherosclerosis in clinical practice OCT.	Eur Heart J	313	2015	Review	39.3
4	Armin Arbab-Zadeh (34)	The Myth of the "Vulnerable Plaque": Transitioning From a Focus on Individual Lesions to Atherosclerotic Disease Burden for Coronary Artery Disease Risk Assessment	It supports the multifaceted hypothesis of the natural course of atherosclerotic plaque rupture is summarized.	J Am Coll Cardiol	301	2015	Review	24.0
Ŋ	Patrick W Serruys (35)	Evaluation of the Second Generation of a Bioresorbable Everolimus Drug-Eluting Vascular Scaffold for Treatment of <i>de novo</i> Coronary Artery Stenosis	It is This first-in-humans trial provides a seminal observation on a small number of patients with a short duration of follow-up. One of the clinical studies looked at the Second Generation of a Bioresorbable Everolimus Drug-Eluting Vascular Scaffold for Treatment of De with OCT Novo Coronary Artery Stenosis.	Circulation	293	2010	RCT	37.8
v	Yoshinobu Onuma (36)	Intracoronary Optical Coherence Tomography and Histology at 1 Month and 2, 3, and 4 Years After Implantation of Everolimus- Eluting Bioresorbable Vascular Scaffolds in a Porcine Coronary Artery Model	It reports OCT findings with corresponding histology in the porcine coronary artery model immediately after and at 28 days and 2, 3, and 4 years after BVS implantation.	Circulation	265	2010	RCT	37.8
г	Michael Haude (37)	Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial	It evaluates the safety and performance of a new second-generation drug-eluting absorbable metal stent (DREAMS 2G) in patients with coronary neoplasia.	Lancet	259	2016	RCT	168.9
8	Karen Mendelson (38)	Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges	It evaluates optical coherence tomography can be used to evaluate tissue remodeling for cardiac valve tissue engineering applications.	Ann Biomed Eng	216	2006	Review	3.8
6	Chenyang Xu (39)	Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography	It addresses the fundamental issues that underlie the tissue characterization of OCT images obtained from coronary arteries. It not only explains the origins of many qualitative OCT features, but also shows that combination of backscattering and attenuation coefficient measurements can be used for contrast enhancing and better tissue characterization.	J Biomed Opt	190	2008	RCT	3.5
10	Jacques Ohayon (40)	Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture	It demonstrats that plaque instability should not be considered as a result of fiber cap thickness alone, but rather as a combination of plaque thickness, necrotic core thickness, and arterial remodeling index.	Am J Physiol- Heart C	179	2008	RCT	4.8

this cap forgetments	C Keywords	Voor	Strength Begin	Fnd	2004 - 2023
atherosciente passes					2004 - 2025
aniersociete plage intravescular pitrasound intravescular pitrasound intravescular pitrasound	bare metal stents	2009	4.52 2009	2014	
myourd generative myourd and an	acute myocardial infarction	2009	3.42 2009	2015	
ethingdinois coronagisticase	intravascular ultrasound	2008	4.55 2011	2014	
carlosos der diverse optical coherence tomography percutaneous ceronary intervent arter secon intervent	aortic valve implantation	2011	3.84 2011	2015	
Listeron content to co	serdial infarction artery disease	2011	3.48 2011	2018	
abardente to the second and second	elevation myocardial infarction	2012	3.2 2012	2017	
blog flow	coronary disease	2005	4.2 2014	2017	
A stanosis	coronary artery disease	2009	3.76 2016	2018	
#3.heart transplantation	oct	2017	4.17 2017	2020	
#roportingy disease	vulnerable plaque	2012	3.75 2019	2021	
And reported integral and a second seco	thin cap fibroatheroma	2012	3.53 2020	2021	
P plaque ruptin #6 optical coherence tomography	coronary heart disease	2007	6.32 2021	2023	
#5 congenital heart disease	optical coherence tomography angiography	2021	3.74 2021	2023	
#7 cardiovascular diseases					

FIGURE 7

Visualized analysis of keywords and literature related to OCT and cardiovascular diseases. (A) Co-occurrence network of terms in 310 publications; nodes represent keywords (top 50), and lines denote co-occurrence relationships; (B) keyword clustering analysis; (C) the burst strength and duration of the top 13 keywords with the strongest citation bursts.

FIGURE 8

Analysis of research directions. (A) Thematic analysis related to cardiovascular diseases and OCT. The horizontal and vertical axes represent centrality and density, respectively. The first quadrant represents mature themes, the second quadrant is less significant to the current field, the third quadrant possibly represents emerging or fading themes, and the fourth quadrant is fundamental but less significant themes; (B) conceptual structure map of Keyword Plus; (C) timeline of research dynamics in the field of OCT and cardiovascular diseases.

3.2 Meta results

3.2.1 Description of included trials

Of 4,350 citations, we reviewed 1,385 after removal of duplicates. We excluded an additional 1,367 studies on the basis of the title and abstract level screening and *a priori* selection criteria (Figure 9). Finally, we included 11 RCTs (n = 5,277) (29, 41–50), and 7 observational studies (n = 4,514) (51–58).

During the quality assessment process, a thorough evaluation of the methodological rigor of each study played a crucial role in enhancing the credibility of the results. Our bias risk assessment revealed that 36% (4 out of 11) of the trials raised some concerns regarding the randomization process, and 43% (3 out of 7) of the observational studies exhibited lower evidence quality regarding outcomes (refer to Supplementary eFigure S1 and eTable S2).

3.2.2 Patient-level baseline characteristics and procedural data

The 11 articles included in this study collectively encompassed 5,277 patients with coronary artery lesions. Table 3 summarizes the baseline characteristics. The median age ranged from 54.5 to 69 years, with 77.2% being male. Cardiovascular risk factor analysis

indicated that 31.5% of the patients had diabetes, 63.1% had dyslipidemia, and 69.0% had hypertension, with 31.7% being current or former smokers. STEMI was the predominant type of ACS, followed by NSTEMI and unstable angina. All patients underwent invasive treatment. A total of 2,653 patients received OCT-guided therapy, and 2,640 patients underwent angiography-guided PCI. Stent implantation was the primary strategy for vascular revascularization. The follow-up period ranged from 3 to 25 months. The characteristics of the observational studies are available in Supplementary eTable S3.

3.2.3 MACE

Six trials (n = 2,109) reported MACE (41, 43, 44, 46–48). Compared with coronary angiography, OCT-guided PCI was not associated with a significant reduction in MACE (OR 0.84, 95% CI 0.65 to 1.10; p = 0.515, $I^2 = 0\%$, non-relevant heterogeneity, high certainty, see Figure 10A). However, the observational studies, comprising 5 studies with 3,674 patients, painted a different picture (51, 52, 54–56). In contrast to coronary angiography, OCT-guided PCI showed a reduction in the risk of MACE (OR 0.66, 95% CI 0.48–0.91; p = 0.243, $I^2 = 26.7\%$, non-relevant heterogeneity, moderate certainty, see Figure 11A).

11

Study ch	Study characteristics					Baseline c	haracteristi	cs of pati	Baseline characteristics of patients included (OCT group/Angiography group)	(OCT grou	p/Angiogra	aphy group)	Type o managen Angio	Type of patients and management (OCT group, Angiography group)	and group/ Jup)
Author Year	Location	Time Period Under Observation	Study type	Comparator treatment	Follow- up period (median)	Patients (Included in the analysis)	Age, median	Male patients	Hypertension Diabetes	Diabetes	Smoking	Dyslipidemia	Unstable Angina	NSTEMI	STEMI
Ali 2023 (29)	Multinational	2018-2020	RCT (NCT03507777)	Angiography	12 months	1233/1254		968 (78.5)/ 956 (76.2)	880 (71.4)/ 928 (74.0)	523 (42.4)/ 521 (41.5)	242 (19.6)/ 247 (19.7)	808 (65.5)/ 860 (68.6)	355 (28.8)/ 331 (26.4)	304 (24.7)/ 299 (23.8)	68 (5.5)/ 73 (5.8)
Holm 2023 (44)	Holm 2023 Multinational (44)	2017-2022	RCT (NCT03171311)	Angiography	2 years	600/601	66.4 (10.5)/ 66.2 (9.9)	473 (78.8)/ 475 (79)	422 (70.3)/ 448 (74.5)	103 (17.2)/ 97 (16.1)	305 (50.8)/ 290 (48.3)	456 (76.0)/ 471 (78.4)	53 (8.8)/ 58 (9.7)	79 (13.2)/ 78 (13.0)	138 (23.0)/ 144 (24.0)
Jia 2022 (41)	China	2017-2019	RCT (NCT03571269)	Angiography	369 days	112/114	54.5 (11.2)/ 56.4 (10.4)	89 (79.5)/ 91 (79.8)	47 (42)/45 (39.5)	29 (25.9)/ 19 (16.7)	64 (57.1)/ 73 (64.0)	1	0/0	0/0	112 (100)/ 114 (100)
Ali 2021 (47)	Multinational	1	RCT (NCT02471586)	Angiography	6 months	153/142	66 (59–72) /67 (56–75)	106 (69)/ 104 (73)	120 (78)/104 (73)	51 (33)/ 40 (28)	26 (17)/ 40 (28)	112 (73)/ 110 (77)	I	I	50 (33)/ 51 (36)
Onuma 2020 (45)	Japan 9	2017-2018	RCT (NCT 0297248)	Angiography	6 months	55/50	68.9 (10.2)/ 69 (11.6)	44 (79)/ 40 (74)	43 (76.8)/ 40 (74.1)	29 (51.8)/ 25 (46.3)	13 (23.2)/ 10 (18.5)	48 (85.7)/ 46 (85.2)	4 (7.1)/ 2 (3.7)	$\frac{1}{1} (1.8) / (1.9)$	I
Ueki 2020 (50)	Multinational	2016-2017	RCT (NCT02683356)	Angiography	6 months	19/19	63.3 (12.7)/ 62.9 (9.1)	15 (78)/ 15 (78)	7 (37)/11 (58)	4 (21)/ 4 (21)	7 (37)/ 6 (32)	13 (68)/ 12 (63)	4 (40)/ 1 (20)	4 (40)/2 (40)	2 (20)/ 2 (40)
Kala 2017 (46)	Czech Republic	2011-2012	RCT (NCT00888758)	Angiography	4.5months	105/96	57/59	87 (83)/ 83 (87)	53 (50)/50 (52)	18 (17)/ 25 (26)	67 (64)/ 57 (59)	1	I	I	105 (100)/ 96 (100)
Ali 2016 (49)	Multinational	2015-2016	RCT (NCT02471586)	Angiography	6 months	158/146	66 (59–72)/ 67 (56–75	109 (68)/ 107 (73)	124 (78)/109 (75)	52 (33)/42 (29)	28 (18)/ 35 (24)	115 (73)/ 112 (77)	25 (16)/ 27 (18)	20 (13)/ 24 (16)	6 (4)/4 (3)
Meneveau 2016 (42)	France	2013-2015	RCT (NCT01743274)	Angiography	6 months	120/120	60.8 (11.5)/ 60.2 (11.3)	95 (79.2)/ 91 (75.8)	67 (55.8)/ 50 (41.7)	26 (21.7)/ 19 (15.8)	47 (39.2)/ 51 (42.5)	59 (49.2)/ 56 (46.7)	10 (8.3)/ 9 (7.5)	110 (91.7)/ 111 (92.5)	I
Kim 2015 (48)	Korea	2011-2012	RCT (NCT01869842)	Angiography	6 months	58/59	58.8 (10.8)/ 61.6 (9.7)	39 (78)/ 37 (72)	27 (54.0)/25 (49.0)	16 (32.0)/ 16 (31.4)	16 (32.0)/ 15 (29.4)	33 (66)/ 37 (72.5)	I	ı	I
Antonsen 2015 (43)	Denmark	2011-2013	RCT (NCT02272283)	Angiography	6 months	40/45	61.8 (9.4)/ 62.6 (11.0)	36 (72)/ 34 (68)	28 (56)/28 (56)	8 (16)/5 (10)	23 (46)/ 18 (36)	I	0/0	50 (100)/ 50 (100)	0/0
NSTEMI, noi	n-ST-elevation	myocardial Infarc	ction; OCT, optica	l coherence tomo	graphy; RCT,	randomized co	introlled trial;	STEMI, ST-e	NSTEMI, non-ST-elevation myocardial Infarction; OCT, optical coherence tomography; RCT, randomized controlled trial; STEMI, ST-elevation myocardial infarction	al infarction.					

Lian et al.

Frontiers in Cardiovascular Medicine

TABLE 3 Baseline demographics of trials and populations included in meta-analysis.

Introsen 2015 Demnark 040 244 85 0012023 Europe 65600 30201 021 023 001 73.8 01201 Ling 05.5 25.40 0.67 0.28 0.65.1 0.09 0.28.2 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65	Study	Location	OCT	Angiography	Subjectnumber		Odds Ratio (95% CI)	% Weight
Immose 2015 Demmark 0.40 2.45 85 0012023 Europe 65000 23.8001 1201 13.2022 China 13112 11/114 228 13.2017 Europe 3106 106 2011 13.2022 China 13112 11/114 228 13.2017 Europe 3106 101 286 0.84 (0.85, 1.69) 0.84 (0.85, 1.69) 0.84 (0.85, 1.10) 102 13.2023 Multinational 6/12.33 10/12.84 2467 0.58 (0.28, 1.30) 42.2 20.86 (0.28, 1.30) 42.2 1000 0.58 (0.28, 1.30) 42.2 1000 0.58 (0.28, 1.30) 42.2 1000 10	MACE	0.000	01110			1	the second second	
bioh 2023 Europe 56800 83601 1201 is 2022 China 31112 11114 228 iubitotal (I-squared = 0.0%, p = 0.515) 3159 101 286 (0.28, 5.2.4) 0.60 iubitotal (I-squared = 0.0%, p = 0.515) Multinational 101254 2467 0.58 (0.28, 1.10) 0.03 iubitotal (I-squared = 0.0%, p = 0.503) Multinational 101254 2467 0.58 (0.28, 1.30) 422 iubitotal (I-squared = 0.0%, p = 0.893) 1055 0.50 105 0.54 (0.28, 1.10) 0.23 (0.20, 1.13) 323 iulitotal (I-squared = 0.0%, p = 0.893) 10150 1201 0.57 (0.48, 1.17) 0.56 (0.28, 1.10) 0.58 (0.28, 1.12) 0.77 (0.48, 3.00) 100.0 Julicotal (I-squared = 0.0%, p = 0.893) 0.1120 2467 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.56 (0.28, 1.12) 0.57 (0.48, 1.17) 0.56 (0.21, 1.23, 0.21, 1.23, 1.24) 0.56 (0.21, 1.23, 0.21, 1.24)							1.24 (0.59, 2.62)	10.44
iii 2022 Chria 13/112 11/114 228 Gia 2017 Europe 31/05 1/18 0/65 2.6.9 0.87 Gia 2017 Europe 21/95 3/96 101 0.86 0.84 0.85 0.86 0.84		Denmark	0/40		85 -	•	0.23 (0.01, 4.74)	2.09
Kala 2017 Europe 3/165 1/86 201 Kin 2015 Korea 2/56 3/59 101 Subtoal (I-squared = 0.0%, p = 0.515) 0 0 0.84 (0.85, 1.10) 100. B. Cardiac death 0/1233 10/1264 2/47 0.86 (0.12, 3.93) 4/32 Anonen 2015 Demark 0/40 1/45 85 0.86 (0.28, 1.02) 3/32 Jacobal (I-squared = 0.0%, p = 0.893) 0/150 105 105 0/50 <td>Holm 2023</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>73.86</td>	Holm 2023					•		73.86
Kim 2015 Korás 2/68 3/69 101 008/0 (02: 2: 889) 268 0.84 (0.85, 1.00) 100. Kim 2015 Korás 0/12 101/25 2.487 0.84 (0.85, 1.00) 100. Kim 2013 Multinational 0/1233 18/1254 2.487 0.84 (0.85, 1.00) 100. Jia 2022 China 3/112 4/114 228 0.54 (0.22, 1.27) 407. Jia 2022 China 3/112 4/114 228 0.54 (0.22, 1.27) 407. Jia 2022 China 1/155 0/150 1050 1050 0.56 (0.28, 1.13) 4.12.03. Subtoal (I-squared = 0.05, p = 0.590) Difuencianal 2.183 4.11.254 2.487 0.76 (0.48, 1.17) 0.58 (0.28, 1.13) 3.141 Localize death Multinational 0.1120 2.467 0.76 (0.48, 1.17) 0.58 (0.28, 1.13) 3.41 Localize death Multinational 0.1120 1.021 0.76 (0.48, 1.02) 0.07 (0.48, 1.02) 0.07 (0.48, 1.02) 0.07 (0.48, 1.02) 0.07 (0.48, 1.02) 0.07 (0.48, 1.02) 0.07 (0.48, 1.02) 0.08 (0.08, 1.40) 0.22 (0.25, 5.4) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1.18 (0.55, 2.54)</td><td></td></t<>							1.18 (0.55, 2.54)	
Subtoal (I-squared = 0.0%, p = 0.515) 0.84 (0.65, 1.10) 100. B. Cardiac death All 2023 Multinational Bi 2022 0/123 10/1254 2497 Antonsen 2015 Denmark 0/40 145 85 Multinational Bi 2022 China 2022 Strope 8/600 15/601 1201 Diama 2020 Strope 8/600 15/601 1201 0.57 (0.48, 1.17) 65.0 C. All-cause death All 2023 Multinational 32/1233 44/1254 2467 0.75 (0.48, 1.17) 65.0 C. All-cause death All 2021 Multinational 41/2021 0.1142 265 0.58 (0.28, 1.14) 64.1 Subtoal (I-squared = 0.0%, p = 0.550) 0.142 265 0.83 (0.28, 1.4) 64.1 D. Mycoardial infarction 41/2021 Multinational 41/203 0.1120 1201 0.88 (0.28, 1.14) 66.1 Butoal (I-squared = 0.0%, p = 0.550) 0.1142 265 0.81 (0.58, 1.14) 66.1 Butoal (I-squared = 0.0%, p = 0.550) 0.1120 1201 0.88 (0.60, 1.40, 0.40 0.88 (0.60, 1.40, 0.40 Butoal (I-squared = 0.0%, p = 0.550)<								0.96
B. Cardiac death 0/1233 10/1264 2487 All 2023 Multinational 0/1233 10/1264 2487 Admonsen 2015 Demark 0/40 1156 1560 1201 Dia 2022 China 9/123 4/114 228 0.54 (0.22, 1.27) 4/07.70 (1.81, 3.39) 10/2 Dia 2022 China 9/123 4/11254 2487 0.54 (0.23, 1.02) 10/0 C. All-cause death Multinational 3/123 4/11254 2487 0.77 (0.18, 3.82) 0.77 (0.18, 1.02) 10/0 C. All-cause death Multinational 0/120 240 0.58 (0.28, 1.13) 3/1.14 All 2023 Multinational 0/123 7/1233 7/1223 7/21254 2487 All 2023 Multinational 1/130 0/142 265 0.81 (0.58, 1.14) 66.1 All 2023 Multinational 2/153 7/1223 7/21254 2487 0.81 (0.58, 1.14) 66.1 All 2021 Multinational 2/153 5/1/233 5/1/224 2487 0.83 (0.68, 1.13) 100 All 2021	Kim 2015	Korea	2/58	3/59	101		0.69 (0.12, 3.98)	2.68
Ali 2023 Multinational 11/23 161/254 2487 Anonses 2015 Denmark 040 11/65 85 Holm 2023 Europe 8600 15/601 1201 Jia 2022 China 3112 4114 226 Comma 2020 Japan 1050 0150 050 057 028 (021, 648) 144 Ali 2023 Multinational 321/233 44/1254 2487 056 (028, 130) 027 (048, 132) C, Ali-cause death Ali 2023 Multinational 321/233 44/1254 2487 0.75 (0.48, 1.17) 65.00 C, Microgured = 0.0%, p = 0.550) 01/142 265 0.76 (0.48, 1.17) 65.01 0.00 Subtotal (I-squared = 0.0%, p = 0.550) 01/142 265 0.76 (0.48, 1.02) 0.00 Subtotal (I-squared = 0.0%, p = 0.550) 0.11/20 01/142 265 0.81 (0.58, 1.14) 65.11 Subtotal (I-squared = 0.0%, p = 0.823) 0.140 268 0.43 (0.21, 0.44) 0.42 E, Target lesion revascularization Ali 2023 Multinational 211/25 2487 0.88 (0.69, 1.13) <td< td=""><td>Subtotal (I-squared</td><td>= 0.0%, p = 0.515)</td><td></td><td></td><td></td><td>9</td><td>0.84 (0.65, 1.10)</td><td>100.00</td></td<>	Subtotal (I-squared	= 0.0%, p = 0.515)				9	0.84 (0.65, 1.10)	100.00
Anonsen 2015 Demmark 0.40 1145 85 Januar 2020 Japan 1155 0.50 105 Jala 2022 China 3112 41124 226 Jala 2022 Japan 1155 0.50 105 J.All-cause death 411202 23801 1201 0.56 (0.23, 1.27) 407. All 2023 Multinational 321233 44/1254 2467 0.56 (0.28, 1.17) 65.0 0.56 (0.28, 1.13) 64.0 23.001 1.00 0.56 (0.28, 1.12) 1.00 0.56 (0.28, 1.12) 1.00 0.56 (0.28, 1.12) 1.00 0.56 (0.28, 1.12) 1.00 0.56 (0.28, 1.13) 44.114 2.00 0.76 (0.48, 1.17) 66.0 0.56 (0.28, 1.14) 65.0 0.56 (0.28, 1.14) 1.00 0.58 (0.28, 1.14) 1.00 0.76 (0.48, 1.17) 0.56 (0.28, 1.14) 1.00 0.76 (0.48, 1.17) 0.56 (0.28, 1.14) 1.00 0.76 (0.48, 1.17) 0.56 (0.28, 1.14) 1.00 0.76 (0.48, 1.17) 0.56 (0.28, 1.14) 1.00 0.76 (0.48, 1.17) 0.56 (0.28, 1.14) 1.00 0.76 (0.48, 1.12) 1.00 0.76 (0.48, 1.12) 1.00 0.76 (0.48, 1.12) 1.00	B. Cardiac death							
Holm 2023 Europe 8800 15001 1201 Jia 2022 China 9112 4114 226 Dnuma 2020 Japan 1155 0150 105 Subtotal (I-squared = 0.0%, p = 0.898) 01023 Europe 13000 23601 1201 C. All-cause death All/2023 Multinational 321233 441254 2467 0.75 (0.48, 1.17) 058 (0.28, 1.13) 0.41 C. All-cause death Multinational 01153 0142 295 0.77 (0.49, 1.02) 100. All 2021 Multinational 671/233 72/1254 2487 0.81 (0.58, 1.14) 66.1 All 2021 Multinational 4153 3142 295 0.81 (0.58, 1.14) 64.1 All 2021 Multinational 1150 01142 295 0.81 (0.58, 1.14) 64.1 All 2021 Multinational 1153 21142 2467 1.83 (0.21, 0.0.44) 0.42 All 2023 Multinational 1153 21142 2467 0.88 (0.69, 1.13) 100 Ja 2022 China 01112 0114	Ali 2023	Multinational	9/1233	16/1254	2487		0.58 (0.26, 1.30)	43.23
Jia 2022 China 3112 4114 228 Onuma 2020 Japan 1155 0150 105 C. All-cause death All 2023 Multinational 32/1233 441254 2487 All 2023 Multinational 0153 0142 295 Subtral (I-squared = 0.0%, p = 0.550) D. Myocardial infarction All 2023 Multinational 57/1233 72/1254 2487 All 2016 Multinational 41153 3142 2495 Subtral (I-squared = 0.0%, p = 0.550) D. Myocardial infarction All 2023 Multinational 57/1237 72/1254 2487 All 2016 Multinational 21158 0140 2488 Holm 2023 Multinational 21158 0140 2488 All 2021 Multinational 21158 01140 2480 Subtral (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2022 China 51112 41114 228 Subtral (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2022 China 51112 41114 228 Subtral (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2023 Multinational 2158 01140 2488 Hi2016 Multinational 2153 21142 2495 Subtral (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2023 Multinational 2153 21142 2495 All 2016 Multinational 2153 21142 2495 All 2016 Multinational 2153 21142 2495 All 2020 Europe 2119 119 38 Subtral (I-squared = 0.0%, p = 0.850) E. Target vessel revascularization All 2023 Multinational 2153 21142 2495 All 2020 Europe 2119 119 38 Subtral (I-squared = 0.0%, p = 0.850) E. Target vessel revascularization All 2023 Multinational 2153 21142 2495 All 2020 Europe 2119 119 38 Subtral (I-squared = 0.0%, p = 0.850) E. Target vessel revascularization All 2023 Multinational 41153 21142 2487 All 2021 Multinational 41153 21142 2485 All 2021 Multinational 41153 21142 2485 All 2021 Multinational 41153 21142 2485 All 2020 Europe 2119 119 38 Subtral (I-squared = 0.0%, p = 0.850) E. Target vessel revascularization All 2023 Multinational 41153 21142 2485 All 2021 Multinational 41153 21142 2495 All 2020 Europe 211120 240 All	Antonsen 2015	Denmark	0/40	1/45	85		0.38 (0.02, 9.13)	3.82
Jia 2022 China 3/11/2 4/114 228 Subtotal (I-squared = 0.0%, p = 0.893) - C. All-cause death All 2023 Mutinational 3/2123 4/11254 2487 All 2023 Mutinational 0/153 0/120 240 All 2021 Mutinational 5/71233 7/21/254 2487 All 2023 Mutinational 5/71233 7/21/254 2487 All 2023 Mutinational 5/71233 7/21/254 2487 All 2023 Mutinational 1/153 3/142 285 All 2021 Mutinational 2/158 0/140 288 Hall 2022 China 0/112 0/114 226 Subtotal (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2022 China 5/11/25 1/1254 2487 All 2015 Mutinational 1/158 1/140 288 Hall 2023 Mutinational 1/158 1/140 288 Hall 2023 Mutinational 1/158 1/140 288 Hall 2023 Mutinational 2/158 0/1140 240 Subtotal (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2022 China 6/11/2 1/114 226 Subtotal (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2022 China 5/11/254 2487 All 2015 Mutinational 1/158 1/140 288 Hall 2023 Mutinational 1/158 1/140 288 Hall 2024 China 6/1124 4/114 226 Hall 2025 Mutinational 1/158 1/140 288 Hall 2015 Mutinational 1/158 1/140 288 Hall 2016 Mutinational 6/1123 6/71254 2487 Hall 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) E. Target vessel revascularization All 2023 Mutinational 6/1123 6/71254 2487 Hall 2016 Mutinational 6/1123 6/71254 2487 Hall 2017 Mutinational 6/1125 1/126 206 Hall 2018 Mutinational 6/1126 0/1145 85 Hall 2018 Mutinational 6/1126 0/116 0/11201 Hall 2020 Lerope	Holm 2023	Europe	8/600	15/601	1201		0.54 (0.23, 1.27)	40.72
Onuma 2020 Japan 1155 0.50 105 Subtotal (I-squared = 0.0%, p = 0.893) 0.51 (0.38, 1.02) 100.1 C. All-cause death All/2023 Mutinational 32/1233 44/1254 2487 Momeresua 2016 France 1/120 2010 240 All-2023 Mutinational 0/153 0/142 295 Subtotal (I-squared = 0.0%, p = 0.550) 0.70 (0.48, 1.02) 100.1 D. Myocardial infarction All/2021 Mutinational 57/1233 72/1254 2487 All/2021 Mutinational 1/153 0/142 295 All/2021 Mutinational 5/1233 5/1/1254 2487 All/2021 Mutinational 5/1523 1/126 2467 All/2021 Mutinational 5/1523 6/1/254 2487 All/2021 Mutinational 5/1524 2487 0.38 (0.58, 1.68)	Jia 2022	China	3/112	4/114	228		0.77 (0.18, 3.36)	10.79
Subtotal (I-squared = 0.0%, p = 0.883) 0.81 (0.38, 1.02) 00.11 (0.38, 1.02) 100.1 C. All-cause death All 2023 Multinational 0.153 32/1233 44/1254 2487 0.58 (0.29, 1.13) 34.11 Manage and the state and th	Onuma 2020	Japan	1/55	0/50	105			1.44
12/2023 Multinational 32/12/33 44/1254 2487 Holm 2023 Europe 13/600 23/601 1201 Weneveau 2016 France 11/20 0/120 240 Subtotal (I-squared = 0.0%, p = 0.550) 0/142 295 0.076 (0.48, 1.17) 65.0 D. Myocardial infarction All 2021 Multinational 57/1233 72/1254 2487 All 2021 Multinational 57/1233 72/1254 2487 0.81 (0.58, 1.14) 0.01 All 2021 Multinational 21580 0/140 298 0.81 (0.58, 1.14) 0.61 (0.22, 5.41) 2.47 All 2021 Multinational 21580 0/140 298 0.91 (0.62, 1.34) 40.11 Maiz 2022 China 0/112 0/114 226 0.91 (0.62, 1.54) 0.81 (0.51) 2.49 Ali 2023 Multinational 2/153 2/142 295 0.93 (0.18, 0.51) 2.40 Ali 2021 Multinational 2/153 2/142 295 0.93 (0.18, 0.51) 2.40 Ali 2023 Multinational 53/1233 51/1224 <	Subtotal (I-squared	= 0.0%, p = 0.893)				\diamond	0.61 (0.38, 1.02)	100.00
All 2023 Multinational 32/1233 44/1254 2487 Holm 2023 Europe 13/600 23/601 1201 Meneveau 2016 France 11/120 01/120 240 All 2021 Multinational 01/153 01/142 285 Subtotal (I-squared = 0.0%, p = 0.550) 0.76 (0.48, 1.17) 65.0 D. Myocardial infarction All 2021 Multinational 57/1233 72/1254 2487 All 2021 Multinational 1/153 31/142 296 0.81 (0.58, 1.14) 66.1 All 2022 China 0.1120 2407 438 (0.21, 90.44) 0.42 Holm 2023 Europe 40:05, p = 0.823) 0.81 (0.58, 1.14) 265 0.91 (0.62, 1.34) 40.11 Mail 2023 Multinational 2/153 2/142 295 0.83 (0.46, 1.13) 100 Subtotal (I-squared = 0.0%, p = 0.828) - 1.05 (0.72, 1.54) 68.15 0.83 (0.41, 10.26) 1.28 (0.28, 6.89) 2.90 Li 2023 Multinational 2/153 2/142 295<	C All-cause death							
Holm 2023 Europe 13/800 23/801 1201 Meneveau 2016 France 1/120 0/120 240 Mail 2021 Multinational 0/153 0/142 285 Subtcall (I-squared = 0.0%, p = 0.550) 0 0.70 (0.46, 1.02) 100. D. Myocardial infarction Ali 2023 Multinational 57/1233 72/1254 2487 Ali 2016 Multinational 57/1233 72/1254 2487 0.81 (0.58, 1.14) 66.11 Ali 2021 Multinational 1/150 0/140 286 0.81 (0.58, 1.14) 66.11 Jai 2022 Chian 0/110 1/120 240 4.38 (0.21, 90.44) 0.42 Jai 2022 Chian 0/112 0/114 226 0.58 (0.58, 1.13) 100. Jai 2022 Chian 0/112 0/114 226 0.88 (0.69, 1.13) 100. Jai 2023 Multinational 1/158 1/124 2467 1.05 (0.72, 1.54) 68.55 Jai 2022 Chian G/112 <td< td=""><td></td><td>Multinational</td><td>32/1233</td><td>44/1254</td><td>2487</td><td>-</td><td>0.75 (0.48, 1.17)</td><td>65.09</td></td<>		Multinational	32/1233	44/1254	2487	-	0.75 (0.48, 1.17)	65.09
Meneveau 2016 France 1/120 0/120 240 All 2021 Multinational 0/153 0/142 285 D.Myocardial infarction 0.00 0.070 (0.48, 1.22) 0.075 All 2021 Multinational 57/1233 72/1254 2487 All 2021 Multinational 1560 1140 288 All 2021 Multinational 1571 231 72/1254 2487 All 2021 Multinational 158 01140 288 Holm 2023 Europe 40/600 51/801 1201 Meneveau 2016 France 1/120 1/120 1/120 Subtati (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization All 2023 Multinational 1/158 1/142 295 All 2021 Multinational 1/158 1/142 295								34.16
Ali 2021 Multinational 0/153 0/142 295 Subtotal (I-squared = 0.0%, p = 0.550) 0 0.1142 295 (Excluded) 0.00 D. Myocardial infarction 0.1153 0/142 295 (Excluded) 0.00 0.70 (0.48, 1.02) 100.1 Ali 2021 Multinational 57/1233 72/1254 2487 1.23 (0.28, 5.41) 2.47 Ali 2016 Multinational 2158 0140 298 0.91 (0.62, 1.34) 40.1 Holm 2023 Europe 40.600 51.601 1201 0.91 (0.62, 1.34) 40.1 Maizo22 China 0.112 0114 228 0.93 (0.36, 6.1) 2.00 E. Target lesion revascularization 1.05 (0.72, 1.54) 58.5 58.1 2.00 0.88 (0.60, 1.405) 1.23 Ali 2023 Multinational 1158 1/140 296 1.80 (0.14, 0.5) 1.23 0.88 (0.60, 6.1, 0.5) 1.23 Miz023 Europe 1.08 (0.16, 0.5) 1.23 0.94 (0.70, 1.27) 100.1 0.98 (0.60, 1.405) 1.23 Multinational 4/153 2/142	Meneveau 2016		1/120	0/120	240			0.75
Subtotal (I-squared = 0.0%, p = 0.550) 0.70 (0.49, 1.02) 100.1 D. Myocardial infarction 57/1233 72/1254 2487 Ali 2023 Multinational 57/1233 72/1254 2487 Ali 2016 Multinational 2158 0140 268 Holm 2023 Europe 48/000 51/801 1201 Meneveau 2016 France 1/120 1/120 240 Jia 2022 China 01112 0114 228 Subtotal (I-squared = 0.0%, p = 0.823) 0.83 (0.86, 1.13) 100.0 E. Target lesion revascularization 41/2023 Multinational 51/1254 2487 Ali 2021 Multinational 1/158 1/140 298 Ali 2023 Multinational 1/158 1/140 298 Ali 2021 Multinational 1/158 1/140 298 Ali 2022 China 5/112 4/114 226 Multinational 1/158 1/140 298 0.88 (0.86, 1.13) 100.072, 1.40) 1.82 (0.25, 4.58) 480 Ali 2021 Multinational 4/153	Ali 2021	Multinational	0/153	0/142	295			0.00
Ali 2023 Multinational 57/1233 72/1254 2487 Ali 2021 Multinational 4/153 3/142 295 Ali 2016 Multinational 4/153 3/142 295 Ali 2021 Multinational 4/153 3/142 295 Ali 2016 Multinational 4/153 3/142 295 Ali 2023 Europe 4/600 51/601 1201 Maeweau 2016 France 1/120 1/120 240 Subtotal (I-squared = 0.0%, p = 0.823) 0/112 0/114 226 E. Target lesion revascularization Ali 2023 Multinational 53/1233 51/1254 2487 Ali 2021 Multinational 1/158 1/140 298 0.89 (0.06, 14.05) 1.23 Jai 2022 China 51/12 4/114 226 1.26 (0.35, 4.58) 480 Liki 2020 Europe 2/19 1/19 38 1.00 (0.72, 1.40) 94.22 Liki 2021 Multinational 6/123 67/1254 2487 1.00 (0.07, 1.40) 1.42 Ali 2021 Multinati	Subtotal (I-squared	= 0.0%, p = 0.550)				0		100.00
Ali 2023 Multinational 57/1233 72/1254 2487 Ali 2021 Multinational 4/153 3/142 295 Ali 2016 Multinational 4/153 3/142 295 Ali 2021 Multinational 4/153 3/142 295 Ali 2016 Multinational 4/153 3/142 295 Ali 2023 Europe 4/600 51/601 1201 Maeweau 2016 France 1/120 1/120 240 Subtotal (I-squared = 0.0%, p = 0.823) 0/112 0/114 226 E. Target lesion revascularization Ali 2023 Multinational 53/1233 51/1254 2487 Ali 2021 Multinational 1/158 1/140 298 0.89 (0.06, 14.05) 1.23 Jai 2022 China 51/12 4/114 226 1.26 (0.35, 4.58) 480 Liki 2020 Europe 2/19 1/19 38 1.00 (0.72, 1.40) 94.22 Liki 2021 Multinational 6/123 67/1254 2487 1.00 (0.07, 1.40) 1.42 Ali 2021 Multinati	D. Myocardial infarc	tion						
Ali 2021 Multinational 4/153 3/142 295 Ali 2016 Multinational 2/158 0/140 298 Ali 2016 Multinational 2/158 0/140 298 Ali 2016 France 1/120 1/120 240 Meneveau 2016 France 1/120 1/120 240 Jia 2022 China 0/112 0/114 226 Subtotal (I-squared = 0.0%, p = 0.823) 0.0112 0/114 226 Ali 2023 Multinational 53/1233 51/1254 2487 Ali 2021 Multinational 1/153 2/142 295 Ali 2023 Multinational 53/123 61/124 295 Ali 2023 Multinational 63/123 67/1254 2487 Kim 2015 Korea 2/58 1/59 101 Leki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) 1/120 240 1.00 (0.72, 1.40) 4/4.2 Subtotal (I-squared = 0.0%, p = 0.857) 1.19 1/19 38 2.49			57/1233	72/1254	2487	-	0.81 (0.58, 1.14)	58.17
Ali 2016 Multinational 2/158 0/140 298 Holm 2023 Europe 46/600 51/601 1201 Meneveau 2016 France 1/120 1/120 240 Jia 2022 China 0/112 0/114 226 Subtotal (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization Ali 2023 Multinational 53/1233 51/1254 2487 Ali 2021 Multinational 1/158 1/140 298 Holm 2023 Europe 16/600 26/601 1201 Jia 2022 China 51/1254 2487 Kim 2015 Korea 2/158 1/140 298 Subtotal (I-squared = 0.0%, p = 0.858) Kim 2015 Korea 2/182 2/59 101 Uski 2020 Europe 1/19 38 1 Ali 2021 Multinational 6/1233 6/71254 2487 .		Multinational		3/142				
Holm 2023 Europe 48/800 51/801 1201 Meneveau 2018 France 1/120 1/120 240 Jia 2022 China 0/112 0/114 226 Subtotal (I-squared = 0.0%, p = 0.823) 0/112 0/114 226 F. Target lesion revascularization 1.05 (0.72, 1.54) 58.5 Ali 2021 Multinational 53/1233 51/1254 2487 Ali 2021 Multinational 1/158 1/140 288 Holm 2023 Europe 1/6800 26/801 1201 Jia 2022 China 5/112 4/114 226 Kim 2015 Korea 2/58 2/59 101 Jia 2023 Multinational 68/1233 67/1254 2487 Ali 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) F. Target vessel revascularization Ali 2021 Multinational 68/1233 67/1254 2487 Ali 2020 Europe 1/19 1/120 240								
Meneveau 2018 France 1/120 1/120 240 Jia 2022 China 0/112 0/114 226 1.00 (0.06, 15.81) 0.79 Subtotal (I-squared = 0.0%, p = 0.823) 0/112 0/114 226 0.00 0.88 (0.69, 1.13) 100 E. Target lesion revascularization Ali 2023 Multinational 53/1233 51/1254 2467 1.05 (0.72, 1.54) 58.5 Ali 2016 Multinational 1/158 1/140 298 0.93 (0.13, 6.51) 2.40 Jai 2022 China 51/1254 2487 0.89 (0.06, 14.05) 1.23 Jai 2022 China 51/12 1/16 298 0.89 (0.06, 14.05) 1.23 Jai 2022 China 51/12 4/114 226 0.83 (0.34, 1.16) 29.7 Jai 2022 China 51/12 4/114 226 0.83 (0.06, 14.05) 1.23 Subtotal (I-squared = 0.0%, p = 0.856) 1.02 (0.16, 6.99) 2.29 1.83 (0.34, 0.88) 2.49 Mali 2020 Europe 1/19		Europe				-		40.15
Jia 2022 China 0/112 0/114 226 (Excluded) 0.00 Subtotal (I-squared = 0.0%, p = 0.823) . <td>Meneveau 2016</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.79</td>	Meneveau 2016							0.79
Subtotal (I-squared = 0.0%, p = 0.823) E. Target lesion revascularization Ali 2023 Multinational 2/153 2/142 295 Ali 2018 Multinational 1/158 1/140 298 Ali 2023 Europe 18/800 28/801 1201 Jia 2022 China 5/112 4/114 226 Kim 2015 Korea 2/58 2/59 101 Ueki 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) F. Target vessel revascularization Ali 2021 Multinational 68/1233 67/1254 2487 Ali 2021 Multinational 4/153 2/142 295 Meneveau 2016 France 2/120 1/120 240 Ueki 2020 Europe 1/109 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857) G. Stent thrombosis Ali 2015 Morea 0/56 1/25 1/85 0/140 298 Antonsen 2015 Denmark 0/40 1/45 85 Kim 2015 Korea 0/58 1/59 101 G. Stent thrombosis Kim 2015 Korea 0/58 1/59 101								
Ali 2023 Multinational 53/1233 51/1254 2487 1.05 (0.72, 1.54) 58.5 Ali 2021 Multinational 1/158 2/142 295 0.93 (0.13, 6.51) 2.40 Ali 2018 Multinational 1/158 1/140 298 0.89 (0.06, 14.05) 1.23 Jia 2022 China 5/112 4/114 226 0.83 (0.34, 1.16) 2.27 Jia 2022 China 5/112 4/114 226 0.83 (0.34, 1.16) 2.27 Jia 2022 China 5/112 4/114 226 0.83 (0.34, 1.16) 2.27 Jua 2020 Europe 2/19 1/19 38 1.00 (0.72, 1.40) 94.28 Subtotal (I-squared = 0.0%, p = 0.856) 1.00 (0.72, 1.40) 94.28 Ali 2021 Multinational 66/1233 67/1254 2487 1.08 (0.18, 21.59) 1.42 Ali 2021 Multinational 4/153 2/142 295 1.83 (0.34, 0.86) 2.96 Meneveau 2016 France 2/120 1/120 240 1.98 (0.18, 21.59) 1.42						0		100.00
Ali 2023 Multinational 53/1233 51/1254 2487 1.05 (0.72, 1.54) 58.5 Ali 2021 Multinational 1/158 2/142 295 0.93 (0.13, 6.51) 2.40 Ali 2018 Multinational 1/158 1/140 298 0.89 (0.06, 14.05) 1.23 Ali 2015 Europe 106 (0.28/601 1201 0.83 (0.34, 1.16) 29.7 Jia 2022 China 5/112 4/114 226 0.83 (0.34, 1.16) 29.7 Jia 2022 China 5/112 4/114 226 0.83 (0.34, 1.16) 29.7 Jia 2022 China 5/112 4/114 226 0.83 (0.34, 1.16) 29.7 Veki 2020 Europe 2/19 1/19 38 1.00 (0.72, 1.40) 94.2 Ali 2021 Multinational 66/1233 67/1254 2487 1.08 (0.18, 21.59) 1.42 Meneveau 2016 France 2/120 1/120 240 1.88 (0.34, 0.86) 2.96 Meneveau 2016 Funce 2.84 (0.11, 64.38) 2.49 1.00 (0.07, 14.90) 1.42 Subtotal (I-squared	F. Tarnet lesion rev:	ascularization						
Ali 2021 Multinational 2/153 2/142 295 Ali 2016 Multinational 1/158 1/140 298 Hoim 2023 Europe 16/600 26/601 1201 Jia 2022 China 5/112 4/114 226 Kim 2015 Korea 2/58 2/59 101 Jia 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) . . 0.93 (0.34, 1.69) 2.29 .	•		53/1233	51/1254	2487	-	1.05 (0.72, 1.54)	58 51
Ali 2016 Multinational 1/158 1/140 298 Holm 2023 Europe 16/600 26/601 1201 Jia 2022 China 5/112 4/114 226 Kim 2015 Korea 2/58 2/59 101 Ueki 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) F. Target vessel revascularization Ali 2023 Multinational 68/1233 67/1254 2487 Ali 2020 Europe 1/19 1/19 38 Ueki 2020 Europe 1/19 1/120 240 Ueki 2020 Europe 1/19 1/19 38 <								
Holm 2023 Europe 18/800 28/801 1201 Jia 2022 China 5/112 4/114 228 Kim 2015 Korea 2/58 2/59 101 Ueki 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) 1.00 (0.72, 1.40) 94.29 Ali 2023 Multinational 68/1233 67/1254 2487 1.00 (0.72, 1.40) 94.29 Ali 2021 Multinational 4/153 2/142 295 1.83 (0.34, 9.86) 2.96 Meneveau 2016 France 2/120 1/120 240 1.88 (0.18, 21.59) 1.42 Ueki 2020 Europe 1/19 1/19 38 1.00 (0.07, 14.90) 1.42 Subtotal (I-squared = 0.0%, p = 0.857) 1.04 (0.76, 1.43) 1.00 (0.07, 14.90) 1.42 G. Stent thrombosis 0.38 (0.02, 9.13) 0.54 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Jia 2022 China 6/112 4/114 226 Kim 2015 Korea 2/58 2/59 101 Jeki 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) F. Target vessel revascularization Ali 2021 Multinational 68/1233 67/1254 2487 Ali 2021 Multinational 4/153 2/142 295 Meneveau 2016 France 2/120 1/120 240 Subtotal (I-squared = 0.0%, p = 0.857)								29.78
Kim 2015 Korea 2/58 2/59 101 Ueki 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) 1.00 (0.72, 1.40) 1.18 F. Target vessel revascularization 1.00 (0.72, 1.40) 94.21 Ali 2021 Multinational 66/1233 67/1254 2487 Ali 2021 Multinational 4/153 2/142 295 Meneveau 2016 France 2/120 1/120 240 Ueki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857) 1.00 (0.07, 14.90) 1.42 Subtotal (I-squared = 0.0%, p = 0.857) 1.04 (0.76, 1.43) 100.1 G. Stent thrombosis Ali 2016 Multinational 1/158 0/140 298	and the second se							
Ueki 2020 Europe 2/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.856) 1.90 (0.19, 19.40) 1.18 F. Target vessel revascularization 0.94 (0.70, 1.27) 100.1 Ali 2023 Multinational 68/1233 67/1254 2487 Ali 2021 Multinational 4/153 2/142 295 Meneveau 2016 France 2/120 1/120 240 Ueki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857) 1.00 (0.07, 14.90) 1.42 G. Stent thrombosis 1.00 (0.07, 14.90) 1.42 Altonsen 2015 Denmark 0/140 298 Antonsen 2015 Denmark 0/140 1201 Kala 2017 Europe 1/105 1/98 201 Kim 2015 Korea 0/58 1/59 101								
Subtotal (I-squared = 0.0%, p = 0.856) F. Target vessel revascularization Ali 2023 Multinational 66/1233 67/1254 2487 Ali 2021 Multinational 4/153 2/142 295 Meneveau 2016 France 2/120 1/120 240 Ueki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857) G. Stent thrombosis Ali 2018 Multinational 1/158 0/140 298 Antonsen 2015 Denmark 0/40 1/45 85 Holm 2023 Europe 1/2000 17/601 1201 Kala 2017 Europe 1/105 1/196 201 Kim 2015 Korea 0/58 1/59 101								
Ali 2023 Multinational 68/1233 67/1254 2487 Ali 2021 Multinational 4/153 2/142 295 Meneveau 2016 France 2/120 1/120 240 Ueki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857)			210			•		100.00
Ali 2023 Multinational 68/1233 67/1254 2487 Ali 2021 Multinational 4/153 2/142 295 Meneveau 2018 France 2/120 1/120 240 Ueki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857)	E Tarnet vessel row	ascularization						
Ali 2021 Multinational 4/153 2/142 295 Meneveau 2016 France 2/120 1/120 240 Ueki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857) 1.00 (0.07, 14.90) 1.42 G. Stent thrombosis 1.04 (0.76, 1.43) 100.00 Ali 2016 Multinational 1/158 0/140 298 Antonsen 2015 Denmark 0/40 1/45 85 Holm 2023 Europe 12/800 17/801 1201 Kial 2017 Europe 1/105 1/98 201 Kim 2015 Korea 0/58 1/59 101			88(1222	87/1254	2487	<u> </u>	1 00 (0 72 1 40)	04 20
Meneveau 2018 France 2/120 1/120 240 Ueki 2020 Europe 1/19 1/19 38 Subtotal (I-squared = 0.0%, p = 0.857) 1.00 (0.07, 14.90) 1.42 G. Stent thrombosis 1.04 (0.76, 1.43) 100.0 Ali 2018 Multinational 1/158 0/140 298 Antonsen 2015 Denmark 0/40 1/45 85 Holm 2023 Europe 1/2600 17/601 1201 Kala 2017 Europe 1/105 1/98 201 Kim 2015 Korea 0/58 1/59 101								
Ueki 2020 Europe 1/19 1/19 38 1.00 (0.07, 14.90) 1.42 Subtotal (I-squared = 0.0%, p = 0.857) 1.04 (0.76, 1.43) 100.1 G. Stent thrombosis Ali 2016 Multinational 1/158 0/140 298 2.64 (0.11, 64.38) 2.49 Antonsen 2015 Denmark 0/40 1/45 85 0.38 (0.02, 9.13) 6.54 Holm 2023 Europe 1/2600 17/601 1201 0.71 (0.34, 1.48) 79.11 Kala 2017 Europe 1/105 1/98 201 0.92 (0.06, 14.43) 4.89 Kim 2015 Korea 0/58 1/59 101 0.34 (0.01, 8.29) 6.90								
Subtotal (I-squared = 0.0%, p = 0.857) G. Stent thrombosis Ali 2018 Multinational 1/158 0/140 298 Antonsen 2015 Denmark 0/40 1/45 85 Holm 2023 Europe 12/800 17/801 1201 Kala 2017 Europe 1/105 1/98 201 Kim 2015 Korea 0/58 1/59 101								
Ali 2018 Multinational 1/158 0/140 298 2.64 (0.11, 84.38) 2.49 Antonsen 2015 Denmark 0/40 1/45 85 0.38 (0.02, 9.13) 8.54 Holm 2023 Europe 12/600 17/601 1201 0.71 (0.34, 1.48) 79.11 Kala 2017 Europe 1/105 1/95 201 0.92 (0.06, 14.43) 4.89 Kim 2015 Korea 0/58 1/59 101 0.34 (0.01, 8.29) 6.90						•		100.00
Ali 2018 Multinational 1/158 0/140 298 2.64 (0.11, 64.38) 2.49 Antonsen 2015 Denmark 0/40 1/45 85 0.38 (0.02, 9.13) 6.54 Holm 2023 Europe 12/600 17/601 1201 0.71 (0.34, 1.48) 79.11 Kala 2017 Europe 1/105 1/98 201 0.92 (0.06, 14.43) 4.89 Kim 2015 Korea 0/58 1/59 101 0.34 (0.01, 8.29) 6.90	G Stant thrombosis							
Antonsen 2015 Denmark 0/40 1/45 85 0.38 (0.02, 9.13) 8.54 Holm 2023 Europe 12/600 17/601 1201 0.71 (0.34, 1.48) 79.11 Kala 2017 Europe 1/105 1/95 201 0.92 (0.06, 14.43) 4.89 Kim 2015 Korea 0/58 1/59 101 0.34 (0.01, 8.29) 6.90			1/158	0/140	298		2 64 (0 11 64 38)	2 40
Holm 2023 Europe 12/800 17/801 1201 0.71 (0.34, 1.48) 79.11 Kala 2017 Europe 1/105 1/98 201 0.92 (0.06, 14.43) 4.89 Kim 2015 Korea 0/58 1/59 101 0.34 (0.01, 8.29) 6.90								
Kala 2017 Europe 1/105 1/98 201 0.92 (0.06, 14.43) 4.89 Kim 2015 Korea 0/58 1/59 101 0.34 (0.01, 8.29) 6.90								
Kim 2015 Korea 0/58 1/59 101 - 0.34 (0.01, 8.29) 6.90								
Subtotal (I-squared = 0.0%, p = 0.908) 0.72 (0.38, 1.38) 100.			0.00	1150	101	0	0.72 (0.38, 1.38)	100.00

FIGURE 10

Forest plot comparing OCT guided with coronary angiography guided PCI in RCT studies. Data obtained from RCTs using fixed effect meta-analysis and expressed as OR. (A) MACE; (B) cardiac death; (C) all-cause death; (D) myocardial infarction; (E) target lesion revascularization (F) target vessel revascularization; (G) stent thrombosis. CI, confidence interval; OCT, optical coherence tomography; PCI, Percutaneous coronary intervention.

Study	Location	OCT	Angiography	Subjectnumber		Odds Ratio (95% CI)	% Weight
MACE					1		
D'Ascenzo 2017	Italy	28/197	28/197	394	-	1.00 (0.61, 1.63)	27.75
Di 2013	Italy	5/40	8/40	80		0.67 (0.24, 1.89)	8.63
Jones 2018	United Kingdom	9/1134	23/1134	2268		0.40 (0.18, 0.85)	14.52
Khalifa 2021	Japan	13/260	15/130	390		0.46 (0.23, 0.94)	16.21
Lannaccone 2016	Italy	31/270	47/270	540		0.69 (0.45, 1.06)	32.88
	d = 26.7%, p = 0.24				9	0.66 (0.48, 0.91)	100.00
Cardiac death							
Cortese 2022	Europe	1/100	4/100	200		0.26 (0.03, 2.26)	13.78
D'Ascenzo 2017	Italy	7/197	2/197	394		3.41 (0.72, 16.24)	21.56
Khalifa 2021	Japan	7/260	8/130	390		0.45 (0.17, 1.22)	33.44
Sheth 2016	Canada	4/214	16/428	642		0.51 (0.17, 1.50)	31.21
	d = 48.1%, p = 0.12				\diamond	0.67 (0.26, 1.71)	100.00
All-cause death							
Cortese 2022	Europe	2/100	6/100	200		0.35 (0.07, 1.68)	23.30
D'Ascenzo 2017	Italy	7/197	2/197	394		3.41 (0.72, 16.24)	23.66
Di 2013	Italy	1/40	2/40	80		0.51 (0.05, 5.43)	12.58
Lannaccone 2016	Italy	7/270	9/270	540		0.78 (0.30, 2.07)	40.46
	d = 33.5%, p = 0.2				$\mathbf{\Phi}$	0.87 (0.35, 2.18)	100.00
Myocardial infarctio	on				10.22		
Cortese 2022	Europe	2/100	4/100	200		0.51 (0.10, 2.72)	9.55
Di 2013	Italy	1/40	3/40	80		0.35 (0.04, 3.23)	5.64
Jones 2018	United Kingdom	2/1134		2268		0.22 (0.05, 1.03)	11.24
Khalifa 2021	Japan	2/260	4/130	390		0.26 (0.05, 1.38)	9.45
Lannaccone 2016	Italy		17/270	540		1.06 (0.56, 2.01)	42.61
Sheth 2016	Canada	5/214	11/428	642		0.91 (0.32, 2.59)	21.50
	d = 14.9%, p = 0.3		111420	042	9	0.66 (0.38, 1.13)	100.00
Target lesion revas	cularization						
Cortese 2022	Europe	6/100	9/100	200		0.69 (0.25, 1.86)	31.35
D'Ascenzo 2017	Italy	8/197	28/197	394		0.31 (0.15, 0.67)	52.78
Khalifa 2021	Japan	2/260	2/130	390		0.50 (0.07, 3.54)	8.37
Lannaccone 2016	Italy	1/270	9/270	540		0.11 (0.01, 0.90)	7.50
	d = 1.6%, p = 0.384		51210	540	\diamond	0.39 (0.22, 0.68)	100.00
Target vessel revas	cularization						
Lannaccone 2016		1/270	10/270	540		0.10 (0.01, 0.80)	40.64
Sheth 2016	Canada	11/214		642		0.92 (0.46, 1.85)	59.36
	d = 76.4%, p = 0.04		24/420	042	$\langle \rangle$	0.38 (0.04, 3.37)	100.00
Stent thrombosis							
Cortese 2022	Europe	1/100	1/100	200		1.00 (0.06, 15.77)	27.21
Lannaccone 2016	Italy	0/270	7/270	540 ←		0.07 (0.00, 1.19)	26.18
Sheth 2016	Canada	4/214	5/428	642		1.59 (0.43, 5.86)	46.60
	d = 56.4%, p = 0.10		5/420	042		0.61 (0.09, 4.39)	100.00
NOTE: Weights are	e from random effe	cts analys	sis				
						1	
				.0039	1	255	

FIGURE 11

Forest plot comparing OCT guided with coronary angiography guided PCI for all-cause death. Data obtained from RCTs using fixed effect metaanalysis and expressed as OR. CI, confidence interval; OCT, optical coherence tomography; PCI, percutaneous coronary intervention.

3.2.4 Cardiac death

Five trials (n = 4,104) reported cardiac death (29, 41, 43–45). Compared with coronary angiography, OCT-guided PCI was not associated with a significant reduction in cardiac death (OR 0.61, 95% CI 0.36–1.02; p = 0.893, $I^2 = 0\%$, non-relevant heterogeneity, high certainty, see Figure 10B). Observational studies (51–53, 57), which included 4 studies with 1,626 patients, also demonstrated that OCT-guided PCI was not significantly associated with a reduction in the risk of cardiac death when compared to coronary angiography (OR 0.67, 95% CI 0.27–1.71; p = 0. 123, $I^2 = 48.1\%$, indicating moderate heterogeneity and moderate certainty, as shown in Figure 11B).

3.2.5 All-cause death

Four trials (n = 4,223) reported all-cause death (29, 42, 44, 47). Compared with coronary angiography, OCT-guided PCI was not associated with a significant reduction in all-cause death (OR 0.7, 95% CI 0.49–1.02; p = 0.550, $I^2 = 0\%$, non-relevant heterogeneity, high certainty, see Figure 10C). Observational studies (52, 54, 55, 57), which included 4 studies with 1,214 patients, also demonstrated that OCT-guided PCI was not significantly associated with a reduction in the risk of all-cause death when compared to coronary angiography (OR 0.87, 95% CI 0.35–2.18; p = 0. 211, $I^2 = 33.5\%$, indicating moderate heterogeneity and moderate certainty, as shown in Figure 11C).

3.2.6 MI

Six trials (n = 4,747) reported MI (29, 41, 42, 44, 47, 49). Compared with coronary angiography, OCT-guided PCI was not associated with a significant reduction in MI (OR 0.88, 95% CI 0.69 to 1.13; p = 0.823, $I^2 = 0\%$, non-relevant heterogeneity, high certainty, see Figure 10D). Observational studies (51, 53–57), which included 6 studies with 4,120 patients, also demonstrated that OCT-guided PCI was not significantly associated with a reduction in the risk of MI when compared to coronary angiography (OR 0.66, 95% CI 0.38–1.13; p = 0.319, $I^2 = 14.9\%$, indicating low heterogeneity and moderate certainty, as shown in Figure 11D).

3.2.7 TLR

Seven trials (n = 4,646) reported TLR (29, 41, 44, 47–50). Compared with coronary angiography, OCT-guided PCI was not associated with a significant reduction in TLR (OR 0.94, 95% CI 0.7–1.27; p = 0.856, $I^2 = 0\%$, non-relevant heterogeneity, high certainty, see Figure 10E). However, the results from the observational studies, which included 4 studies with 1,524 patients, showed differing outcomes (51, 52, 54, 57). In contrast to coronary angiography, OCT-guided PCI showed a reduction in the risk of TLR (OR 0.39, 95% CI 0.22–0.68; p = 0.384, $I^2 = 1.6\%$, non-relevant heterogeneity, high certainty, see Figure 11E).

3.2.8 TVR

Four trials (n = 3,060) reported TVR (29, 42, 47, 50). Compared with coronary angiography, OCT-guided PCI was not associated with a significant reduction in TVR (OR 1.04, 95% CI 0.76–1.43; p = 0.857, $I^2 = 0\%$, non-relevant heterogeneity, high certainty, see Figure 10F). Observational studies (53, 54), which included 2 studies with 1,182 patients, also demonstrated that OCT-guided PCI was not significantly associated with a reduction in the risk of TVR when compared to coronary angiography (OR 0.38, 95% CI 0.04–3.37; p = 0.04, $I^2 = 76.4\%$, indicating high heterogeneity and low certainty, as shown in Figure 11F).

3.2.9 Stent thrombosis

Five trials (n = 1,886) reported stent thrombosis (43, 44, 46, 48, 49). Compared with coronary angiography, OCT-guided PCI was not associated with a significant reduction in stent thrombosis (OR 0.72, 95% CI 0.38–1.38; p = 0.906, $I^2 = 0\%$, non-relevant heterogeneity, high certainty, see Figure 10G). Observational studies (53, 54, 57), which included 3 studies with 1,382 patients, also demonstrated that OCT-guided PCI was not significantly associated with a reduction in the risk of stent thrombosis when compared to coronary angiography (OR 0.61, 95% CI 0.09–4.39; p = 0.101, $I^2 = 56.4\%$, indicating moderate heterogeneity and moderate certainty, as shown in Figure 11G).

4 Discussion

OCT, with its high-resolution imaging (10-20 µm), accurately identifies vascular features like thrombi, lipids, and calcium deposits (59-63). In this study, we analyzed 2,758 articles related to OCT and cardiovascular diseases from the WoSCC. In-depth analyses were conducted on these articles by country, institution, journal, author, and keywords using Bibliometrix R software and CiteSpace. This comprehensive exploration revealed the knowledge structure, research hotspots, and emerging trends in the field, laying the groundwork for future strategies in disease prevention and treatment. Our study found that OCT, as a guiding tool for PCI, has become a focal point in recent cohorts and randomized trials, which was further confirmed in our subsequent meta-analysis. After including 11 RCTs and 7 observational studies, we concluded that OCT-guided PCI did not demonstrate significant association with better clinical outcomes. Although the point estimate and the upper bound of the confidence interval hinted at a possible reduction in MACE, cardiac death, all-cause death, MI, TLR, or stent thrombosis with OCT guided PCI, this did not reach statistical significance. However, the meta-analysis of observational studies showed a significant reduction in MACE and TLR.

4.1 Advantages and limitations of bibliometric analysis

The United States led in the publication output related to OCT and cardiovascular diseases, also exhibiting the highest proportion of international collaboration. Moreover, China's publication numbers are rapidly growing, likely influenced by recent expert consensus from Chinese cardiology societies emphasizing the importance of OCT in PCI (64). Among the top 10 institutions with the highest publication output, 7 were from the USA, while the remaining were from other countries (China, Singapore, and the UK). Professor Yu Bo from China was the most prolific among the top 10 corresponding authors, followed by authors from the USA. Professor Mehran Roxana held the highest m-INDEX, Professor Yu Bo the largest G-index, and Professor Virmani Renu the highest h-index and total citations. Additionally, among the top 10 most cited papers, one was published in "The Lancet" (37), and three in "Circulation" and other high-impact journals (31, 35, 36). Professor Ik-Kyung Jang's 2005 paper "in vivo Characterization of Coronary Atherosclerotic Plaque by Use of Optical Coherence Tomography" ranked highest in citations (31).

Thematic word trend analysis over the past 20 years in the cardiovascular field has centered on eight key terms: coronary artery disease, deep learning, coronary stenosis, heart transplantation, plaque rupture, OCT, congenital heart disease, and cardiovascular diseases. Burst analysis of keywords indicated that studies on OCT and angiography-guided PCI have become hot topics in recent cohorts and randomized trials. Welldeveloped themes focus on atherosclerotic diseases, blood pressure, stent implantation, and plaque characteristics. The field's attention to the treatment and prognosis of diseases such as "coronary stenosis, acute myocardial infarction, atherosclerosis" post-operation and for survival is also noteworthy.

However, this study has limitations. The primary data for the bibliometric analysis was sourced from the WoSCC. Although the WoSCC includes over 11,000 authoritative and high-impact international academic journals with extensive coverage and powerful analysis features, its singular source may lead to potential article omissions from other databases. Additionally, researchers manually removed papers deemed irrelevant to the study objectives, which might introduce selection bias. Despite these limitations, our study comprehensively analyzes the current state and progress of OCT in cardiovascular research, aiding in identifying future research directions.

4.2 Advantages and limitations of meta-analysis

OCT has shown significant technical advantages in the application of cardiovascular diseases (30, 65). Compared to traditional coronary angiography, OCT provides higherresolution spatial three-dimensional images, critical in accurately assessing plaque composition and morphology. Importantly, OCT optimizes angioplasty of bifurcation lesions, avoiding the common issues of perspective shortening and image overlap in traditional angiography (66). These technical strengths theoretically endow OCT with significant clinical application potential. However, in actual clinical practice, these theoretical advantages of OCT have not entirely translated into clinical benefits. Our meta-analysis of RCTs revealed that OCTguided PCI did not exhibit significant clinical benefits in MACE, Cardiac death, All-cause death, MI, TLR, TVR, and Stent thrombosis, compared to angiography-guided PCI. Although studies suggest that OCT-guided PCI can achieve a larger minimum lumen diameter (MLD) (53), its use also leads to longer procedural times and higher contrast agent dosages (67), increasing perioperative risks such as early mortality, emergency coronary artery bypass grafting, cancer, and contrast-induced nephropathy (68, 69). These risks might overshadow the clinical benefits of OCT. However, the metaanalysis of observational studies indicated a significant reduction in MACE and TLR with OCT-guided PCI, aligning with previous research (67, 70).

4.2.1 Limitations

When interpreting the results of our meta-analysis, its inherent limitations must be considered. Firstly, the included trials varied in participant populations, outcome definitions, and follow-up periods, potentially affecting comparability and generalizability. Secondly, pre-planned overall and subgroup analyses were conducted at the study level, not at the individual patient level, precluding precise assessment of the specific impact of stent size pre and post PCI guided by OCT on cardiovascular outcomes. Lastly, variations in intravascular imaging guidance standards among different trials could also influence the results.

4.3 Comparisons with other studies

Although many meta-analyses have studied intravascular imaging-guided PCI, a systematic review of 24 meta-analyses showed that only 9 focused specifically on RCTs (71). Given the potential introduction of confounding factors in observational studies (71), we conducted separate metaanalyses of evidence from RCTs and observational studies for OCT-guided PCI. This approach differs from previous metaanalyses, showing OCT's significant advantages are more pronounced in observational studies (67, 70), consistent with previous high-quality RCTs (29, 49, 53).

Our results, compared with the study led by Niels R. Holm, showed differences in MACE outcomes (44). The fundamental reason is that calculating OR values directly using incidence rates might differ from results reported in that study, as Cox regression analysis incorporates specific time points of events, often overlooked in simple calculations (44, 72). Additionally, the Cox model typically considers multiple covariates potentially influencing outcomes, such as patient age, gender, and medical history (73). This might be one reason our study did not show a significant clinical advantage of OCT. Furthermore, with a median follow-up time of only 1–2 years in the studies included, detecting statistically significant differences between the two interventions would require longer follow-up and higher event rates.

5 Conclusion

In summary, this study primarily employed bibliometric analysis to examine literature published over the past twenty years on OCT and cardiovascular diseases. It identified specific countries, institutions, authors, and journals that have made significant contributions to this field during this period. It was found that OCT as a guiding tool for PCI has become a hot topic in recent cohorts and randomized trials, prompting subsequent meta-analyses. However, OCT-guided PCI did not demonstrate significant clinical benefits, with only the metaanalysis of observational studies suggesting a reduction in MACE and TLR.

Author contributions

WL: Conceptualization, Writing – original draft, Writing – review & editing. CC: Data curation, Formal Analysis, Writing – original draft. JW: Conceptualization, Funding acquisition, Methodology, Supervision, Writing – review & editing. JL: Formal Analysis, Methodology, Writing – review & editing. CL: Conceptualization, Methodology, Writing – review & editing. XZ: Conceptualization, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article.

This work was supported by National Natural Science Foundation of China (Key Program) (No. 82230124), Central High-level Hospital of Traditional Chinese Medicine Clinical research and achievement transformation ability improvement project - TCM clinical evidence-based research project (No. HLCMHPP2023083).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Stone PH, Libby P, Boden WE. Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management-the plaque hypothesis: a narrative review. *JAMA Cardiol.* (2023) 8 (2):192–201. doi: 10.1001/jamacardio.2022.3926 (published Online First: 2022/12/15).

2. Libby P. Molecular bases of the acute coronary syndromes. *Circulation*. (1995) 91 (11):2844–50. doi: 10.1161/01.cir.91.11.2844 (published Online First: 1995/06/01).

3. Arbab-Zadeh A, Fuster V. The risk Continuum of atherosclerosis and its implications for defining CHD by coronary angiography. *J Am Coll Cardiol.* (2016) 68(22):2467–78. doi: 10.1016/j.jacc.2016.08.069 (published Online First: 2016/12/03).

4. Mortensen MB, Dzaye O, Steffensen FH, Bøtker HE, Jensen JM, Rønnow Sand NP, et al. Impact of plaque burden versus stenosis on ischemic events in patients with coronary atherosclerosis. *J Am Coll Cardiol.* (2020) 76(24):2803–13. doi: 10. 1016/j.jacc.2020.10.021 (published Online First: 2020/12/12).

5. Villines TC, Rodriguez Lozano P. Transitioning from stenosis to plaque burden in the cardiac CT era: the changing risk paradigm. *J Am Coll Cardiol*. (2020) 76 (24):2814–16. doi: 10.1016/j.jacc.2020.10.030 (published Online First: 2020/12/12).

6. Ferraro R, Latina JM, Alfaddagh A, Michos ED, Blaha MJ, Jones SR, et al. Evaluation and management of patients with stable angina: beyond the ischemia paradigm: JACC state-of-the-art review. *J Am Coll Cardiol.* (2020) 76(19):2252–66. doi: 10.1016/j.jacc.2020.08.078 (published Online First: 2020/11/07).

7. Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, et al. Signaling pathways and targeted therapy for myocardial infarction. *Signal Transduct Targeted Ther.* (2022) 7 (1):78. doi: 10.1038/s41392-022-00925-z (published Online First: 2022/03/12).

8. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. *J Am Coll Cardiol.* (2020) 76(25):2982–3021. doi: 10. 1016/j.jacc.2020.11.010 (published Online First: 2020/12/15).

9. Mackman N, Bergmeier W, Stouffer GA, Weitz JI. Therapeutic strategies for thrombosis: new targets and approaches. *Nat Rev Drug Discovery*. (2020) 19 (5):333–52. doi: 10.1038/s41573-020-0061-0 (published Online First: 2020/03/07).

10. Sabatine MS, Braunwald E. Thrombolysis in myocardial infarction (TIMI) study group: JACC focus seminar 2/8. *J Am Coll Cardiol*. (2021) 77(22):2822–45. doi: 10. 1016/j.jacc.2021.01.060 (published Online First: 2021/06/05).

11. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. *N Engl J Med.* (2011) 364(3):226–35. doi: 10.1056/NEJMoa1002358 (published Online First: 2011/01/21).

12. Oemrawsingh RM, Cheng JM, García-García HM, van Geuns RJ, de Boer SP, Simsek C, et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. *J Am Coll Cardiol.* (2014) 64(23):2510–8. doi: 10.1016/j.jacc.2014.07.998 (published Online First: 2014/12/17).

13. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. *N Engl J Med.* (2012) 367(11):991–1001. doi: 10.1056/NEJMoa1205361 (published Online First: 2012/08/29).

14. Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2024. 1414205/full#supplementary-material

PREDICTION study. *Circulation*. (2012) 126(2):172–81. doi: 10.1161/circulationaha. 112.096438 (published Online First: 2012/06/23).

15. Erlinge D, Maehara A, Ben-Yehuda O, Bøtker HE, Maeng M, Kjøller-Hansen L, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study. *Lancet (London, England).* (2021) 397(10278):985–95. doi: 10.1016/s0140-6736(21) 00249-x (published Online First: 2021/03/15).

16. Kedhi E, Berta B, Roleder T, Hermanides RS, Fabris E, IJsselmuiden AJJ, et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINE OCT-FFR trial. *Eur Heart J.* (2021) 42 (45):4671–79. doi: 10.1093/eurheartj/ehab433 (published Online First: 2021/08/05).

17. Råber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. *EuroIntervention*. (2018) 14 (6):656–77. doi: 10.4244/eijy18m06_01 (published Online First: 2018/06/26).

18. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. *Neoplasia.* (2000) 2(1-2):9–25. doi: 10.1038/sj.neo.7900071 (published Online First: 2000/08/10).

19. Terashima M, Kaneda H, Suzuki T. The role of optical coherence tomography in coronary intervention. *Korean J Intern Med.* (2012) 27(1):1–12. doi: 10.3904/kjim. 2012.27.1.1 (published Online First: 2012/03/10).

20. Cilingiroglu M, Oh JH, Sugunan B, Kemp NJ, Kim J, Lee S, et al. Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography. *Catheter Cardiovasc Interv.* (2006) 67(6):915–23. doi: 10.1002/ccd. 20717 (published Online First: 2006/04/08).

21. Naqvi TZ, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. *JACC Cardiovasc Imaging*. (2014) 7(10):1025–38. doi: 10.1016/j.jcmg. 2013.11.014 (published Online First: 2014/07/24).

22. Wang J, Yuan S, Qi J, Zhang Q, Ji Z. Advantages and prospects of optical coherence tomography in interventional therapy of coronary heart disease (review). *Exp Ther Med.* (2022) 23(4):255. doi: 10.3892/etm.2022.11180 (published Online First: 2022/03/10).

23. Donthu N, Kumar S, Pattnaik D, Weng ML. A bibliometric retrospection of marketing from the lens of psychology: insights from psychology & marketing. *Psychol Mark.* (2021) 38(5):834–65. doi: 10.1002/mar.21472

24. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. (2021) 133:285–96. doi: 10.1016/j.jbusres.2021.04.070

25. Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. (2017) 11(4):959-75. doi: 10.1016/j.joi.2017.08.007

26. Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. *Proc Natl Acad Sci U S A.* (2004) 6:101 Suppl 1(Suppl 1):5303–10. doi: 10.1073/pnas.0307513100

27. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Int J Surg.* (2021) 88:105906. doi: 10.1016/j.ijsu.2021.105906

28. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ*. (2017) 358:j4008. doi: 10.1136/bmj.j4008

29. Ali ZA, Landmesser U, Maehara A, Matsumura M, Shlofmitz RA, Guagliumi G, et al. Optical coherence tomography-guided versus angiography-guided PCI. *N Engl J Med.* (2023) 389(16):1466–76. doi: 10.1056/NEJMoa2305861 (published Online First: 2023/08/27).

30. Gruslova AB, Singh S, Hoyt T, Vela D, Vengrenyuk Y, Buja LM, et al. Accuracy of OCT core labs in identifying vulnerable plaque. *JACC Cardiovasc Imaging*. (2023) 17(4):448–50. doi: 10.1016/j.jcmg.2023.10.005 (published Online First: 2023/11/09).

31. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. *In vivo* characterization of coronary atherosclerotic plaque by use of optical coherence tomography. *Circulation*. (2005) 111(12):1551–5. doi: 10.1161/01.Cir. 0000159354.43778.69 (published Online First: 2005/03/23).

32. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. *J Am Coll Cardiol.* (2013) 61(10):1041–51. doi: 10.1016/j.jacc.2012.10.054 (published Online First: 2013/03/12).

33. Otsuka F, Byrne RA, Yahagi K, Mori H, Ladich E, Fowler DR, et al. Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. *Eur Heart J.* (2015) 36(32):2147–59. doi: 10.1093/ eurheartj/ehv205 (published Online First: 2015/05/23).

34. Arbab-Zadeh A, Fuster V. The myth of the "vulnerable plaque": transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. *J Am Coll Cardiol.* (2015) 65(8):846–55. doi: 10.1016/ j.jacc.2014.11.041 (published Online First: 2015/01/21).

35. Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolinnus drug-eluting vascular scaffold for treatment of *de novo* coronary artery stenosis: six-month clinical and imaging outcomes. *Circulation.* (2010) 122(22):2301–12. doi: 10.1161/ circulationaha.110.970772 (published Online First: 2010/11/26).

36. Onuma Y, Serruys PW, Perkins LE, Okamura T, Gonzalo N, García-García HM, et al. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. *Circulation.* (2010) 122 (22):2288–300. doi: 10.1161/circulationaha.109.921528 (published Online First: 2010/10/27).

37. Haude M, Ince H, Abizaid A, Toelg R, Lemos PA, von Birgelen C, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. *Lancet.* (2016) 387 (10013):31–9. doi: 10.1016/s0140-6736(15)00447-x (published Online First: 2015/10/17).

38. Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. *Ann Biomed Eng.* (2006) 34(12):1799–819. doi: 10.1007/s10439-006-9163-z (published Online First: 2006/10/21).

39. Xu C, Schmitt JM, Carlier SG, Virmani R. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. *J Biomed Opt.* (2008) 13(3):034003. doi: 10.1117/1.2927464 (published Online First: 2008/07/08).

40. Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J, et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. *Am J Physiol Heart Circ Physiol*. (2008) 295(2):H717-27. doi: 10.1152/ajpheart.00005.2008 (published Online First: 2008/07/01).

41. Jia H, Dai J, He L, Xu Y, Shi Y, Zhao L, et al. EROSION III: a multicenter RCT of OCT-guided reperfusion in STEMI with early infarct artery patency. *JACC Cardiovasc Interv.* (2022) 15(8):846–56. doi: 10.1016/j.jcin.2022.01.298 (published Online First: 2022/04/04).

42. Meneveau N, Souteyrand G, Motreff P, Caussin C, Amabile N, Ohlmann P, et al. Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: results of the multicenter, randomized DOCTORS study (does optical coherence tomography optimize results of stenting). *Circulation.* (2016) 134(13):906–17. doi: 10.1161/ circulationaha.116.024393 (published Online First: 2016/08/31).

43. Antonsen L, Thayssen P, Maehara A, Hansen HS, Junker A, Veien KT, et al. Optical coherence tomography guided percutaneous coronary intervention with nobori stent implantation in patients with non-ST-segment-elevation myocardial infarction (OCTACS) trial: difference in strut coverage and dynamic malapposition patterns at 6 months. *Circ Cardiovasc Interv.* (2015) 8(8):e002446. doi: 10.1161/ circinterventions.114.002446 (published Online First: 2015/08/09).

44. Holm NR, Andreasen LN, Neghabat O, Laanmets P, Kumsars I, Bennett J, et al. OCT Or angiography guidance for PCI in Complex bifurcation lesions. *N Engl J Med.* (2023) 389(16):1477–87. doi: 10.1056/NEJM0a2307770 (published Online First: 2023/08/27).

45. Onuma Y, Kogame N, Sotomi Y, Miyazaki Y, Asano T, Takahashi K, et al. A randomized trial evaluating online 3-dimensional optical frequency domain imaging-guided percutaneous coronary intervention in bifurcation lesions. *Circ Cardiovasc Interv.* (2020) 13(12):e009183. doi: 10.1161/circinterventions.120.009183 (published Online First: 2020/12/05).

46. Kala P, Cervinka P, Jakl M, Kanovsky J, Kupec A, Spacek R, et al. OCT Guidance during stent implantation in primary PCI: a randomized multicenter study with nine months of optical coherence tomography follow-up. *Int J Cardiol.* (2018) 250:98–103. doi: 10.1016/j.ijcard.2017.10.059 (published Online First: 2017/10/29).

47. Ali ZA, Karimi Galougahi K, Maehara A, Shlofmitz RA, Fabbiocchi F, Guagliumi G, et al. Outcomes of optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation: one-year results from the ILUMIEN III: OPTIMIZE PCI trial. *EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.* (2021) 16(13):1085–91. doi: 10.4244/eij-d-20-00498 [published Online First: 2020/06/17].

48. Kim JS, Shin DH, Kim BK, Ko YG, Choi D, Jang Y, et al. Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention. *Rev Esp Cardiol (English ed)*. (2015) 68(3):190–7. doi: 10.1016/j.rec.2014.07.025 (published Online First: 2014/12/10).

49. Ali ZA, Maehara A, Généreux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. *Lancet (London, England).* (2016) 388(10060):2618–28. doi: 10.1016/s0140-6736(16)31922-5 (published Online First: 2016/11/04).

50. Ueki Y, Yamaji K, Barbato E, Nef H, Brugaletta S, Alfonso F, et al. Randomized comparison of optical coherence tomography versus angiography to guide bioresorbable vascular scaffold implantation: the OPTICO BVS study. *Cardiovasc Revasc Med.* (2020) 21(10):1244–50. doi: 10.1016/j.carrev.2020.03.023 (published Online First: 2020/03/25).

51. Khalifa AKM, Kubo T, Shimamura K, Ino Y, Kishk YT, Hasan-Ali H, et al. Impact of optical coherence tomography imaging on decision-making during percutaneous coronary intervention in patients presented with acute coronary syndromes. *Circ J*. (2021) 85(10):1781–88. doi: 10.1253/circj.CJ-20-0942 (published Online First: 2021/01/22).

52. D'Ascenzo F, Iannaccone M, De Filippo O, Leone AM, Niccoli G, Zilio F, et al. Optical coherence tomography compared with fractional flow reserve guided approach in acute coronary syndromes: a propensity matched analysis. *Int J Cardiol.* (2017) 244:54–8. doi: 10.1016/j.ijcard.2017.05.108 (published Online First: 2017/06/21).

53. Sheth TN, Kajander OA, Lavi S, Bhindi R, Cantor WJ, Cheema AN, et al. Optical coherence tomography-guided percutaneous coronary intervention in ST-segmentelevation myocardial infarction: a prospective propensity-matched cohort of the thrombectomy versus percutaneous coronary intervention alone trial. *Circ Cardiovasc Interv.* (2016) 9(4):e003414. doi: 10.1161/circinterventions.115.003414 (published Online First: 2016/04/09).

54. Iannaccone M, D'Ascenzo F, Frangieh AH, Niccoli G, Ugo F, Boccuzzi G, et al. Impact of an optical coherence tomography guided approach in acute coronary syndromes: a propensity matched analysis from the international FORMIDABLE-CARDIOGROUP IV and USZ registry. *Catheter Cardiovasc Interv.* (2017) 90(2): E46–e52. doi: 10.1002/ccd.26880 (published Online First: 2016/12/29).

55. Di Giorgio A, Capodanno D, Ramazzotti V, Imola F, Mallus MT, Stazi F, et al. Optical coherence tomography guided in-stent thrombus removal in patients with acute coronary syndromes. *Int J Cardiovasc Imaging*. (2013) 29(5):989–96. doi: 10. 1007/s10554-013-0191-0 (published Online First: 2013/02/16).

56. Jones DA, Rathod KS, Koganti S, Hamshere S, Astroulakis Z, Lim P, et al. Angiography alone versus angiography plus optical coherence tomography to guide percutaneous coronary intervention: outcomes from the Pan-London PCI cohort. *JACC Cardiovasc Interv.* (2018) 11(14):1313–21. doi: 10.1016/j.jcin.2018.01.274 (published Online First: 2018/07/22).

57. Cortese B, de la, Torre Hernandez JM, Lanocha M, Ielasi A, Giannini F, Campo G, et al. Optical coherence tomography, intravascular ultrasound or angiography guidance for distal left main coronary stenting. The ROCK cohort II study. *Catheter Cardiovasc Interv.* (2022) 99(3):664–73. doi: 10.1002/ccd.29959 (published Online First: 2021/09/29).

58. Floré V, Brown AJ, Giblett JP, Liou K, Cranley J, Hoole SP, et al. Clinical outcomes of bioresorbable vascular scaffolds implanted with routine versus selective optical coherence tomography guidance: results from a single-centre experience. *EuroIntervention.* (2019) 14(17):1776–83. doi: 10.4244/eij-d-18-00262 (published Online First: 2018/10/31).

59. Ali ZA, Karimi Galougahi K, Maehara A, Shlofmitz RA, Ben-Yehuda O, Mintz GS, et al. Intracoronary optical coherence tomography 2018: current Status and future directions. *JACC Cardiovasc Interv.* (2017) 10(24):2473–87. doi: 10.1016/j.jcin.2017.09. 042 (published Online First: 2017/12/23).

60. Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. *Eur Heart J.* (2015) 36(47):3346–55. doi: 10.1093/eurheartj/ehv367 (published Online First: 2015/08/06).

61. Prati F, Romagnoli E, Burzotta F, Limbruno U, Gatto L, La Manna A, et al. Clinical impact of OCT findings during PCI: the CLI-OPCI II study. *JACC Cardiovasc Imaging*. (2015) 8(11):1297–305. doi: 10.1016/j.jcmg.2015.08.013 (published Online First: 2015/11/14).

62. Prati F, Romagnoli E, La Manna A, Burzotta F, Gatto L, Marco V, et al. Longterm consequences of optical coherence tomography findings during percutaneous coronary intervention: the centro per la Lotta contro l'infarto—optimization of percutaneous coronary intervention (CLI-OPCI) LATE study. *EuroIntervention*. (2018) 14(4):e443–e51. doi: 10.4244/eij-d-17-01111 (published Online First: 2018/ 04/11).

63. Ino Y, Kubo T, Matsuo Y, et al. Optical coherence tomography predictors for edge restenosis after everolimus-eluting stent implantation. *Circ Cardiovasc Interv.* (2016) 9(10):e004231. doi: 10.1161/circinterventions.116.004231 (published Online First: 2016/10/01).

64. Chinese Society of Cardiology, Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. Chinese Expert consensus on the application of optical coherence tomography in the interventional diagnosis and treatment of coronary artery disease. *Zhonghua Xin Xue Guan Bing Za Zhi* (2023)51(2):109–24. doi: 10. 3760/cma.j.cn112148-20220602-00436 (published Online First: 2023/02/16)

65. Araki M, Park SJ, Dauerman HL, Uemura S, Kim JS, Di Mario C, et al. Optical coherence tomography in coronary atherosclerosis assessment and intervention. *Nat Rev Cardiol.* (2022) 19(10):684–703. doi: 10.1038/s41569-022-00687-9 (published Online First: 2022/04/23).

66. Otake H. Optical coherence tomography-guided percutaneous coronary intervention: evidence and clinical trials. *Interv Cardiol Clin.* (2023) 12(2):225–36. doi: 10.1016/j.iccl.2022.12.004 (published Online First: 2023/03/16).

67. Attar A, Hosseinpour A, Azami P, Kohansal E, Javaheri R. Clinical outcomes of optical coherence tomography versus conventional angiography guided percutaneous coronary intervention: a meta-analysis. *Curr Probl Cardiol.* (2024) 49(2):102224. doi: 10.1016/j.cpcardiol.2023.102224

68. Khan SU, Agarwal S, Arshad HB, Akbar UA, Mamas MA, Arora S, et al. Intravascular imaging guided versus coronary angiography guided percutaneous coronary intervention: systematic review and meta-analysis. *BMJ (Clinical Research ed)*. (2023) 383:e077848. doi: 10.1136/bmj-2023-077848 (published Online First: 2023/11/17).

69. Johnson LW, Moore RJ, Balter S. Review of radiation safety in the cardiac catheterization laboratory. *Cathet Cardiovasc Diagn*. (1992) 25(3):186–94. doi: 10. 1002/ccd.1810250304 (published Online First: 1992/03/01).

70. Macherey-Meyer S, Meertens MM, Heyne S, Braumann S, Tichelbäcker T, Wienemann H, et al. Optical coherence tomography-guided versus angiography-guided percutaneous coronary intervention in acute coronary syndrome: a metaanalysis. *Clin Res Cardiol.* (2023). doi: 10.1007/s00392-023-02272-7 (published Online First: 2023/08/01).

71. Mintz GS, Bourantas CV, Chamié D. Intravascular imaging for percutaneous coronary intervention guidance and optimization: the evidence for improved patient outcomes. *J Soc Cardiovasc Angiogr Interv.* (2022) 1(6):100413. doi: 10.1016/j.jscai. 2022.100413

72. Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis-Oudshoorn CGM. Time-varying covariates and coefficients in cox regression models. *Ann Transl Med.* (2018) 6(7):121. doi: 10.21037/atm.2018.02.12

73. Amorim LD, Cai J. Modelling recurrent events: a tutorial for analysis in epidemiology. Int J Epidemiol. (2014) 44(1):324–33. doi: 10.1093/ije/dyu222