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fibrillation-related genes through
transcriptome data analysis and
Mendelian randomization
Yujun Zhang1, Qiufang Lian2, Yanwu Nie3 and Wei Zhao2*
1Data Management Center, Xianyang Hospital, Yan’an University, Xianyang, China, 2Department of
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University, Nanchang, China
Background: Atrial fibrillation (AF) is a common persistent arrhythmia
characterized by rapid and chaotic atrial electrical activity, potentially leading to
severe complications such as thromboembolism, heart failure, and stroke,
significantly affecting patient quality of life and safety. As the global population
ages, the prevalence of AF is on the rise, placing considerable strains on
individuals and healthcare systems. This study utilizes bioinformatics and
Mendelian Randomization (MR) to analyze transcriptome data and genome-
wide association study (GWAS) summary statistics, aiming to identify biomarkers
causally associated with AF and explore their potential pathogenic pathways.
Methods: We obtained AF microarray datasets GSE41177 and GSE79768 from
the Gene Expression Omnibus (GEO) database, merged them, and corrected
for batch effects to pinpoint differentially expressed genes (DEGs).
We gathered exposure data from expression quantitative trait loci (eQTL) and
outcome data from AF GWAS through the IEU Open GWAS database.
We employed inverse variance weighting (IVW), MR-Egger, weighted median,
and weighted model approaches for MR analysis to assess exposure-outcome
causality. IVW was the primary method, supplemented by other techniques.
The robustness of our results was evaluated using Cochran’s Q test, MR-Egger
intercept, MR-PRESSO, and leave-one-out sensitivity analysis. A “Veen”
diagram visualized the overlap of DEGs with significant eQTL genes from MR
analysis, referred to as common genes (CGs). Additional analyses, including
Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, and immune cell infiltration studies, were conducted on
these intersecting genes to reveal their roles in AF pathogenesis.
Results: The combined dataset revealed 355 differentially expressed genes
(DEGs), with 228 showing significant upregulation and 127 downregulated.
Mendelian randomization (MR) analysis identified that the autocrine motility
factor receptor (AMFR) [IVW: OR= 0.977; 95% CI, 0.956–0.998; P= 0.030],
leucine aminopeptidase 3 (LAP3) [IVW: OR=0.967; 95% CI, 0.934–0.997;
P=0.048], Rab acceptor 1 (RABAC1) [IVW: OR= 0.928; 95% CI, 0.875–0.985;
P=0.015], and tryptase beta 2 (TPSB2) [IVW: OR= 0.971; 95% CI, 0.943–
0.999; P= 0.049] are associated with a reduced risk of atrial fibrillation (AF).
Conversely, GTPase-activating SH3 domain-binding protein 2 (G3BP2) [IVW:
OR= 1.030; 95% CI, 1.004–1.056; P= 0.024], integrin subunit beta 2 (ITGB2)
[IVW: OR= 1.050; 95% CI, 1.017–1.084; P= 0.003], glutaminyl-peptide
cyclotransferase (QPCT) [IVW: OR= 1.080; 95% CI, 1.010–0.997; P= 1.154],
and tripartite motif containing 22 (TRIM22) [IVW: OR= 1.048; 95% CI, 1.003–
1.095; P= 0.035] are positively associated with AF risk. Sensitivity analyses
indicated a lack of heterogeneity or horizontal pleiotropy (P > 0.05), and
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leave-one-out analysis did not reveal any single nucleotide polymorphisms (SNPs)
impacting the MR results significantly. GO and KEGG analyses showed that CG is
involved in processes such as protein polyubiquitination, neutrophil
degranulation, specific and tertiary granule formation, protein-macromolecule
adaptor activity, molecular adaptor activity, and the SREBP signaling pathway, all
significantly enriched. The analysis of immune cell infiltration demonstrated
associations of CG with various immune cells, including plasma cells, CD8T
cells, resting memory CD4T cells, regulatory T cells (Tregs), gamma delta T cells,
activated NK cells, activated mast cells, and neutrophils.
Conclusion: By integrating bioinformatics and MR approaches, genes such as
AMFR, G3BP2, ITGB2, LAP3, QPCT, RABAC1, TPSB2, and TRIM22 are identified
as causally linked to AF, enhancing our understanding of its molecular
foundations. This strategy may facilitate the development of more precise
biomarkers and therapeutic targets for AF diagnosis and treatment.

KEYWORDS
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1 Introduction

Atrial fibrillation (AF), the most common persistent

arrhythmia, is associated with heightened risks of stroke, heart

failure, sudden death, and cardiogenic embolism, leading to

increased hospitalizations and mortality rates (1). Presently,

around 34 million people worldwide are affected by AF, a

number projected to significantly increase owing to an aging

global population and a rise in risk factors like obesity,

hypertension, and diabetes mellitus. This escalation could boost

the economic strain on individuals and societies by as much as

60% by the year 2050 (2). The sinoatrial node, the heart’s

primary pacemaker, is encased in a thin layer of epicardial

adipose tissue. Its interior connects to the atrial myocardial layer,

which primarily consists of pacemaker cells, transitional cells,

and a few Purkinje fibers. It generates impulses that are

transmitted to the atrial muscle and the atrioventricular node

through the internodal pathways (3). Research has indicated that

atrial fibrillation characterized by long RR intervals often results

from a second-degree or higher atrioventricular conduction

block. In patients experiencing atrial fibrillation and long RR

intervals (Tachy-Brady syndrome), radiofrequency ablation can

mitigate the effects of the vagus nerve, reduce concealed

conduction in the atrioventricular node, restore sinoatrial node

functionality, and successfully sustain sinus rhythm (4).

This treatment eliminates the long intervals, obviating the need

for pacemaker therapy. Numerous factors contribute to the

development of atrial fibrillation (AF), such as cigarette smoking,

alcohol consumption, hypertension, obesity, diabetes mellitus,

heart attacks, heart failure, and other risk factors (5). Evidence

from epidemiology shows that AF tends to run in families;

having a parent with AF doubles the likelihood that their

children will also develop this condition (6). The connections

between specific genetic markers and the development of AF,

however, remain poorly understood. Additionally, current drugs

for treating AF often fall short in efficacy and carry potential for
02
adverse effects (7). Compared to pharmacological approaches,

ablation generally offers greater effectiveness but involves invasive

techniques, possible complications, and a significant chance of

recurrence over the long term (8). Thus, gaining a clearer

understanding of AF’s molecular mechanisms is essential for

developing novel diagnostic biomarkers and therapeutic targets.

Recent progress in high-throughput gene chip and transcriptome

sequencing technologies has enhanced their application in

cardiovascular disease research. These technologies range from

detecting copy number variations at the genomic level to exploring

gene expression at the transcriptome level, with integrated

bioinformatics emerging as a key approach for pinpointing

potential biomarkers. For instance, Zhang et al. (9) identified

CXCR4, IGFBP2, IGFBP3, and FHL2 as genes linked to the risk of

AF using bioinformatics analysis. CXCR4, functioning as a

receptor for CXCL12/SDF-1, significantly influences cellular

growth, differentiation, stress responses, and inflammatory

reactions. Studies have shown that myocardial cells in atrial

fibrillation display elevated CXCR4 expression and heightened

inflammatory responses compared to controls. This may promote

inflammation via the PI3K/AKT signaling pathway, potentially

leading to AF (10). IGFBP2, part of the insulin-like growth factor

binding protein (IGFBP) family, is involved in cell migration,

tumor invasion, cell proliferation, and tumor angiogenesis.

Research indicates IGFBP2 inhibits PTEN and enhances PTEN

tyrosine phosphorylation through dimerization with RPTPβ, thus

fostering vascular smooth muscle cell growth (11). Given the role

of the PTEN/AKT/mTOR pathway in cardiac hypertrophy and

fibrosis (12), IGFBP2’s impact on PTEN could affect AF

development. It activates integrin β1 and downstream pathways,

necessitating ILK for cell motility induction and NF-κB activation

(13). NF-κB participates in the regulation of inflammatory

cytokines, thrombosis, and fibrosis genes (14), suggesting the

IGFBP2/integrin/ILK/NF-κB axis might play a role in the

development and progression of AF. IGFBP3, the principal

binding target for IGF-1, modulates cellular responses to IGF-1
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1414974
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zhang et al. 10.3389/fcvm.2024.1414974
either by forming specific complexes with or without IGF-1 signaling

pathways, thus moderating free IGF-1 levels in the body and

restricting IGF-1 signaling activation in target cells. Research by

Liakouli et al. shows that IGFBP-3 may facilitate myocardial

fibrosis by promoting mesenchymal cell proliferation and

extracellular matrix deposition (15). Busch et al. found in the

Study of Health in Pomerania (SHIP) that a low IGF-1/IGFBP-3

ratio correlates with a higher incidence of AF (16). FHL2 protein,

as a functional partner of the α or β subunit of the delayed

rectifier potassium current, regulates potassium ion channels and

is essential for the delayed rectifier potassium current formation

(17). Pape et al. have observed that expression of Kv1.5 (encoded

by KCNA5), a major component of Ikur, is reduced in the atrial

muscle of AF patients. Since Ikur is critical for the atrial muscle

cell action potential repolarization phase (AERP) and highly

selective to atrial tissue, its downregulation reduces APD frequency

adaptability and the ERP/APD ratio, thus fostering the onset and

persistence of atrial fibrillation (18, 19). In a similar vein, Wang

et al. (20) discovered ZBTB20, ERBB4, CREB1, and BNIP3l as

potential indicators for the early diagnosis and prospective

treatment of AF. eQTLs, which are genetic variants that affect

gene expression, play a pivotal role in elucidating biological

pathways. They do so by linking genetic variations to gene

expression changes and identifying pertinent biomarkers within

GWAS (21). Recent GWAS on AF (22) have pinpointed around

140 genetic variant loci linked to the disorder. Yet, establishing a

direct causal link between these markers and the pathophysiology

of AF still requires more definitive evidence.

MR serves as an analytic tool to determine causal relationships

between exposures and outcomes, using genetic variants as

instrumental variables (IVs) (23). This method leverages the

random distribution of alleles during meiosis, thus minimizing the

influence of confounding factors that frequently affect traditional

epidemiological studies (24). Additionally, the allocation of

genotypes precedes disease onset, thereby precluding any

possibility of reverse causation (25). In our research, we merged

bioinformatics with MR to pinpoint differentially expressed eQTLs

as potential biomarkers for diagnosing and treating AF. Our study

further explored the mechanisms of AF pathogenesis through

analyses of enrichment and immune cell infiltration.
2 Materials and methods

2.1 Study design

Initially, we extracted 355 DEGs from AF-related datasets

GSE41177 and GSE79768. Following this, we applied two-sample

MR using data from the GWAS (ebi-a-GCST006414) to explore

the causal relationship between eQTL and AF. By overlapping

DEGs and eQTLs showing significant results in MR analysis, we

pinpointed CGs as prospective biomarkers for this study. MR

studies must adhere to three fundamental criteria (26): (1) a

strong association between the IV and the exposure, (2) no

association of the IV with any confounders of the exposure-

outcome relationship, and (3) the IV must impact the outcome
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solely through its influence on the exposure. We further ensured

the integrity of our findings through sensitivity analyses. The

study also included enrichment and immunohistochemistry

analyses on the identified biomarkers, with the methodology

summarized in Figure 1.
2.2 Data source

AF-related datasets were carefully selected from the GEO

database based on specific criteria: (1) the datasets must

comprise array data from human gene expression studies; (2)

they should include samples from both AF patients and healthy

controls; (3) they must come with sample information files; (4)

both raw and processed data should be publicly accessible.

Following these guidelines, we downloaded two microarray

datasets, GSE41177 and GSE79768, both utilizing the Affymetrix

Human Genome U133 Plus 2.0 Array [HG-U133_Plus_2]

platform (27). GSE41177 consists of 23 cardiac tissue samples,

including 16 from AF patients and 7 from individuals

maintaining sinus rhythm (SR). GSE79768 includes 7 AF tissue

samples and 6 SR samples. Additionally, we sourced GWAS

summary statistics concerning eQTL and AF from the IEU Open

GWAS project, collecting data on 19,942 eQTL datasets as

exposures, with the specific AF-related dataset ebi-a-GCST006414

covering data from 977,323 individuals of European descent

(47,309 cases and 930,014 controls). Since all data used in this

study are publicly available and free to download, no separate

ethical approval was necessary.
2.3 Data preprocessing and identification
of DEGs

The process of data preprocessing and identifying differentially

expressed genes (DEGs) began with the use of a Perl script to

convert the probe matrix into a gene matrix, according to the

annotation file. We excluded probes associated with multiple

genes and calculated the average of multiple probes representing

the same gene to establish the gene’s final expression level (28).

Next, we employed the “limma” package along with the combat

function from the “sva” package to adjust for batch effects in the

two datasets and to merge them (29, 30), revealing a total of

22,877 expressed genes. We then analyzed the DEGs between AF

and SR tissues in the combined dataset using the “limma”

package, selecting genes based on an adjusted P-value < 0.05 and

an absolute log2 fold change (|log2FC|) greater than 0.585.

Visualization of DEGs was achieved using the “pheatmap” and

“ggplot2” R packages to produce heatmaps and volcano plots,

respectively (31).
2.4 Selection of IVs

To enhance the accuracy and validity of our analysis on the

causal link between eQTL and AF risk, we implemented rigorous
frontiersin.org
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FIGURE 1

Flowchart of the study. AF, atrial fibrillation; SR, sinus rhythm; GWAS, genome-wide association study; GO, gene ontology; KEGG, Kyoto encyclopedia
of genes and genomes; IVW, inverse variance weighted; MR, Mendelian randomization.
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quality control steps for selecting IVs. (1) SNPs significantly related

to eQTL were chosen using a P-value threshold of <5 × 10−8 (24);

(2) We set the linkage disequilibrium coefficient R2 = 0.001and the

linkage disequilibrium region width to 10,000 kb to maintain SNP

independence (32); (3) SNPs directly associated with AF were

excluded (P < 5 × 10−8) (33); (4) The F-statistic for each SNP was

calculated using F= R2(n�2)
1�R2 , where n is the sample size, and R2 is

the proportion of variance in the exposure explained by

SNPs, defined as R2 = 2 × (1-MAF) × (MAF × 2), with MAF being

the minor allele frequency and β the allele effect size, excluding

SNPs with weak instrumental variables (F < 10) (34); (5) A

harmonization process aligned effect directions and alleles,

ensured SNPs had a minor allele frequency (>0.01), and removed

palindromic and incompatible SNPs (35).
2.5 MR analysis

We evaluated the causal relationship between eQTL and AF

using five distinct methods: IVW, weighted median (WM), MR-

Egger, Simple model, and Weighted model. The IVW method,

which aggregates Wald estimates from each SNP via meta-

analysis, assumes no pleiotropy and is regarded as the most

efficient method for causal estimation in this study (36).

The MR-Egger method counters possible horizontal pleiotropy

(indicated by an MR-Egger-intercept P < 0.05), providing a

robust estimate (37). WM derives a median estimate from the

distribution of individual SNP effect sizes, weighted by their
Frontiers in Cardiovascular Medicine 04
precision, and offers reliable causal estimates especially when

valid IVs constitute over 50% of the data (38). The Simple model

withstands pleiotropic effects but may be less potent than IVW

(39). The Weighted model adjusts for scenarios likely violating

the pleiotropy assumption (40).
2.6 Sensitivity analysis

A series of sensitivity analyses were conducted to verify the

robustness of our study findings: (1) Heterogeneity among IVs was

assessed using Cochran’s Q test for IVW and MR-Egger, with

funnel plots visualizing significant heterogeneity P < 0.05 among

the selected SNPs (41); (2) Horizontal pleiotropy within the MR

study was evaluated through MR-Egger regression, where an

MR-Egger intercept P < 0.05 indicated substantial horizontal

pleiotropy (42) (3); The Leave-one-out approach was employed to

sequentially exclude one SNP at a time and recalculate the MR

estimates for the remaining SNPs to determine the impact of

individual SNPs on the collective results (43, 44). These procedures

were executed using the R software (version 4.1.2) with the

“Two-Sample-MR” (version 0.5.6) and “MendelianRandomization”

(version 0.4.3) R packages.
2.7 Enrichment analysis

Enrichment analysis for the CGs was performed using GO

terms for molecular function (MF), biological process (BP), and
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cellular component (CC), as well as KEGG pathway analysis,

utilizing the “clusterProfiler”, “org.Hs.eg.db”, and “enrichplot” R

packages (45). Results were visually represented using the

“ggplot2” R package, with a significance threshold of P < 0.05.
2.8 Prediction of miRNAs of intersecting
genes

To explore the correlation between intersecting mRNAs

and miRNAs, we used TargetScan, miRDB and miRanda

databases to predict the interactions between miRNAs and

intersecting genes, followed by Cytoscape analysis to construct a

miRNA-mRNA networks.
2.9 Prediction of miRNAs of intersecting
genes

To explore the correlation between intersecting mRNAs

and miRNAs, we used TargetScan, miRDB and miRanda

databases to predict the interactions between miRNAs and

intersecting genes, followed by Cytoscape analysis to construct a

miRNA-mRNA networks.
2.10 Immune cell infiltration analysis

Using the CIBERSORT algorithm, which applies an inverse

convolution method to gene expression data, we estimated the

abundance of 22 different immune cell types in cardiac tissues

(46). T-tests compared the distribution of these cells between AF

and SR samples. Correlations between the presence of

characteristic genes and the infiltration of immune cells were

analyzed using Spearman’s correlation, and results were

visualized using the “ggplot2” package, considering P < 0.05 as

statistically significant.
3 Results

3.1 Identification of DEGs

We combined the expression profiles of AF and SR samples

from datasets GSE41177 and GSE79768, resulting in a dataset

comprising 22 AF and 9 SR samples. After normalizing to reduce

batch effects, we identified 355 differentially expressed genes

(DEGs) between the AF and SR tissues, with 228 genes up-

regulated and 127 down-regulated, as detailed in Supplementary

Table S1. The top 50 upregulated and downregulated DEGs are

visually represented in a heatmap (Figure 2).
3.2 The causal effects of eQTL predicted by
genetics on AF

Exploring the causal relationships between 19,942 eQTLs and

AF, we discovered 1,811 eQTLs causally linked to the onset of
Frontiers in Cardiovascular Medicine 05
AF. By overlaying these eQTLs with the 355 DEGs, we identified

8 candidate genes (CGs) shown in Figure 3: automatic mobility

factor receptor (AMFR), leucine aminopeptidase 3 (LAP3), Rab

acceptor 1 (RABAC1), tryptase beta 2 (TPSB2), GTPase

activating SH3 domain binding protein 2 (G3BP2), integrin

subunit beta 2 (ITGB2), Glutaminyl Pettide Cycle transfer

(QPCT), and (TRIM22). IVW analysis indicated that AMFR

[OR = 0.977; 95% CI, 0.956–0.998; P = 0.030], LAP3 [OR = 0.967;

95% CI, 0.934 0.997; P = 0.048], RABAC1 [OR = 0.928; 95% CI,

0.875 0.985; P = 0.015], and TPSB2 [IVW: OR = 0.971; 95% CI,

0.943 0.999; P = 0.049] were inversely correlated with AF risk.

Conversely, G3BP2 [OR = 1.030; 95% CI, 1.004–1.056; P = 0.024],

ITGB2 [OR = 1.050; 95% CI, 1.017–1.084; P = 0.003], QPCT

[OR = 1.080; 95% CI, 1.010–0.997; P = 1.154], and TRIM22

[IVW: OR = 1.048; 95% CI, 1.003–1.095; P = 0.035] were

associated with an increased risk of AF. The WM, MR-Egger,

Simple model, and Weighted model analyses corroborated the

direction of the IVW results (Figure 4).
3.3 Sensitivity analysis

Sensitivity analysis revealed no evidence of potential

heterogeneity or horizontal pleiotropy within this study (Table 1).

Cochran’s Q-test was employed to assess the heterogeneity of

estimated instrumental variables arising from individual genetic

variations. The findings indicated that only QPCT demonstrated

significant heterogeneity (P < 0.05), while other variables did not.

Nevertheless, the application of the random-effects IVW model

mitigated the impact of heterogeneity on the study’s outcomes.

The symmetry observed in the funnel plots’ dispersion of causal

associations suggests the absence of confounding factors affecting

the causal effect of the eQTL expression level on AF

(Supplementary Figure S1). Furthermore, the MR-Egger intercept

test, with a P-value >0.05, confirmed the absence of horizontal

pleiotropy (Supplementary Figure S2). The “leave-one-out”

analysis demonstrated that the exclusion of any single SNP did

not significantly alter the MR Analysis results, affirming the

robustness of our findings (Supplementary Figure S3).
3.4 GO and KEGG enrichment analysis
of CGs

GO and KEGG enrichment analyses were conducted to

uncover the biological processes and pathways associated with

the 8 CGs (Figure 5). In terms of biological processes, the genes

are primarily involved in protein polycysteinization, neutrophil

degranulation, and neutrophil activation linked to immune

responses. Cellular component analysis localized the genes to

specific granules and ficolin-1-rich granules, among others.

Molecular function focused on activities like metalloexopeptidase

and exopeptidase activity. KEGG pathway analysis highlighted

significant involvement in the SREBP signaling pathway.
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FIGURE 2

Differential expression gene heatmap. Red modules represent upregulated genes; blue modules represent downregulated genes.

FIGURE 3

Venn diagram of the intersection of differentially expressed genes and eQTL genes in MR analysis.
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FIGURE 4

MR estimated the relationship between the 8 intersecting genes and AF. MR, Mendelian randomization; AF, atrial fibrillation; SNP, single nucleotide
polymorphism; OR, odds ratios; CI, confidence interval.

Zhang et al. 10.3389/fcvm.2024.1414974
3.5 miRNA-mRNA network construction

miRNAs are a class of small non-coding RNA molecules that

can regulate gene expression. In our study, we analyzed the

interactions between eight intersecting genes and miRNAs using

TargetScan, miRDB and miRanda databases databases,

respectively, in order to construct mRNA-miRNA networks

(Figure 6). We identified 7 intersecting genes (AMFR, LAP3,

TPSB2, G3BP2, ITGB2, QPCT, and TRIM22) that could regulate

miRNAs. In addition, we obtained a total of 55 miRNAs

regulating intersecting genes, 11 regulating AMFR, 2 regulating
Frontiers in Cardiovascular Medicine 07
LAP3, 2 regulating TPSB2, 34 regulating G3BP2, 2 regulating

ITGB2, 3 regulating QPCT, and 5 regulating TRIM22.
3.6 Analysis of immune cell infiltration

Using the CIBERSORT algorithm, we quantified the immune

cell infiltration in AF and SR diagnosed patients, illustrated in

Figure 7A. The activity of 22 immune cell types was analyzed

between both groups, revealing that plasma cells and NK cells

exhibited differential expression in AF and SR patients (P < 0.05),
frontiersin.org
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TABLE 1 Heterogeneity and pleiotropy test between intersecting genes and atrial fibrillation.

Exposures Heterogeneity test Pleiotropy test

MR-Egger Inverse variance-weighted MR-Egger

Q Q_df Q_P Q Q_df Q_P Intercept SE P
AMFR 2.359 4 0.670 3.12 5 0.682 −0.006 0.007 0.432

LAP3 8.992 6 0.174 9.166 7 0.241 0.002 0.007 0.745

RABAC1 0.132 1 0.717 1.000 2 0.607 0.015 0.017 0.523

TPSB2 0.244 2 0.885 1.994 3 0.574 0.023 0.018 0.317

G3BP2 3.657 3 0.301 3.675 4 0.452 −0.002 0.018 0.913

ITGB2 0.585 2 0.747 1.391 3 0.708 0.007 0.008 0.464

QPCT 10.058 5 0.074 14.916 6 0.021 −0.016 0.010 0.181

TRIM22 3.470 3 0.325 3.470 4 0.482 −0.0002 0.009 0.982

df, degree of freedom; MR, Mendelian randomization; Q, heterogeneity statistic Q.

FIGURE 5

Enrichment analysis. (A) GO enrichment analysis bar chart. (B) KEGG enrichment analysis bar chart. BP, biological process; CC, cellular component;
MF, molecular function.

Zhang et al. 10.3389/fcvm.2024.1414974
with both showing higher expression levels in the AF cohort

(Figure 7B). Spearman correlation analysis investigated the

relationships between subsets of immune cells and 8 CGs

(Figure 7C). The analysis identified that QPCT expression was

inversely associated with Tregs (r =−0.463, P = 0.042) and

activated NK cells (r =−0.501, P = 0.018). LAP3 expression levels

were negatively correlated with CD8+ T cells (r =−0.500,
P = 0.018) and activated Mast cells (r =−0.505, P = 0.017). ITGB2

showed a positive correlation with Plasma cells (r = 0.467,

P = 0.030) and an inverse relationship with Neutrophils

(r =−0.452, P = 0.036). G3BP2 was positively associated with

CD4+ memory resting T cells (r = 0.464, P = 0.029), but

negatively with activated Mast cells (r =−0.443, P = 0.039).

RABAC1 displayed a positive correlation with Tregs (r = 0.440,

P = 0.040) and activated Mast cells (r = 0.596, P = 0.003), whereas
Frontiers in Cardiovascular Medicine 08
it was negatively associated with gamma delta T cells (r =−0.445,
P = 0.038). TRIM22, AMFR, and RPSB2 showed no significant

correlations with any immune cell types.
4 Discussion

AF is a prevalent cardiovascular condition with an incidence

that escalates with age. Recent advancements have led to the

identification of numerous novel biomarkers for the early

diagnosis, mechanistic exploration, and drug target identification

in AF. Nonetheless, our comprehension of AF’s genetic

underpinnings remains markedly insufficient. Consequently,

there is a critical necessity to unravel AF’s pathogenesis and

identify viable diagnostic and therapeutic targets to formulate an
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FIGURE 6

miRNA-mRNA network diagram.
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effective framework for its prevention, early detection, and

management. In this research, we employed a holistic approach,

integrating bioinformatics analysis with GWAS data mining, to

identify 8 genes: AMFR, LAP3, RABAC1, TPSB2, G3BP2,

ITGB2, QPCT, and TRIM22—implicated in AF’s etiology.

Through functional enrichment analysis, we discovered these

genes predominantly engage in protein polyubiquitination and

neutrophil degranulation, with notable enrichment in pathways

such as the SREBP signaling pathway. Furthermore, our

investigation into immune cell infiltration revealed that plasma

cells and NK cells were abundantly expressed in AF patients.

Notably, among the 8 genes, QPCT, LAP3, ITGB2, G3BP2, and

RABAC1 exhibited correlations with diverse immune cells.

The AMFR, also known as gp78, is a receptor that binds to

AMF ligands, facilitating signal transduction through the
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activation of G protein-coupled receptors and tyrosine kinases.

It plays a pivotal role in the recognition of misfolded proteins,

marking them for ubiquitination and subsequent degradation by

the proteasome through the endoplasmic reticulum-associated

degradation (ERAD) pathway. This process prevents the

accumulation of misfolded proteins within the endoplasmic

reticulum lumen, thereby maintaining the integrity of the

secretory pathway, an essential protective mechanism in vivo

(47). In this study, we present the first evidence that AMFR may

lower the incidence of AF and explore the expression profile of

AMFR to elucidate its mechanism of action in AF further.

Leucine aminopeptidases (LAPs), a category of zinc-dependent

metalloenzymes, play a crucial role in protein metabolism.

LAP3, a significant LAP member, specializes in the cleavage of

N-terminal amino acid polypeptides, facilitating peptide bond
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FIGURE 7

Analysis of immune cell infiltration. (A) The distribution of immune cells in each sample. (B) Differentially expressed immune cells between AF and SR
samples. (C) Correlation analysis between immune cells and the 8 intersecting genes.
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hydrolysis (48). Its function involves cleaving proteins into smaller

peptide molecules via the ubiquitin-proteasome pathway, which is

critical in the antigen-presenting intracellular terminal phase of

protein degradation. To our knowledge, the regulatory role of

LAP3 in AF development remains unreported. RABAC1 encodes

the membrane protein PRA1, which is instrumental in protein

transport and has been shown to interact with various Rab

GTPases (49). Rab proteins are known to bind tightly to GDP

Dissociation inhibitor (GDI), forming complexes.

This observation has led to the hypothesis that an effector,

known as the GDI displacement factor (GDF), exists at the

donor membrane. This factor is believed to play a crucial role in

the dissociation of Rab-isoprenoid base tails and their reinsertion

into the donor membrane (50). In vivo studies suggests that

PRA1 knockout results in abnormal ER and Golgi apparatus

phenotypes, indicating a more structural role in the early

secretory pathway (51). However, the precise function of PRA1

in AF remains to be elucidated. In this study, by screening genes

causally associated with AF through eQTL data and intersecting
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them with AF-associated DEGs from bioinformatics analysis, we

confirmed that RABAC1 is overexpressed in AF patients and

may serve as a protective factor in reducing morbidity. G3BP2,

belonging to the RNA-binding protein family, is a critical

component of stress granule assembly. It regulates gene

expression in response to various environmental stimuli, affecting

cell proliferation, protein degradation, and RNA stability (52).

G3BP family proteins play roles in various diseases, including

cancer, viral infections, Alzheimer’s disease, and cardiovascular

diseases, exhibiting diverse biological functions such as RNA

metabolism, stress granule formation, signaling, cell cycle

regulation, and protein ubiquitination degradation (53), however,

the precise mechanisms underlying these processes require

further exploration. Recent studies have indicated that G3BPs

exhibit abnormal expression levels in cardiovascular diseases,

with their mechanism of action primarily linked to stress granule

formation. Recent studies have demonstrated that the protein

encoded by the G3BP2 gene interacts with the NF-κB pathway

(54). NF-κB, a crucial regulator of inflammatory responses,
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remains inactive when bound to IκB proteins. Upon stimulation, it

dissociates from IκB and translocates to the nucleus to regulate the

expression of target genes for inflammatory cytokines such as

TNF-α, IL-1β, and IL-6, thereby initiating an inflammatory

cascade. Ye et al. reported that inhibiting the NF-κB pathway

with 5,7-dihydroxyflavone could reduce levels of pro-inflammatory

cytokines, potentially decreasing susceptibility to AF (55).

Additional research has shown that colchicine can lower rat

susceptibility to AF by reducing inflammation-mediated atrial

fibrosis (56). NF-κB is pivotal in gene transcription, noted for

its rapid transcriptional activation (57). Previous studies have

also demonstrated that AF in diabetic rats induced by

thiazolidinediones was associated with activation of the NF-κB

pathway, leading to a pro-inflammatory state, myocardial

hypertrophy, and fibrosis (58). Therefore, it is hypothesized that

G3BP2 may promote the onset of AF by interacting with the

NF-κB pathway and triggering an inflammatory response. ITGB2,

a complex heterodimer composed of α and β chains, functions as

an integral cell membrane receptor, facilitating a multifaceted role

in extracellular matrix (ECM)-cytoskeletal linkage and biochemical

and mechanical signal transduction between the cell and its

surroundings (59). Friedrichs et al. (60) demonstrated that ITGB2-

mediated infiltration of polymorphonuclear neutrophils contributes

to atrial fibrosis, thereby heightening susceptibility to AF in

angiotensin II treated mice. Previous research has illustrated that

ITGB2 enhances the cross-cell migration of white blood cells in

both animal and cell culture experiments, impairing endothelial

barrier integrity and participating in atherosclerosis development

(61). As a risk factor, ITGB2 has been implicated in accelerating

myocardial infarction and arterial thrombotic cerebral infarction

via cell adhesion molecular pathways (62). This analysis further

posits that ITGB2 could act as a risk factor, increasing AF

incidence. The QPCT gene encodes glutaminyl cyclase, an enzyme

responsible for the post-translationally modification of proteins by

converting N-terminal glutamate into pyroglutamate. This

modification increases protein resistance to protease degradation,

enhances hydrophobicity and neurotoxicity, and predisposes the

proteins to aggregation (63). Yamada et al. (64) demonstrated a

correlation between the expression of the QPCT gene and

hypertension in Japanese men. To date, research on QPCT in AF

has been sparse, with its underlying molecular mechanisms yet to

be fully elucidated. The TRIM protein family, prevalent across

multicellular animals, functions as immunomodulatory proteins

and E3 ubiquitin ligases (65). TRIM22, a member of this family,

plays a critical role in modulating the body’s immune-

inflammatory response. Several studies have highlighted the

significance of the inflammatory mechanism in the pathogenesis

and progression of AF (66). Clinical and experimental research

has identified elevated levels of serum inflammatory biomarkers

and cardiac tissue inflammatory markers or cytokines/growth

factors in individuals with AF (67). Inflammatory responses in the

atrial wall can lead to increased oxidative stress, cardiomyocyte

apoptosis, fibrosis, and abnormalities in gap junction regulation

and intracellular calcium handling, potentially contributing to the

development of arrhythmias and AF (68). TRIM22 has been

implicated in the development of various cancers, including gastric
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(69), ovarian (70), and cervical cancer (71). Numerous

epidemiological studies have established a strong link between

malignant tumors and atrial fibrillation (AF), noting a higher

prevalence of AF among cancer patients compared to those

without cancer. A case-control study reported an AF incidence of

7.4% among patients diagnosed with tumors, which is higher than

the 6.8% observed in the non-tumor group (72). Additionally, a

long-term prospective study lasting 16.3 years showed an increased

risk of AF in cancer patients, with a hazard ratio (HR) of 2.47

(73). Similarly, a large meta-analysis involving 5,889,234 patients

found a 47% increased risk of AF in patients with malignant

tumors within 90 days of diagnosis, compared to those without

malignant tumors (74). Therefore, early prevention, recognition,

and management of AF should be prioritized in populations with

malignant tumors.

Our further exploration into the biological functions and key

pathways of the 8 CGs revealed significant insights through GO

enrichment analysis. These genes are predominantly associated

with protein polyubiquitination and neutrophil-related pathways,

including neutrophil degranulation, regulation of neutrophil

activation, and neutrophil activation within the immune response,

all of which were notably enriched. Protein polyubiquitination, a

prevalent post-translational modification, involves a complex

enzyme-linked reaction sequence utilizing ubiquitin-activating

enzyme E1, ubiquitin-binding enzyme E2, and ubiquitin ligase E3

(75). Several E3 ubiquitin ligases, such as WWP2, SMURF1, and

SMURF2, have been identified as key regulators in myocardial

fibrosis (76). Steinle et al. (77) observed that both protein

modification and neutrophil activation play roles in systemic

inflammation and oxidative stress. The KEGG pathway analysis

highlighte the SREBP signaling pathway, cytoplasmic sequestering

of transcription factors, endoplasmic reticulum mannose trimming,

and the cellular response to sterol depletion as main components.

We have also determined the effects of mRNA and miRNA

gene interactions on disease. miRNAs have been shown to

modulate a wide range of signaling pathways and cellular

processes and to participate in intercellular communication for

their biological functions (78). Recent studies have shown that

mi RNAs control the function of various cells in the heart, such

as cardiac myocytes, endothelial cells, smooth muscle cells, and

fibroblasts, and play an important role in cardiovascular diseases,

such as myocardial infarction, myocardial hypertrophy, fibrosis,

cardiac failure, cardiac arrhythmia, inflammation, and

atherosclerosis (79). Some miRNAs, including miRNA-21,

miRNA-26, miRNA-29, and miRNA-133, have been reported to

contribute to the process of atrial fibrosis by participating in the

regulation of different signaling pathways (80), which suggests

that miRNAs may play an important role in promoting the

maintenance of AF.

Inflammation has been identified as a key risk factor for AF,

with the immune response it triggers playing a crucial role in the

initiation and progression of AF. Litviňuková et al. (81)

discovered a substantial presence of immune cells in the atrial

tissues of 14 donated hearts, with immune cells constituting

10.4% of the atrial samples. This finding underscores the

significance of local immune cells in cardiac pathophysiological
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alterations. Wu et al. (82) found that CD8+ T cells were

significantly more prevalent in AF patients than in individuals

with normal rhythm. Zhou et al. (83) observed that macrophage

M2, activated NK cells, and neutrophils might be implicated in

the pathogenesis of AF. Our findings indicate an increased

expression of plasma cells and NK cells in AF patients. Plasma

cells, or effector B cells, are involved in synthesizing and storing

antibodies and play a part in humoral immune responses,

appearing in various diseases such as lung adenocarcinoma,

myeloma, and SLE (84–86). NK cells, located in lymphoid organs

and peripheral tissues, can influence disease progression at

inflammatory sites through cytokine and chemokine production,

cell-to-cell interactions, and engagements with other immune

cells. However, the precise mechanisms through which

inflammation impacts AF remain elusive. Current research

suggests that inflammation contributes to atrial remodeling via

oxidative stress. Structural and electrophysiological remodeling of

the atrium is widely regarded as pivotal in the pathophysiology of

AF, thereby influencing the condition’s persistence and recurrence.

We investigated the interactions between AMFR, LAP3,

RABAC1, TPSB2, G3BP2, ITGB2, QPCT, TRIM22, and immune

cell infiltration in greater depth. QPCT was found to inversely

correlate with Tregs and activated NK cells. Similarly, LAP3 was

inversely related to CD8+ T cells and activated Mast cells, while

ITGB2 displayed a positive relationship with Plasma cells and a

negative one with Neutrophils. G3BP2 correlated positively with

CD4+ memory resting T cells and negatively with activated Mast

cells. RABAC1 exhibited positive correlations with Tregs and

activated Mast cells, yet it had an inverse relationship with

gamma delta T cells. In contrast, TRIM22, AMFR, and TPSB2

showed no discernible correlations with immune cells. These

results highlight the complex interactions between AF-related

genes and immune cells, emphasizing the importance of further

exploration into these dynamics. Notably, QPCT, LAP3, ITGB2,

G3BP2, and RABAC1 are identified as crucial in AF pathogenesis

through their modulation of immune infiltration.

This study offers several advantages. Primarily, this study is the

first, to our knowledge, to integrate bioinformatics with MR for the

analysis of AF biomarkers, revealing a causal link between 8 CGs

and AF. Furthermore, the utilization of MR Analysis ensures that

our results are robust against reverse causality. Additionally, we

conducted multiple sensitivity analyses to verify the consistency

of the causal estimates, affirming the reliability of our

conclusions. However, there are limitations to our study: (1) The

microarray analysis involved a small sample size, which could

introduce bias and underscores the necessity for more extensive

future studies. (2) Although we merged two GEO datasets and

identified eight CGs by intersecting genes significant in both

DEGs and MR Analysis, the exact roles of these CGs in AF

require further elucidation through in vitro and in vivo studies.

(3) Since our sample solely comprised individuals from a

European background, this may limit the generalizability of our

findings to other ethnic groups.

In summary, our study leveraged bioinformatics and MR

Analysis to investigate genes associated with AF, identifying 8

genes with causal links to the onset and progression of AF.
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AMFR, LAP3, RABAC1, and TPSB2 were identified as protective

factors that could potentially reduce the incidence of AF, while

G3BP2, ITGB2, QPCT, and TRIM22 were deemed risk factors

that could promote the disease’s development. Furthermore, GO

and KEGG enrichment analyses revealed that these 8 GCs were

predominantly involved in protein ubiquitination and the SREBP

signaling pathway. Analysis of the association between gene

expression and immune cell infiltration highlighted that LAP3,

RABAC1, G3BP2, ITGB2, and QPCT might influence AF

through the regulation of immune cell infiltration. These findings

suggest that the genes identified could serve as novel biomarkers

and potential therapeutic targets for AF, offering insights into the

molecular mechanisms underlying AF pathology.
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