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Background: Atherosclerotic plaque rupture is a major cause of heart attack.
Previous studies have shown that immune cells are involved in the
development of atherosclerosis, but different immune cells play different roles.
The aim of this study was to investigate the causal relationship between
immunological traits and myocardial infarction (MI).
Methods: To assess the causal association of immunological profiles with
myocardial infarction based on publicly available genome-wide studies, we
used a two-sample mendelian randomization (MR) approach with inverse
variance weighted (IVW) as the main analytical method. Sensitivity analyses
were used to assess heterogeneity and horizontal pleiotropy.
Results: A two-sample MR analysis was conducted using IVW as the primary
method. At a significance level of 0.001, we identified 47 immunophenotypes
that have a significant causal relationship with MI. Seven of these were present
in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes,
five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity
analyses were performed to confirm the robustness of the MR results.
Conclusions: Our results provide strong evidence that multiple immune cells
have a causal effect on the risk of myocardial infarction. This discovery
provides a new avenue for the development of therapeutic treatments for
myocardial infarction and a new target for drug development.

KEYWORDS
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1 Introduction

Myocardial infarction (MI) occurs on the basis of atheromatous coronary artery

lesions, where there is a dramatic reduction or interruption of coronary blood supply,

leading to myocardial ischemia and hypoxia or even necrosis (1, 2). Cardiovascular

disease is the leading cause of death in the United States, with a prevalence

of myocardial infarction as high as 3.2 per cent among American adults (3). Globally,
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more than 8 million lives are threatened by AMI each year,

resulting in a huge health and economic burden (4–6).

Recent studies have shown that the immune system plays a key

role in myocardial infarction development and repair, determining

the extent of myocardial damage and prognosis (7–9). Intense

aseptic inflammation occurs in the infarcted area, which can be

divided into an inflammatory phase, a proliferative phase and a

mature phase (10, 11). Neutrophils, macrophages and immune

cells such as B and T cells are attracted to the infarcted area by

chemokines and produce pro-inflammatory or anti-inflammatory

factors to remove and repair damaged tissue, affecting cardiac

remodeling and healing (12–14). Macrophages are the most

numerous immune cells in myocardial tissue (14, 15). Cardiac

macrophages can be divided into two subpopulations depending

on their origin (16). Macrophages of monocyte origin are

predominantly associated with inflammatory responses and

pathogenic properties, while resident macrophages of embryonic

yolk sac origin exhibit cardioprotective functions. Early

macrophages produce pro-inflammatory cytokines leading to

tissue inflammation and over time can polarize into M2

macrophages that release anti-inflammatory cytokines to repair

the healing process (14). Studies analyzing the role of different

subsets of innate lymphoid cells (ILC) reveal the involvement of

ILC1 in the progression of atherosclerosis (AS) and the anti-AS

role of ILC2 (17). Rafael Blanco-Domínguez finds that CD69

expression on Tregs increases survival from coronary ligation in

mice, and increased myocardial inflammation and deterioration

of cardiac function after ischemia in CD69- mice (18). These

findings suggest that different subpopulations of immune cells

behave differently in the inflammatory response to myocardial

infarction (8, 14, 17, 19, 20). It has been found that an overactive

inflammatory response leads to excessive fibrosis appearing as

heart failure with preserved ejection fraction. The absence of an

effective inflammatory response leads to unstable scarring and

ventricular rupture (13, 20). However, there are few studies on

different immune cell subsets and myocardial infarction. These

studies often suffer from the limitations of limited sample size,

confounding factors and reverse causality.

Mendelian randomization is a statistical technique. Genetic

variants, also known as single nucleotide polymorphisms

(SNPs), are used as instrumental variables(IV). MR uses genetic

variants as a proxy for exposure to assess whether exposure is

associated with an outcome (21). It is well known that genetic

variants are randomly assigned at conception. In this way, MR is

similar to a randomized controlled trial (RCT), which avoids

confounding factors and reverse causality. It follows that MR

can provide a causal relationship between exposure and outcome

(22–25). The role of different types of immune cells in the

development and progression of atherosclerosis has been

confirmed in previous observational studies. This study identifies

additional immune cells associated with myocardial infarction

and elucidates the causal relationship between these immune

traits and myocardial infarction. The discovery of the immune

cell traits associated with the occurrence of MI will help to

develop novel therapeutic targets for therapeutic interventions in

myocardial infarction (26).
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2 Materials and methods

2.1 Study design

We analyzed the causal relationship between 731 immune cell

traits and myocardial infarction based on two-sample Mendelian

randomization (MR). MR studies use genetic variation that is

associated with exposure as an instrumental variable (IV) to

predict the causal relationship between exposure and outcome

(27). The study obtained 47 genetic variants for circulating

immune cell traits and their association with the risk of

myocardial infarction (MI) from previously published genome-

wide association studies (GWAS).The use of MR design reduces

the impact of confounding and reverse causation, thereby

improving the ability to make causal inferences about

associations between exposure and outcome. The use of genetic

variants as instrumental variables (IV) to study the effects of

altered exposures is advantageous due to their random

assignment at the time of conception, making them less

susceptible to confounding by environmental factors or reverse

causation. This study analyzed datasets from human individuals

that are publicly available. The overall design is shown in

Figure 1. As it is a secondary analysis of published data, ethical

approval is not required.
2.2 Genome-wide association study (GWAS)
data sources for MI

The genome-wide association study (GWAS) summary data for

MI are sourced from the December 2023 released by Genetic

Research Finland and can be accessed at https://finngen.gitbook.

io/documentation. The FinnGen study has analyzed more than

500,000 biobank samples from Finland. The study correlates

genetic variants with health data to understand pathogenesis and

identify risk factors. A genome-wide association study (GWAS)

was conducted on 118,870 European individuals, with 26,060

cases and 343,079 controls.
2.3 Immunity-wide GWAS data sources

Genetic variants associated with immune cells are derived from

pooled data from the UK Biobank. This information is available for

search on the website https://gwas.mrcieu.ac.uk/datasets/.GWAS

statistical summaries for each immunological trait are publicly

available from the GWAS catalogue under accession numbers

ranging from GCST90001391 to GCST90002121. The GWAS

data comprised four cellular parameters: median fluorescence

intensity (MFI) representing surface antigen levels (n = 389),

absolute cell count (AC) (n = 118), morphological parameters

(MP) (n = 32), and relative cell count (RC) (n = 192). Of these,

AC, MFI and RC features comprised B cells, CDC, T cell

maturation stage, monocytes, myeloid cells, TBNK (T cells, B

cells, natural killer cells) and Treg panels, whereas MP features

included CDC and TBNK panels.
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FIGURE 1

Schematic representation of the research process. Assumption 1, significantly associated with exposure, Assumption 2, not associated with outcome,
Assumption 3, not associated with confounders. SNPs, single-nucleotide polymorphisms; MR, Mendelian randomization.
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2.4 Selection of instrumental variables (IVs)

In causal inference, a valid instrumental variable (IV) must

satisfy three key assumptions: (1) the genetic variant is directly

related to the exposure (731 circulating immune cell traits); (2)

there is no confounding influence between the genetic variant

and the outcome; and (3) the genetic variant does not affect the

outcome in ways other than through the exposure. Based on

recent studies, a significance level of 1 × 10−5 was used for the

selection of instrumental variables (IV) associated with each

immunological trait. To ensure unbiased results, we applied a

chain imbalance threshold of 5,000 kb and an R2 value of less

than 0.001 to the chain imbalance distance. The strength of the

association between the independent variables (IVs) and

exposure was assessed using the F-statistic. IVs with an F-statistic

greater than 10 were used to exclude effects due to weak

instrumental variables (28).
2.5 Statistical analysis

A variety of MR analyses were conducted, such as MR Egger,

weighted median, inverse variance weighted (IVW), simple mode,

weighted mode, and MR-PRESSO methods. Each of these

methods uses different statistical assumptions to make causal

inferences (29). In MR analysis, the primary method for assessing
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causality is IVW (30). IVW assumes that all SNPs are

independent of pleiotropy and depend on the variance of the

outcome, and this method has a robust causality detection (31).

Even if the results of the weighted median and MR-Egger

methods were not significant, we considered them significant if

the IVW results were significant (p < 0.05) and consistent with the

trend of the other methods (32, 33). The odds ratio (OR) reflects

the increase in risk factor levels per standard deviation (SD) (25).

We used the Cochrane Q statistic to assess the variability of the

instrumental variables, with p-value above 0.05 indicating no

heterogeneity. To assess the presence of horizontal pleiotropy, we

conducted MR Egger regression analysis. A p-value greater than

0.05 suggests the absence of horizontal pleiotropy (34). A “leave-

one-out” analysis evaluate the impact of individual SNPs on the

overall MR estimate. Furthermore, scatter plots were utilized to

demonstrate that outliers did not impact the outcomes (35).
3 Results

3.1 An overview of IVs

According to recent studies, the genome-wide significance

p-value for each immune cell trait in IVs was set at 5 × 10−6

(36–38). Following F-statistical validation, 985 SNPs were

identified as IVs among 731 immune cell SNPs. The retained
frontiersin.org
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SNPs were found to be strong instruments, as indicated by

F-statistics exceeding 10. These results are presented in

Supplementary Table S1.
3.2 Exploration of the causal effect of
immunophenotypes and MI

To investigate the causal relationship between

immunophenotype and MI, we conducted a two-sample MR

analysis using IVW as the primary method. At a significance level

of 0.001, we identified 47 immunophenotypes that have a

significant causal relationship with MI. Of these, 7 were found in

B cells, 5 in cDC, 4 in the maturation stages of T cells, 6 in

monocytes, 5 in myeloid cells, 12 in TBNK cells, and 8 in Treg

cells. Detailed findings are presented in Table 1 and Figure 2. We

conducted MR-Egger intercept and MR-PRESSO global tests to

eliminate SNPs with pleiotropy (MR-PRESSO test P < 0.05, MR-

Egger regression P < 0.05). Following Cochran’s Q test, SNPs with

heterogeneity (P < 0.05) were excluded, as detailed in Table 1.

Furthermore, the leave-one-out analysis indicated that the

exclusion of any of the SNPs did not affect the overall results. This

suggests a stable causal relationship between immunophenotype

and MI (Supplementary Figure S1). In addition, the stability of

causality is demonstrated by analysing species using scatterplots

and funnel plots. (Supplementary Figure S2).
3.2.1 B cell
The study revealed that BAFF-R on IgD- CD38br [OR(95%

CI):0.96 (0.93–1.00)], CD25 on IgD + CD38br [OR(95% CI): 0.96

(0.93–1.00)], and IgD on IgD + CD38br [OR(95% CI):0.98

(0.96–1.00)] had a protective effect against MI. The risk factors

for MI were IgD- CD24- %B cell [OR (95% CI): 1.04 (1.02–

1.06)], IgD- CD38br AC [OR (95% CI): 1.02 (1.00–1.04)], CD27

on IgD- CD38br [OR (95% CI): 1.05 (1.00–1.10)], and CD38 on

IgD- CD38dim [OR (95% CI): 1.02 (1.00–1.03)] (Table 1).
3.2.2 cDC
The study revealed that four types of DC cells (CD11c + HLA

DR++ monocyte % monocyte [OR (95% CI): 1.03 (1.01–1.05)],

CD62l- plasmacytoid DC %DC [OR (95% CI): 0.96 (0.93–0.99)],

HLA DR on plasmacytoid DC [OR (95% CI): 1.03 (1.01–1.04)],

HLA DR on DC [OR (95% CI): 1.03 (1.01–1.04)] were linked

to a higher risk of MI. It was also discovered that CD62l on

CD62l + myeloid DC [OR (95% CI): 0.96 (0.93–0.99)] was linked

to a decreased risk of MI (Table 1).
3.2.3 Maturation stages of T cell
The study revealed that four types of Maturation stages of

T cells (EM DN (CD4-CD8-) %DN [OR (95% CI): 1.02

(1.00–1.05)], HVEM on EM CD8br(OR(95% CI):1.03 (1.01–1.05),

HVEM on TD CD8br [OR (95% CI):1.02 (1.00–1.04)], CD45RA

on naive CD4+ [OR (95% CI): 1.02 (1.00–1.03)] were linked to a

higher risk of MI (Table 1).
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3.2.4 Monocyte
The study revealed that CD40 on CD14+ CD16 +monocyte

[OR (95% CI):0.98 (0.96–0.99)], CD14 on CD14+ CD16 +monocyte

[OR (95% CI):0.94 (0.90–0.98)], CD40 on CD14- CD16 +

monocyte [OR (95% CI): 0.97 (0.96–0.98)], PDL-1 on monocyte

[OR (95% CI): 0.96 (0.93–1.00)] had a protective effect against MI.

The risk factors for MI wereCX3CR1 on monocyte [OR (95% CI):

1.03 (1.01–1.06)], CX3CR1 on CD14- CD16 +monocyte [OR (95%

CI): 1.03 (1.01–1.06)] (Table 1).

3.2.5 Myeloid cell
The study revealed that four types of DC cells CD33dim HLA

DR- AC [OR (95% CI): 1.01 (1.00–1.02)], Basophil AC [OR

(95% CI): 1.01 (1.00–1.02)], CD45 on CD33br HLA DR + CD14-

(OR (95% CI): 1.03 (1.00–1.06)], HLA DR on CD33- HLA DR+

[OR (95% CI): 1.03 (1.01–1.05)] were linked to a higher risk

of MI. It was also discovered that CD45 on CD33- HLA DR-

[OR(95% CI):0.97 (0.94–1.00)] was linked to a decreased risk

of MI (Table 1).

3.2.6 TBNK
The study revealed that T cell %lymphocyte [OR (95% CI): 0.96

(0.92–0.99)], T cell %leukocyte [OR (95% CI): 0.98 (0.95–1.00)],

DP (CD4 + CD8+) %leukocyte [OR (95% CI): 0.95 (0.92–0.98)],

HLA DR + CD8br %T cell [OR (95% CI): 0.98 (0.97–1.00)], HLA

DR + CD8br %lymphocyte [OR (95% CI): 0.97 (0.95–0.99)],

CD3- lymphocyte AC [OR (95% CI): 0.94 (0.91–0.98)], CD45 on

NKT [OR (95% CI): 0.97 (0.96–0.99)] had a protective effect

against MI. The risk factors for MI were DN (CD4-CD8-) %

leukocyte [OR (95% CI): 1.02 (1.00–1.04)], NK %lymphocyte

[OR (95% CI): 1.02 (1.00–1.04)], CD45 on lymphocyte [OR

(95% CI): 1.03 (1.00–1.05)], FSC-A on HLA DR + CD4+ [OR

(95% CI): 1.02 (1.00–1.05)], HLA DR on HLA DR + CD8br

[OR (95% CI): 1.04 (1.01–1.08)] (Table 1).

3.2.7 Treg
The study revealed that three types of Tregs cells (CD28- DN

(CD4-CD8-) %DN [OR (95% CI): 0.97 (0.95–0.99)], CD28 on

activated Treg [OR (95% CI): 0.97 (0.95–0.99], CD25 on resting

Treg [OR (95% CI): 0.97 (0.95–1.00)] were linked to a decreased

risk of MI, while five types of Tregs cells(CD28+ DN

(CD4-CD8-) %DN [OR (95% CI): 1.03 (1.01–1.06)],

CD28- CD8br %T cell [OR (95% CI): 1.06 (1.02–1.10)], CD28

on CD28+ CD45RA- CD8br [OR (95% CI): 1.05 (1.01–1.09)],

CD127 on CD4+ [OR (95% CI): 1.06 (1.01–1.11)], CD39 on

granulocyte [OR (95% CI): 1.02 (1.00–1.05)] were associated with

an increased risk of MI (Table 1).
4 Discussion

A large proportion of myocardial infarction (MI) is caused by

the rupture or erosion of vulnerable atherosclerotic plaques, leading

to occlusion of the coronary arteries (39–41). Recent studies have

confirmed that atherogenesis and progression of atherosclerosis
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TABLE 1 Summary of the GWAS included in this two sample Mendelian randomization study.

Panel immune cells Outcome Nsnp Methods Beta OR
(95% CI)

P value Heterogeneity Horizontal pleiotrop

Cochran’s Q P value Egger
intercept P

Global_P

B cell IgD- CD24- %B cell Myocardial
infarction

17 Inverse variance
weighted

0.037810369 1.04 (1.02–1.06) 0.001120026 18.00520728 0.323592124 0.291426349 0.398333333

B cell IgD- CD38br AC Myocardial
infarction

20 Inverse variance
weighted

0.022167148 1.02 (1.00–1.04) 0.03297089 27.14380966 0.101347707 0.233165063 0.151

B cell BAFF-R on IgD- CD38br Myocardial
infarction

16 Inverse variance
weighted

−0.037138215 0.96 (0.93–1.00) 0.030694231 13.21754948 0.585498791 0.105054123 0.592666667

B cell CD25 on IgD + CD38br Myocardial
infarction

13 Inverse variance
weighted

−0.039353046 0.96 (0.93–1.00) 0.038961038 15.95386801 0.193358141 0.103017285 0.161333333

B cell CD27 on IgD- CD38br Myocardial
infarction

15 Inverse variance
weighted

0.047099732 1.05 (1.00–1.10) 0.04385932 10.32121507 0.738342137 0.630810454 0.765333333

B cell CD38 on IgD- CD38dim Myocardial
infarction

22 Inverse variance
weighted

0.015234395 1.02 (1.00–1.03) 0.032830965 11.56475712 0.950629904 0.671168903 0.963666667

B cell IgD on IgD + CD38br Myocardial
infarction

25 Inverse variance
weighted

−0.023611417 0.98 (0.96–1.00) 0.02870343 23.97965348 0.462761319 0.575552103 0.525666667

cDC CD11c + HLA DR++ monocyte %
monocyte

Myocardial
infarction

17 Inverse variance
weighted

0.026107887 1.03 (1.01–1.05) 0.013710484 13.10249677 0.665249267 0.264441394 0.581666667

cDC CD62l- plasmacytoid DC %DC Myocardial
infarction

18 Inverse variance
weighted

0.022621383 1.02 (1.00–1.05) 0.043799973 22.50851263 0.165945162 0.212147372 0.175

cDC CD62l on CD62l + myeloid DC Myocardial
infarction

15 Inverse variance
weighted

−0.041700673 0.96 (0.93–0.99) 0.020342865 9.762419198 0.779338874 0.768404213 0.793

cDC HLA DR on plasmacytoid DC Myocardial
infarction

27 Inverse variance
weighted

0.028988572 1.03 (1.01–1.04) 6.24634E-05 21.26372906 0.728225703 0.696403886 0.585

cDC HLA DR on DC Myocardial
infarction

23 Inverse variance
weighted

0.034598717 1.04 (1.02–1.05) 8.37795E-05 29.45100187 0.13242949 0.307270679 0.123333333

Maturation stages of
T cell

EM DN (CD4-CD8-) %DN Myocardial
infarction

27 Inverse variance
weighted

0.023864011 1.02 (1.00–1.05) 0.022902882 30.26350364 0.256838399 0.704803743 0.261333333

Maturation stages of
T cell

HVEM on EM CD8br Myocardial
infarction

18 Inverse variance
weighted

0.026546793 1.03 (1.01–1.05) 0.009876917 15.48053223 0.560911502 0.931892539 0.618666667

Maturation stages of
T cell

HVEM on TD CD8br Myocardial
infarction

25 Inverse variance
weighted

0.02092931 1.02 (1.00–1.04) 0.025984204 34.69949821 0.072982692 0.639322374 0.074666667

Maturation stages of
T cell

CD45RA on naive CD4+ Myocardial
infarction

38 Inverse variance
weighted

0.016066387 1.02 (1.00–1.03) 0.035740803 45.73094659 0.153684385 0.415481393 0.173333333

Monocyte CD40 on CD14+ CD16 + monocyte Myocardial
infarction

21 Inverse variance
weighted

−0.024301295 0.98 (0.96–0.99) 0.000765958 14.41762759 0.80870593 0.131828876 0.792666667

Monocyte CD14 on CD14+ CD16 + monocyte Myocardial
infarction

14 Inverse variance
weighted

−0.066148154 0.94 (0.90–0.98) 0.001793064 12.81345799 0.462321872 0.701184772 0.542333333

Monocyte CD40 on CD14- CD16 +monocyte Myocardial
infarction

27 Inverse variance
weighted

−0.029940204 0.97 (0.96–0.98) 5.57679E-05 29.39315625 0.293509109 0.512883771 0.356666667

Monocyte CX3CR1 on monocyte Myocardial
infarction

26 Inverse variance
weighted

0.032314234 1.03 (1.01–1.06) 0.013864616 35.88710325 0.073330422 0.732726987 0.086666667

Monocyte PDL-1 on monocyte Myocardial
infarction

15 Inverse variance
weighted

−0.03832637 0.96 (0.93–1.00) 0.034768925 21.78377258 0.083167788 0.99610123 0.104666667
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TABLE 1 Continued

Panel immune cells Outcome Nsnp Methods Beta OR
(95% CI)

P value Heterogeneity Horizontal pleiotrop

Cochran’s Q P value Egger
intercept P

Global_P

Monocyte CX3CR1 on CD14- CD16 +
monocyte

Myocardial
infarction

18 Inverse variance
weighted

0.031353309 1.03 (1.01–1.06) 0.009775452 13.79361032 0.681653835 0.975205731 0.732

Myeloid cell CD33dim HLA DR- AC Myocardial
infarction

24 Inverse variance
weighted

0.010609557 1.01 (1.00–1.02) 0.036637485 33.0728931 0.079804864 0.135281417 0.100666667

Myeloid cell Basophil AC Myocardial
infarction

23 Inverse variance
weighted

0.011828024 1.01 (1.00–1.02) 0.02244036 32.42877406 0.070374086 0.124820106 0.087

Myeloid cell CD45 on CD33br HLA DR +
CD14-

Myocardial
infarction

18 Inverse variance
weighted

0.027702335 1.03 (1.00–1.06) 0.048132886 9.244009663 0.932294121 0.447957178 0.936

Myeloid cell CD45 on CD33- HLA DR- Myocardial
infarction

14 Inverse variance
weighted

−0.031921543 0.97 (0.94–1.00) 0.038960777 15.38138857 0.284152125 0.675266364 0.369333333

Myeloid cell HLA DR on CD33- HLA DR + Myocardial
infarction

15 Inverse variance
weighted

0.031016263 1.03 (1.01–1.05) 0.000781554 19.66909402 0.140924077 0.847498067 0.142333333

TBNK T cell %lymphocyte Myocardial
infarction

17 Inverse variance
weighted

−0.043434101 0.96 (0.92–0.99) 0.021342948 19.51073035 0.243069497 0.965558064 0.265

TBNK T cell %leukocyte Myocardial
infarction

17 Inverse variance
weighted

−0.023556297 0.98 (0.95–1.00) 0.04140857 20.97449209 0.17949316 0.470453061 0.309666667

TBNK DP (CD4 + CD8+) %leukocyte Myocardial
infarction

23 Inverse variance
weighted

−0.050316401 0.95 (0.92–0.98) 0.002656635 17.15377494 0.754817823 0.802451369 0.777

TBNK DN (CD4-CD8-) %leukocyte Myocardial
infarction

21 Inverse variance
weighted

0.019673163 1.02 (1.00–1.04) 0.034161547 16.36321187 0.693850955 0.208975141 0.779333333

TBNK HLA DR + CD8br %T cell Myocardial
infarction

30 Inverse variance
weighted

−0.018832243 0.98 (0.97–1.00) 0.017559621 31.7219276 0.332210606 0.761022093 0.386333333

TBNK HLA DR + CD8br %lymphocyte Myocardial
infarction

31 Inverse variance
weighted

−0.028244308 0.97 (0.95–0.99) 0.006364236 41.5993588 0.077417449 0.611822356 0.103333333

TBNK CD3- lymphocyte AC Myocardial
infarction

18 Inverse variance
weighted

−0.058165521 0.94 (0.91–0.98) 0.001723729 26.3284159 0.068681381 0.172558225 0.098

TBNK NK %lymphocyte Myocardial
infarction

28 Inverse variance
weighted

0.022323697 1.02 (1.00–1.04) 0.022479168 25.59226449 0.541307339 0.922552307 0.603

TBNK CD45 on lymphocyte Myocardial
infarction

24 Inverse variance
weighted

0.026997802 1.03 (1.00–1.05) 0.038863788 28.53798069 0.196119132 0.289490433 0.234333333

TBNK CD45 on NKT Myocardial
infarction

24 Inverse variance
weighted

−0.025427282 0.97 (0.96–0.99) 0.014133277 30.70203522 0.130290912 0.272937609 0.161

TBNK FSC-A on HLA DR + CD4+ Myocardial
infarction

18 Inverse variance
weighted

0.023837825 1.02 (1.00–1.05) 0.048672315 16.65328862 0.478084755 0.809309064 0.582666667

TBNK HLA DR on HLA DR + CD8br Myocardial
infarction

21 Inverse variance
weighted

0.040393974 1.04 (1.01–1.08) 0.015870883 18.91174871 0.527568948 0.873114218 0.547666667

Treg CD28- DN (CD4-CD8-) %DN Myocardial
infarction

28 Inverse variance
weighted

−0.031457104 0.97 (0.95–0.99) 0.00527594 28.63840613 0.378648049 0.870122562 0.455666667

Treg CD28+ DN (CD4-CD8-) %DN Myocardial
infarction

28 Inverse variance
weighted

0.031457104 1.03 (1.01–1.06) 0.00527594 28.63840613 0.378648049 0.870122562 0.456

Treg CD28- CD8br %T cell Myocardial
infarction

16 Inverse variance
weighted

0.057400377 1.06 (1.02–1.10) 0.005331249 20.09382367 0.16836297 0.091903331 0.161666667

(Continued)
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are associated with inflammation and autoimmunity (42). The

pathology of atherosclerosis is characterized by aseptic

inflammation. This is mediated by innate and adaptive immune

responses (43, 44). Previous studies have shown that innate

immunity, represented by monocytes/macrophages, and adaptive

immunity, dominated by T/B cells, can accelerate or inhibit

atherosclerosis (45). Using MR analysis, we investigated the

causal relationship between MI and 731 immune cell traits, based

on a significant amount of publicly available genetic data. As far

as we know, this study represents the inaugural MR analysis

exploring the causal relationship between multiple

immunophenotypes and myocardial infarction. In this study, 47

immune cell traits from seven panels were found to be causally

associated with MI.

Macrophages are major players in two major cardiovascular

diseases, myocardial infarction and atherosclerosis (46). Previous

studies have shown significant heterogeneity in macrophage

phenotype and function in infarcted myocardium. In the context

of atherosclerotic cardiovascular disease (ASCVD), M1

macrophages produce pro-inflammatory cytokines that initiate

and maintain inflammation, whereas M2 macrophages produce

growth factors and anti-inflammatory cytokines that suppress the

immune response (47, 48). However, this is too simplistic to try

to categorise. The function of macrophages in the

microenvironment of the infarcted heart is currently unknown. It

is now believed that macrophages play different roles at different

stages of the cardiac inflammatory response (19). Macrophages

are recruited to the damaged myocardium and are regulated by

the local microenvironment to differentiate into pro-

inflammatory and anti-inflammatory macrophages (49–51). Early

pro-inflammatory macrophages produce cytokines (e.g., IL-12,

IL-23, IL-27, TNF-α) and chemokines (CXCL9, CXCL10,

CXCL11) and other chemokines that exert pro-inflammatory

effects (52, 53). In contrast, anti-inflammatory macrophages

produce mediators such as IL-10, CCL17, and TGF-β during the

value-adding and repair processes to exert anti-inflammatory

effects, as well as to promote cell proliferation and angiogenesis,

and to remove tissue debris (54). At the same time, macrophages

crosstalk with cardiomyocytes, fibroblasts and various immune

cells to regulate the process of post-infarction myocardial repair

(49, 55). Our study found that CX3CR1 on CD14- CD16 +

monocyte, CX3CR1 on monocyte were significantly associated

with an increased risk of MI, and 4 cell types of monocytes

(CD40 on CD14+ CD16 +monocyte, CD14 on CD14+ CD16 +

monocyte, CD40 on CD14- CD16 +monocyte, and PDL-1 on

monocyte) were associated with a reduced risk of myocardial

infarction. These results illustrate the balance between

macrophage populations that influence the development of

atherosclerosis. This is consistent with previous studies and

provides directional targets for future therapy (56–58).

Stimulated by oxidised LDL, TNF-α and hypoxia, DCs enter

the vessel wall to take up, process and deliver antigens (59). Our

study revealed that four types of DC cells were linked to a higher

risk of MI. DCs produce proinflammatory cytokines that activate

T and B cells to initiate, modulate and maintain cardiac

immunity (60, 61). Coronary plaque rupture is the leading cause
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FIGURE 2

Forest plot of the MR analysis results.
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of myocardial infarction.DC cells have a potent antigen-presenting

effect, activating CD4 + helper cells and CD8 + cytotoxic T cells,

killing plaque-resident cells and increasing the risk of plaque

rupture (62–64). DC is also involved in shaping the functional

activity of natural killer cells, enhancing their cytotoxic potential

against endothelial cells and vascular smooth muscle (65).

Secondly, DC induces the production of proteases, such as

metalloproteinases, which break down the extracellular matrix

(62). We found that CD62l on CD62l + myeloid DC was

associated with a reduced risk of MI. A study conducted on mice

revealed that a depletion of bone marrow dendritic cells (DCs)

resulted in a sustained elevation of pro-inflammatory cytokines

and a prolonged duration of the inflammatory response following

myocardial infarction (66). These results illustrate that different

subpopulations of DCs have a division of labour in the

development of atherosclerotic sclerosis. It also implies that

direct exposure to antigens or soluble cytokines mediates

atherosclerosis. Further studies are required to comprehend the

pathogenic antigens and DC-derived cytokines linked to

cardiovascular disease.
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Our research has found that three types of Tregs cells [CD28-

DN (CD4-CD8-) %DN, CD28 on activated Treg, CD25 on resting

Treg] were linked to a decreased risk of MI. Tregs are major

immunoregulatory cells that secrete suppressor cytokines to

maintain immune homeostasis. A study has shown that reduced

numbers of Tregs and impaired inhibitory function are

associated with the progression of atherosclerosis (67).

Treg/Th17 ratio, Treg count and Treg function were

significantly decreased in acute coronary syndrome (ACS)

patients (68). Tregs have also been shown to have a protective

effect against atherosclerosis in some studies (69–73).

Consistent with our findings, the mRNA sequencing technique

showed that Tregs cells play a role in promoting and resisting

atherosclerosis (74). Tregs protect against atherosclerosis in

different ways. On the one hand, tregs inhibit the progression

of atherosclerosis by suppressing the proliferation of T cells that

secrete inhibitory cytokines such as IL-10 and TGF-β (72, 75–

77). On the other hand, tregs may promote atherosclerotic

plaque resolution by activating macrophage cytotoxicity and

upregulating pro-soluble lipids (78). In addition, Tregs are
frontiersin.org
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involved in regulating lipid metabolism to attenuate the

progression of atherosclerosis (79, 80). However our study

found that five types of Tregs cells [CD28+ DN (CD4-CD8-)

%DN, CD28- CD8br %T cells, CD28+ CD45RA- CD8br on

CD28, CD127 on CD4+, CD39 on granulocytes] were

associated with an increased risk of myocardial infarction.

These results remind us to reconsider the role of Tregs in

atherosclerosis, which needs to be further explored by more

research, including clinical trials.

B cells are considered a key immune cell type in the regulation

of atherosclerosis (81–85). They control the cellular immune

response through cell-to-cell contact, antigen presentation, and

cytokine production (84). B cell effects mediated by antibodies

and cytokines are subpopulation specific. Previous studies have

shed light on B cell subpopulations and their functions,

demonstrating that distinct subpopulations of B cells have

specific effects on atherosclerosis (86, 87). Our study found that

4 B cell types (IgD- CD24- %B cell, IgD- CD38br AC, CD27 on

IgD- CD38br, CD38 on IgD- CD38dim) were associated with an

increased risk of MI, and 3 B cell types (BAFF-R on IgD-

CD38br, CD25 on IgD + CD38br, IgD on IgD + CD38br)

reduced the risk of MI.B cells were classified as B1 or B2 cells

based on the presence or absence of CD5 expression. Previous

studies have shown that B1 cells can improve atherosclerosis

by secreting IgM, while B2 cells have proatherogenic effects

(84, 88–90). However, B2 cells constitute the majority of B cells

and differentiate into follicular B cells (FOB) and marginal zone

B cells (MZB). Nus et al. discovered that MZB cells regulate

helper T cell responses in hypercholesterolaemic mice and have a

protective effect against atherosclerosis (91). B2 cells differentiate

into either antibody-producing plasma cells or memory B cells,

which secrete antibodies to mediate the humoral immune

response. However, studies investigating the correlation between

IgG levels and myocardial infarction have produced conflicting

results (83). This may be indicative of a specific subtype of IgG.

Furthermore, patients with myocardial infarction exhibited

elevated plasma IgE levels, indicating a potential proatherosclerotic

function for IgE-mediated immune responses (92). Due to the

complexity of humoral immunity mediated by B cells that release

antigen-specific antibodies, this study provides a new direction for

B cell-targeted interventions.

The study is statistically efficient as it is based on the results of

a large published GWAS cohort. Two-sample MR analyses and

causal inference using multiple MR analyses were used to

exclude potential confounders and reverse causation.

However, it is important to note that our study has limitations.

However, it must be noted that our study has its limitations. Firstly,

Mendelian randomization studies use genetic variation as a natural

instrumental variable to infer causality. The presence of pleiotropy

means that genetic variation can affect multiple biological pathways

or phenotypes, not just the exposure of interest in the study. This

can make it difficult to determine whether the effect of a genetic

variant is direct or indirect, potentially leading to a misjudgment

of the causal relationship between exposure and outcome. To

exclude SNPs with pleiotropic effects, we employed the
Frontiers in Cardiovascular Medicine 09
MR-Egger intercept and the MR-PRESSO global test. However,

these methods still did not fully control for unknown or

unmeasured confounding factors.

Secondly, the relationship between immune responses and

cardiovascular health is intricate. In some instances, there may

be a linear correlation between immune responses and

cardiovascular health; for example, levels of certain inflammatory

markers might increase in direct proportion to the rise in

cardiovascular risk. The immune system interacts with the

cardiovascular system through a variety of cell types and

molecular pathways, and these interactions could exhibit different

effect patterns at various levels of immune activation. The impact

of different types of immune cells on cardiovascular diseases may

be independent or interwoven. Moreover, the influence of

immune cells on cardiovascular diseases may vary with changes

in thresholds, individuals, stages of disease, and other factors.

Further research is still needed to address the nonlinear

interactions between immunity and cardiovascular diseases.

Additionally, the GWAS data utilized in our study were derived

from individuals of European ancestry, hence further investigation

is warranted to determine the applicability of our findings to other

ethnic groups. The absence of detailed individual information

precluded us from conducting refined stratified analyses of the

data. Since our study focused solely on specific genetic

instruments, it may not fully capture the genetic influence on

immune cell activity and the risk of myocardial infarction (MI).

With the increasing abundance of genomics data, multi-gene

Mendelian randomization studies are demonstrating substantial

potential in disease risk prediction, personalized medicine, and

the formulation of public health strategies.
Conclusion

In conclusion, this study provides strong evidence that multiple

immune cells have a causal effect on the risk of myocardial

infarction. Furthermore, this study highlights the intricate nature

of immune cells involved in the development of atherosclerosis

and myocardial infarction. This discovery provides a new avenue

for the development of therapeutic treatments for myocardial

infarction and a new target for drug development.
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