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The role of uromodulin in
cardiovascular disease: a review
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1Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China,
2Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein
exclusively synthesized by the kidneys and represents the predominant urinary
protein under normal physiological conditions. It assumes a pivotal role within
the renal system, contributing not only to ion transport and immune modulation
but also serving as a critical factor in the prevention of urinary tract infections
and kidney stone formation. Emerging evidence indicates that uromodulin may
serve as a potential biomarker extending beyond renal function. Recent clinical
investigations and Mendelian randomization studies have unveiled a discernible
association between urinary regulatory protein levels and cardiovascular events
and mortality. This review primarily delineates the intricate relationship between
uromodulin and cardiovascular disease, elucidates its predictive utility as a novel
biomarker for cardiovascular events, and delves into its involvement in various
physiological and pathophysiological facets of the cardiovascular system,
incorporating recent advancements in corresponding genetics.
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1 Introduction

In 1873, Italian physician Carlo Rovida made the initial observation of a protein

present in human urine, forming tubular patterns, later identified as uromodulin

(UMOD), also referred to as Tamm-Horsfall protein (THP). This protein is the most

abundantly secreted protein in the urine of healthy individuals and is primarily

synthesized by the epithelial cells lining the renal tubules. Initially termed “cilindrina”

(1), it wasn’t until 1950 that Igor Tamman and Frank Horsfall recognized its potential

as a mucin in preventing viral blood clotting, leading to the adoption of the name

“Tamm-Horsfall protein” (2, 3). Subsequent research by Muchmore and Decker in 1985

revealed its immunosuppressive properties in vitro against T cell proliferation and

monocytotoxicity, prompting its renaming as uromodulin (4, 5). Further genomic

analysis by Pennica et al. confirmed the equivalence of Tamm Horsfall protein and

uromodulin (6). The elucidation of uromodulin’s physiology, structure, function,

regulation, genomics, and potential clinical applications has gradually unfolded over the

past two decades, shedding light on its once-mysterious nature. Extensive research has

deepened our understanding of uromodulin’s roles in various disease states. While

much attention has been paid to its expression as a biomarker for kidney disease,

recent years have witnessed a growing body of evidence linking uromodulin to

cardiovascular events and mortality through numerous clinical and Mendelian

randomization studies. This linkage is comprehensible given the recognized association

between chronic kidney disease (CKD) and cardiovascular events (7), alongside the

established role of uromodulin in salt-sensitive hypertension (8). Considering
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hypertension’s status as a significant risk factor for various

cardiovascular events (9), uromodulin emerges as a potential

biomarker extending beyond renal function. This review aims to

provide an overview of the current understanding of urinary

regulatory proteins, highlighting their newfound implications in

cardiovascular diseases such as hypertension and coronary heart

disease. It underscores that urinary regulatory proteins serve not

only as biomarkers for kidney diseases like CKD but also possess

predictive value for cardiovascular events.
2 Overview of the structure and
biochemistry of uromodulin

Uromodulin stands as the most prevalent protein in the urine of

healthy adults and is exclusively synthesized by epithelial cells lining

the renal tubules. Approximately 90% of uromodulin production

originates from cells in the thick ascending limb (TAL), with

another roughly 10% synthesized by epithelial cells in the early

segment of the distal convoluted tubule (DCT). Its normal daily

secretion ranges from 50 to 150 mg in the urine (10,

11).Uromodulin is composed of 640 amino acids (12), possesses a

half-life of 16 h (13), and boasts a molecular weight of

approximately 80–90 kDa (14, 15). Glycosylation, accounting for

nearly 30% of its molecular weight, occurs at eight sites (16). The

presence of sialic acid residues renders the protein highly acidic

(17), with an isoelectric point of about 3.5 (18). Structurally,

uromodulin encompasses multiple domains, including four

epidermal growth factor (EGF)-like domains, a cysteine-rich

domain (D8C) of unclear function, an internal hydrophobic

plaque (IHP), and a dichotomous zona pellucida (ZP) domain

facilitating protein polymerization (19) (As shown in Figure 1).

The zona pellucida is followed by the external hydrophobic sheet

(EHP) and the glycophosphatidylinositol(GPI) ancho. Uromodulin

undergoes extensive intracellular post-translational modifications,

including N-glycosylation of seven of the eight conserved sites

(16) formation of 24 disulfide bridges, and cleavage of the serine

protease hepsin at the C-terminus (20), with the endoplasmic

reticulum playing an important role in uromodulin processing.

Uromodulin was further elucidated using cryo-electron microscopy

(cryo-EM) (21). The uromodulin polymerises into filaments with a

core formed by a unique interlocking structure of the ZP-N and
FIGURE 1

Brief structure of uromodulin.
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ZP-C structural domains arranged in a helical pattern with a rise

of ∼65 Å and a twist of ∼180° (22, 23). The ZP-N and ZP-C

domains have an immunoglobulin-like structure and interact with

the ZP linker region by forming a β-fold. After Hepsin cleavage

and EHP dissociation, uromodulin monomers are incorporated

into growing filaments in a head-to-tail fashion as the activated

ZP-C terminus interacts with the ZP-N structural domain of the

afferent subunit (23). Although the predominant form of urinary

uromodulin (uUMOD) is polymerized, new data suggest that non-

polymerized forms exist and that retained EHP lacks GPI anchors

(24). In addition to urine, non-aggregated forms of basolateral

release also result in detectable serum uromodulin (sUMOD),

albeit at significantly lower levels than urine concentrations (25).
3 Overview of the physiological
functions of uromodulin

Uromodulin serves various physiological functions, encompassing

the prevention of urinary tract infections, kidney stone formation,

involvement in renal ion transport, and immune regulation, among

others (12). Scanning electron microscopy of urine-purified

uromodulin reveals a three-dimensional mesh composed of filaments

with pore sizes ranging from 0.1 to 1 μm, forming a “fishing net”

capable of trapping microorganisms for elimination through

urination (26). Imaging studies of uromodulin-urinary pathogen

interactions, both in vitro and in patient urine samples, demonstrate

that uromodulin filaments associate with uropathogens, facilitating

bacterial aggregation and potentially impeding adherence and

clearance by urination (27). Numerous animal experiments and

clinical investigations corroborate the positive correlation between

uromodulin levels and protection against urinary tract infections (28–

30). The protective effect of uromodulin against renal stones is

believed to occur indirectly by inhibiting fiducial protein-mediated

endocytosis and up-regulating the activity of TRPV5 channels to

enhance calcium reabsorption in the distal convoluted tubule (DCT)

(31–33), thereby reducing luminal calcium concentration. However,

the precise mechanism and stages of uromodulin’s action in crystal

nucleation, growth, and aggregation remain to be fully elucidated.

Uromodulin also plays a role in renal ion transport, particularly

sodium, calcium, and magnesium. Its modulation of magnesium

reabsorption involves regulating the cell surface abundance of the
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magnesium channel TRPM6 at the apical membrane of DCT cells (34,

35). Additionally, uromodulin exhibits potent immunomodulatory

properties, activating various inflammatory cells such as neutrophils

(36–38), macrophages (39, 40), and dendritic cells (41, 42). Moreover,

it serves as a binding ligand for multiple molecules including serum

albumin, immunoglobulin G light chains, complement components

C1 and C1q, interleukins (IL)-1β, IL-6, IL-8, tumor necrosis factor

(TNF)-α, and interferon-γ, via its carbohydrate side chains, thereby

contributing to circulatory and renal immune homeostasis (15).

Uromodulins exert distinct immune functions across different

diseases and environments. Differences in the structure and

regulation of uUMOD and sUMOD play important roles in

physiological functions in the kidney, urinary tract, and systemic

circulation. A growing number of animal experiments and clinical

studies have shown that uUMOD levels are associated with an

increased risk of salt-sensitive hypertension, while sUMOD appears

to have a protective effect on the vascular system by inhibiting

vascular calcification, both of which will be focused on later in this

review. As the physiological functions of uromodulins are gradually

being explored and recognized, they are increasingly recognized as a

novel biological marker suggestive of cardiovascular disease.
4 Relationship between uromodulin
and various cardiovascular diseases

The mechanisms by which uromodulin affects hypertension

and coronary heart disease are shown in Figures 2, 3.
4.1 Uromodulin and hypertension

Hypertension, a multifaceted chronic clinical syndrome, stands

as a leading cause of various cardiovascular diseases including

coronary heart disease and stroke (43). Globally, over a quarter
FIGURE 2

Mechanisms by which uromodulin affects salt-sensitive hypertension. TA
necrosis factor-α; SPAK, SPS1-associated proline/alanine-rich kinase;
cotransporter protein; NCC, Na + -CI-cotransporter protein; ENaC, epitheli
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of the population is estimated to suffer from hypertension,

totaling more than 1 billion individuals. Its prevalence has been

on the rise over the past decade, contributing significantly to the

global disease burden and accounting for up to 10 million deaths

worldwide (44). Hypertension manifests through numerous

variable risk factors (43, 45), such as low potassium intake (46),

high sodium intake (46), overweight and obesity (47), unhealthy

diet (48), lack of physical activity (49), smoking and alcohol

consumption (50), and other factors. However, the pathogenesis

of hypertension is complex and is not fully understood. Sodium

(Na+) homeostasis plays an important role in the regulation of

blood pressure, and small changes in its rate of reabsorption may

lead to significant changes in Na + excretion, leading to

disturbances in Na + homeostasis and extracellular fluid volume,

and ultimately to hypertension (51, 52). In a trial based on

testing the effects of sodium on blood pressure modulated by

uUMOD levels in the general population, it was found that

higher sodium intake was associated with higher blood pressure

in a stratified group of people with high levels of uUMOD,

whereas subjects with low expression of uUMOD did not show a

correlation between blood pressure and sodium intake, which

confirms the role of uUMOD in the salt-sensitive component of

blood pressure regulation (53). Under basal conditions, systolic

blood pressure was significantly lower in UMOD knockout mice

compared to wild-type (WT) mice (54). In addition in transgenic

mice overexpressing UMOD, treatment with furosemide, a

labeled diuretic, significantly enhanced urinary sodium excretion

and reduced blood pressure levels (55). These studies using

knockout and transgenic UMOD mouse models suggest that

umod plays an important role in the development of salt-

sensitive hypertension, resulting primarily from sodium

reabsorption via Na + K + -2Cl- cotransporter protein (NKCC2)

and Na + -Cl- cotransporter protein (54–56). The mechanism by

which UMOD has been shown to affect blood pressure is mainly

the combination of TAL and DCT to modulate the activity of
L, thick ascending limb; DCT, distal convoluted tubule; TNF-α, tumor
OSR1, oxidative stress-responsive kinase 1; NKCC2, Na + K + -2CI-
al sodium channel; ROMK, renal outer medullary potassium channel.
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FIGURE 3

Mechanisms of coronary heart disease risk reduction by uromodulin. TAL, thick ascending limb; DCT, distal convoluted tubule; HDL-C, high-density
lipoprotein cholesterol; TG, triglycerides; IL-1b, interleukins-1b; TNF-α, tumor necrosis factor-α; CHD, coronary heart disease.
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ion transport proteins in epithelial cells, including the renal outer

medullary potassium channel (ROMK) (57, 58), epithelial

sodium channel (ENaC) (59), NKCC2 (60), and NCC (8, 61, 62),

of which NKCC2 and NCC are the major transport proteins

responsible for sodium reabsorption (63). Mutations in NKCC2

and malfunctions in its regulators are known to cause Bartter

syndrome, a salt-depleting hypotensive disorder with reduced

levels of UMOD, in addition to a significant reduction in

NKCC2 phosphorylation in Umod(-/-) mice, where NKCC2

expression is not as strong as in WT mice, and conversely, mice

with overexpressed UMOD exhibit salt-sensitive hypertension

(64–66). Earlier studies confirmed that uromodulin promotes the

activation of NKCC2 in a chloride-sensitive manner (66), but did

not identify a specific mechanistic process for its activation, and

similar to NKCC2, uromodulin also activates NCC in the DCT
Frontiers in Cardiovascular Medicine 04
(67). It was subsequently demonstrated in a growing number of

animal studies that uromodulin induces a significant increase in

NKCC2 and NCC phosphorylation and its activity, leading to the

up-regulation of NKCC2 and NCC through the regulation of the

SPS1-associated proline/alanine-rich kinase/oxidative stress-

responsive kinase 1 (SPAK-OSR1) (55, 66–70), which are

involved in the pathogenesis of salt-sensitive hypertension (71–

75). In previous studies of salt-sensitive hypertension, it has been

shown that stimulation of SPAK/OSR1 activates renal ion

channels including NKCC2, NCC, ENaC, and ROMK (76), so it

is likely to be hypothesized that UMOD also promotes the

expression of ROMK and ENaC through activation of SPAK-

OSR1. The role of ENaC in salt-sensitive hypertension is self-

evident, but there are no results on the specific molecular

mechanisms by which UMOD affects ENaC, which will be a
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direction for future research to focus on and expand. Furthermore,

WNK kinases are a family of central kinases that regulate the

activity of ion channels involved in blood pressure regulation.

Mechanistically, WNK kinases regulate the activity of renal

cation-chloride transport proteins through the activation of the

SGK1-WNK-SPAK/OSR1 phosphorylation cascade (76), and it is

not clear whether UMOD stimulates WNK, or stimulates the

upstream kinases of the WNK-SPAK/OSR1 axis, such as SGK1

(serum/glucocorticoid-regulated kinase 1) and protein kinase B

(also known as AKT), which is not supported by the literature

and will be something to explore in the future. ROMK, a

voltage-dependent K + channel, increases K + efflux when ROMK

activity is enhanced, largely decreasing intracellular K +

concentration, at which point cation channels in the epithelial

cells of the renal unit (including NKCC2, NCC, and ENaC)

increase the uptake of the corresponding cations to compensate

for the negative membrane potential resulting from the increased

ROMK activity (77–79). In animal experiments, it has been

demonstrated that Umod(-/-) mice exhibit a significant

accumulation of ROMK in vesicles due to UMOD deletion,

which results in delayed or reduced ROMK expression.

Furthermore, the co-expression of ROMK with UMOD has been

shown to enhance ROMK-mediated K + transporter activity,

leading to an enhanced current amplitude. This effect appears to

be dependent on the C-terminus of ROMK. Further investigation

of the mechanism of the interactions between ROMK and

UMOD reveals that UMOD removes the ubiquitylated C-

terminus of the targeting ROMK from binding, thereby

promoting an increase in the activity and amount of ROMK

(80). In addition, tumor necrosis factor-α (TNF-α) has been

widely mentioned in various animal experiments and clinical

studies, and both protein and mRNA expression of NKCC2 was

significantly up-regulated in TAL cells of TNFα-/- mice,

suggesting that TNF-α is an endogenous inhibitor of NKCC2

and can affect the bioavailability and function of NKCC2 (81).

TNF-α is produced by TAL and downregulates NKCC2

expression in an autocrine manner, reducing NaCl reabsorption

at this site. Several studies have shown that UMOD binds several

cytokines through its epidermal growth factor (EGF) structural

domain, including TNF-α, which has a high affinity for UMOD

(65, 82–85). Lesley A et al. went further by finding that in TAL

cells, TNF-α stimulation increased the relative levels of UMOD

mRNA, resulting in a negative feedback loop in which TNFα-

induced reductions in NKCC2 gene expression were counteracted

by increased production of cell surface UMOD (54). It can be

concluded that UMOD plays a direct role in blood pressure

regulation by modulating the effect of TNF-α on NKCC2

expression. Vasopressin plays an important role in water

reabsorption by inducing apical expression of the water channel

aquaporin-2 (AQP 2) (86), and because vasopressin is a

hormone secreted during dehydration or volume deprivation,

upregulation of UMOD secretion by vasopressin is considered to

be a plausible physiological response. Recently, vasopressin has

been shown to increase UMOD secretion by activating PKA

(protein kinase A). In addition, it has been shown that UMOD

enhances AQP2 phosphorylation and apical transport in mouse
Frontiers in Cardiovascular Medicine 05
collecting duct cells treated with vasopressin analog dDAVP. The

uromodulin-induced apicaltrafficking of AQP2 was attenuated via

endocytosis inhibitor treatment, suggesting that uromodulin

activates AQP2 through the suppression of endocytosis (87).

Moreover, NKCC2 phosphorylation and activity are also

regulated by the dDAVP-V2R-cAMP-PKA pathway, in which

dDAVP promotes salt reabsorption by upregulating NKCC2 (88).

However, in Umod(-/-) mice, attenuated phosphorylation of

NKCC2 conferred a dDAVP-resistant phenotype for salt

reabsorption, suggesting that activation of NKCC2 by urinary

regulatory protein-regulated SPAK/OSR1 kinase superimposed on

activation of salt regulation by dDAVP ligands (66). These

findings suggest that TAL and collecting ducts work

synergistically to retain sodium and water by interacting with

urinary modification proteins, which in turn leads to hypertension.

In parallel to scientific studies such as animal experiments,

advances in UMOD genetics have confirmed that UMOD affects

blood pressure. Genome-wide association studies (GWAS) have

revealed the existence of variants in the UMOD gene encoding

uromodulins that are susceptible to renal function, and

hypertension (89), and that non-coding UMOD gene variants

induce salt-sensitive hypertension and renal injury through

increased expression of uromodulins (55). The relevance of

urinary regulators and their role in the regulation of sodium

homeostasis is consistent with the results of the human GWAS

(90). Single nucleotide polymorphisms in the UMOD gene were

associated with hypertension, and conversely, variants with lower

UMOD levels were associated with a lower risk of hypertension

(91). Mendelian randomization (MR) is an emerging research

methodology that allows the use of genetic variation (usually

single nucleotide polymorphisms, SNPs) as instrumental variables

to simulate randomized controlled trials (92). Using data from

more than 750,000 people of European ancestry and applying a

two-sample Mendelian randomization method, the researchers

found that for every 1-SD increase in uUMOD, SBP increased by

0.06 SDmmHg and DBP increased by 0.08 SDmmHg (93). In

another study, a two-sample Mendelian randomization of six

datasets of over one million people found that SNPs leading to

higher sUMOD and uUMOD were causally related to both SBP

and DBP (61, 93). In a study of serum uromodulin and its genetic

variants about blood pressure and hypertension in Chinese adults,

Chinese researchers found that rs12917707 and rs12708631 in the

uromodulin gene were significantly associated with longitudinal

blood pressure change over 8 years of follow-up and that

rs12708631 was significantly associated with the 8-year incidence

of hypertension (94). Mendelian randomization studies using

genetic variation as instrumental variables have further

substantiated the causal relationship between uromodulin levels

and blood pressure. However, these studies are subject to

heterogeneity and polyvalence due to environmental factors

influencing uromodulin levels, including nutritional intake, volume

status, acid-base balance, renal function, and medication use.

The current studies allow us to determine that uUMOD

promotes ion channel activity on TAL and DCT to cause sodium

and water retention, which in turn leads to hypertension. Since

uUMOD levels are associated with an increased risk of salt-
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sensitive hypertension, measurement of uUMOD is important for the

diagnosis of hypertension and already has future clinical significance

in guiding the use of diuretics, such as furosemide, in patients with

sodium-water retention in this type of hypertension. uUMOD has

often been used in various cohort studies of uromodulin and

hypertension in populations, however, this does not mean that

sUMOD is not associated with hypertension, as sUMOD was

found to be significantly associated with a reduced risk of

hypertension in a cohort study of adolescents with hypertension in

Hanzhong City, China (94). In conclusion, there is a close link

between uUMOD and hypertension, and the specific mechanism

has not yet been fully explained, which still needs to be supported

by continuous exploration of scientific research.
4.2 Uromodulin and coronary heart disease

The concentration of sUMOD has been widely proven to be

closely related to renal function, and can even be used as the basis

for CKD staging, and sUMOD has become self-evident as a

biological marker of renal disease (95–98). In recent years, sUMOD

has also been gradually emerging in the field of coronary heart

disease. In the community-based KORA F4 study, sUMOD

emerged as an independent biomarker of cardiovascular event-

related mortality in men aged 62 years or older, even after

adjusting for confounding clinical factors. Furthermore, sUMOD

displayed a significant negative association with total and

cardiovascular mortality in men (99). Studies by Steubl et al.

indicated that higher levels of both sUMOD and uUMOD were

linked not only to a reduced risk of end-stage renal disease (ESKD)

in the elderly (100), but also to a decreased risk of cardiovascular

disease, including myocardial infarction, stroke, and coronary artery

disease or stroke-induced mortality (101). Delgado et al.

investigated the association of sUMOD concentrations with

cardiovascular biomarkers and mortality risk in a large cohort

referred for coronary angiography, revealing that higher sUMOD

levels were associated with favorable metabolic profiles, reduced

prevalence of comorbidities, and a lower 10-year mortality risk

(102). In addition among among white patients with chronic

kidney disease, elevated sUMOD levels were associated with

decreased risks of mortality, cardiovascular events, and kidney

failure (103). Although most of the current studies on sUMOD

and coronary heart disease are clinical observational studies, with

few animal experiments and other specific elucidations of the

mechanism, there are clues to explore the specific mechanisms

involved. Atherosclerosis forms the pathogenetic basis of CHD,

characterized by endothelial injury, inflammation, and endothelial

cell apoptosis (104). Coronary artery calcification (CAC) typically

accompanies advanced atherosclerosis development and serves as a

predictor of future cardiovascular events (105). Uromodulin has

been shown to be an inhibitor of calcification in blood and urine,

reducing the risk of calcification (25, 106). Inflammatory pathway

activation and oxidative stress drive vascular smooth muscle

calcification (107–109), which uromodulin counteracts by

interfering with pro-inflammatory cytokine signaling (TNF-a and

IL-1b mediated osteochondral signaling) and reducing phosphate-
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induced calcification in aortic smooth muscle cells (110).

Prospective studies demonstrate that higher baseline sUMOD levels

predict reduced odds of CAC progression and diabetic kidney

disease (DKD) in adults with type 1 diabetes over 12 years (111).

While preliminary evidence suggests uromodulin’s potential in

reducing CHD risk by inhibiting coronary artery calcification,

robust support from extensive animal experiments and clinical

studies is lacking and warrants further exploration by researchers.

Studies suggest a negative correlation between uromodulins and

triglycerides (TG) alongside a positive correlation with high-density

lipoprotein cholesterol (HDL-C), indicating their potential in

modulating lipid metabolism and reducing CHD risk (112, 113).

However, the renal disease may influence this relationship, as

severe renal impairment may attenuate the protective effects of

uromodulin on calcification and lipid metabolism.

sUMOD appears to have a protective effect on the vascular

system by inhibiting vascular calcification, so does uUMOD have

no role in this? In the Systolic Blood Pressure Intervention Trial

(SPRINT), uUMOD concentration twice the norm was correlated

with reduced cardiovascular disease risk in patients with chronic

kidney disease (114). Sharma’s research indicated reduced levels of

uUMOD protein in coronary artery disease (CAD), particularly in

individuals with recent myocardial infarction, suggesting its

potential as an early diagnostic biomarker (115). However,

conflicting evidence suggests that uUMOD may not be associated

with risks of end-stage renal disease, cardiovascular disease, or

heart failure (116), and baseline uUMOD levels and changes

therein may not correlate with mortality (117). The precise

relationship between uromodulin and cardiovascular disease is

subject to the ongoing investigation and may be influenced by

factors such as ethnicity, age, and gender. Genome-wide

association studies (GWAS) have shown that common variants in

the promoter of the UMOD gene with reduced uUMOD levels

result in a reduced risk of CVD in the general population (91). A

recent Mendelian randomization study demonstrated an effect of

higher uUMOD on elevated blood pressure, which mediates the

effect on the risk of myocardial infarction in the general

population (118). Genetic and experimental findings were not in

complete agreement or even had opposite results, suggesting that

further studies are still needed to validate the association between

uromodulin and coronary heart disease outcomes.
5 Future and outlook

While significant strides have been made in understanding

uromodulin’s role in cardiovascular disease, numerous unknown

aspects warrant further exploration. Current research primarily

focuses on hypertension and coronary artery disease, leaving other

cardiac conditions such as atrial fibrillation, valvular disease,

cardiomyopathy, myocarditis, and heart failure relatively

understudied. Given the interconnected nature of cardiac diseases

and their profound impact on overall health, investigating the

relationship between uromodulin and these conditions holds

promise for advancing our understanding of cardiovascular

pathophysiology. Recent findings suggest an association between
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uromodulin and left atrial remodeling, as well as left atrium size

(119), with implications for conditions like atrial fibrillation, stroke,

heart failure, and increased cardiovascular disease rates and

mortality (120–124). This area presents an exciting avenue for

future research into uromodulin’s role in cardiovascular disease.

Patients with chronic kidney disease (CKD) face elevated

cardiovascular risk, with a significant proportion experiencing

cardiovascular events (125). Continued exploration of uromodulin’s

involvement in cardiovascular diseases holds potential benefits for

this patient population, given the high prevalence of cardiovascular

complications in CKD. Furthermore, the association of

uromodulin, exclusively produced in the kidney, and the UMOD

gene, exclusively expressed in the kidney, with cardiovascular

disease, opens avenues for investigating cardiorenal syndrome and

elucidating the intricate link between heart and kidney health.
6 Conclusion

Uromodulins have garnered significant interest among

researchers and clinicians in recent years. Progress has been made

in understanding their structural characteristics, physiological

functions, and clinical relevance. Importantly, their investigation is

no longer confined to renal disease, unveiling their enigmatic

properties across various body systems. As research advances,

uromodulins’ distinctive role in the cardiovascular system and

beyond is becoming evident. However, further studies are essential

to solidify their potential utility as novel biomarkers for

cardiovascular disease. Continued exploration holds promise for

unlocking the full scope of uromodulins’ impact on human health.

Looking ahead, collaborative efforts are needed to explore new

avenues of research, such as investigating the mechanisms

underlying uromodulins’ effects on cardiovascular health and

conducting large-scale clinical trials to validate their utility as

biomarkers. By doing so, we can harness the diagnostic and

therapeutic potential of uromodulin to improve patient outcomes

in cardiovascular medicine and beyond. Moreover, considering the

multifaceted nature of cardiovascular diseases, future investigations

should explore uromodulins’ interactions with other biomolecules

and their potential modulation of diverse pathological processes.

Additionally, elucidating the regulatory pathways governing
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uromodulins’ expression and activity could provide valuable

insights into novel therapeutic targets for cardiovascular

conditions. Overall, sustained research efforts are crucial to fully

comprehend the intricate roles of uromodulins in cardiovascular

health and disease. By advancing our understanding in this field,

we can pave the way for innovative diagnostic and therapeutic

strategies that offer improved outcomes and better quality of life

for patients worldwide.
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