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Artificial intelligence-assisted
echocardiographic monitoring
in pediatric patients on
extracorporeal membrane
oxygenation
Weiling Chen1, Jinhui Wu2, Zhenxuan Zhang2, Zhifan Gao2,
Xunyi Chen1, Yu Zhang1, Zhou Lin1, Zijian Tang1, Wei Yu1,
Shumin Fan1, Heye Zhang2 and Bei Xia1*
1Department of Ultrasonography, Shenzhen Children’s Hospital, Shenzhen, China,
2School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
Background: Percutaneous extracorporeal membrane oxygenation (ECMO) is
administered to pediatric patients with cardiogenic shock or cardiac arrest.
The traditional method uses focal echocardiography to complete the left
ventricular measurement. However, echocardiographic determination of the
ejection fraction (EF) by manual tracing of the endocardial borders is time
consuming and operator dependent. The standard visual assessment is also an
inherently subjective procedure. Artificial intelligence (AI) based machine
learning-enabled image analysis might provide rapid, reproducible measurements
of left ventricular volumes and EF for ECMO patients.
Objectives: This study aims to evaluate the applicability of AI for monitoring
cardiac function based on Echocardiography in patients with ECMO.
Materials and methods: We conducted a retrospective study involving 29
hospitalized patients who received ECMO support between January 2017 and
December 2021. Echocardiogram was performed for patients with ECMO,
including at pre-ECMO, during cannulation, during ECMO support, during the
ECMO wean, and a follow up within 3 months after weaning. EF assessment
of all patients was independently evaluated by junior physicians ( junior-EF)
and experts (expert-EF) using Simpson’s biplane method of manual tracing.
Additionally, raw data images of apical 2-chamber and 4-chamber views were
utilized for EF assessment via a Pediatric ECMO Quantification machine
learning-enabled AI (automated-EF).
Results: There was no statistically significant difference between the automated-
EF and expert-EF for all groups (P > 0.05). However, the differences between
junior-EF and automated-EF and expert-EF were statistically significant
(P < 0.05). Inter-group correlation coefficients (ICC) indicated higher
agreement between automated-EF and expert manual tracking (ICC: 0.983,
95% CI: 0.977∼0.987) compared to junior assessments (ICC: 0.932, 95% CI:
0.913∼0.946). Bland–Altman analysis showed good agreements among
the automated-EF and the expert-EF and junior-EF assessments. There was
no significant intra-observer variability for experts’ manual tracking or
automated measurements.
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Conclusions: Automated EF measurements are feasible for pediatric ECMO
echocardiography. AI-automated analysis of echocardiography for quantifying
left ventricular function in critically ill children has good consistency and
reproducibility with that of clinical experts. The automated echocardiographic EF
method is reliable for the quantitative evaluation of different heart rates. It can
fully support the course of ECMO treatment, and it can help improve the
accuracy of quantitative evaluation.

KEYWORDS

artificial intelligence, echocardiography, critical monitoring, ECMO, pediatrics, left
ventricular function
1 Introduction

Extracorporeal membrane oxygenation (ECMO) is crucial

for treating children with severe cardiopulmonary disease. It

allows temporary support for pulmonary and/or cardiac

failure refractory to conventional therapy (1, 2). ECMO involves

draining blood from the body, oxygenating it in a machine, and

then returning it to the body. This process alters cardiac volume

loading and lung perfusion. Echocardiography plays an important

role in ECMO. It provides essential diagnostic and anatomical

information before ECMO initiation. Echocardiography guides the

selection of the ECMO mode (Veno-Arterial for cardiorespiratory

support; Veno-Venous for respiratory support alone) and aids

in safe and efficient ECMO cannula positioning. It can also

assist in flow optimization and decompression of left-side

structures during the ECMO run. It offers a modality for rapid

troubleshooting and patient evaluation and facilitates decision-

making for eventual weaning from ECMO support (3, 4).

However, prolonged ECMO cardiopulmonary bypass increases

the risk of complications such as infection, bleeding, and

thrombosis. Therefore, high-frequency echocardiography is

necessary to monitor changes in a patient’s condition continuously.

Echocardiography has shifted from monitoring cardiac function

to becoming a clinical tool integrated into treatment evaluation

and management. It is used to assess indications in ECMO and

select the appropriate support mode. Echocardiography has also

emerged as a risk stratification tool for evaluating ventricular

function and predicting the degree of potential ventricular

recovery (5). Due to its non-ionizing radiation nature and

bedside accessibility, echocardiography is extensively utilized for

noninvasive monitoring of cardiac function in critically ill

children. However, echocardiographic monitoring at the point of

care demands swift and frequent comparisons. It is susceptible to

variations in imaging quality and operator subjectivity. This may

exhibit significant inter- and intra-observer variability without

sufficient training and experience (6, 7).

Artificial intelligence (AI) has been employed to automatically

calculate the pertinent parameters of the left ventricle (LV) in

echocardiography. Initially, research primarily concentrated on

automatically segmenting the LV in echocardiography, employing

deep learning semantic algorithms (8). Researchers have suggested

utilizing datasets like CAMUS and Echo Net-Dynamic to advance
02
deep learning for a broader array of clinical applications. These

datasets enable researchers to pretrain deep learning models and

enhance model robustness (9, 10). Additionally, researchers have

delved into the potential of deep learning algorithms for analyzing

echocardiography data. They utilize deep learning models for

automated analysis of point-of-care ultrasound and multi-disease

datasets (11, 12). Nevertheless, the majority of these studies

have focused on adult echocardiography, with limited investigation

into pediatric echocardiography. Pediatric echocardiography

encompasses subjects spanning from neonates to young adults,

with weights ranging from 3 to 70 kg, heart rates varying from 60

to 150 bpm, and cardiac masses between 25 and 350 g. The

significant variability in children’s heart sizes and heart rates,

combined with their poor coordination, amplifies the challenge of

quantitative analysis in echocardiography. Discrepancies arise

when the frequency of a fan-sweep probe fails to align with the

increase in an infant’s heart rate, leading to substantial deviations

in the visual assessment of the heart’s structure and function,

consequently yielding inaccurate calculations.

We previously developed an AI algorithm capable of

automatically processing and extracting imaging features in

echocardiography (13). We utilized this model for the automatic

detection of LV systolic function in pediatric patients on ECMO

to ascertain their cardiac function levels. Subsequently, we

compared the results with those obtained by experienced

echocardiographers to assess whether AI assistance could

enhance accuracy.
2 Materials and methods

2.1 Pediatric ECMO quantification network

The study used the Pediatric ECMO Quantification model

(PEQ-Net) based on DPS-Net (12), as illustrated in Figure 1.

PEQ-Net comprises three main components in the architecture

for the task of LV segmentation in this study. First, the feature

extraction module employs a multi-scale and multi-level

network comprising five levels of encoders to extract both low-

level detail information and high-level semantic information.

Within the low-level encoders, features are extracted from fine

regions of the image, preserving image details and refining
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FIGURE 1

Overview of the PEQ-Net workflow. In the input part, we use two echocardiographic views, A2C and A4C. The two views echocardiographic
sequences are segmented and quantified at the same time by a unified model. The segmentation part is divided into three stages: (a) Feature
extraction, (b) Feature fusion pyramid, (c) Deep supervision. This part outputs a frame-by-frame segmentation of the echocardiographic sequence.
In the quantification part, ED frames and ES frames are obtained based on the detection of the peak area of each frame in the sequence. Then,
we use Simpson’s biplane method for volume quantification. Further ED and ES volumes and ejection fractions can be obtained for each case.
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image mask boundaries. Conversely, the high-level encoders

focus on extracting high-level semantic information and

capturing global features of the image. Within each encoder,

a dense concatenation design is employed to merge the

feature map of the previous level with the feature map of the

current level, thereby integrating low-level information with

high-level information. In high-level feature extraction, dilated

convolution is utilized to replace original pooling operations

and reduce image size. Each level employs a different dilation

rate (1, 1, 2, 4, and 8). This dilated convolution design enables

the network to expand its receptive field without sacrificing

image details due to size reduction.

Second, the multi-scale and multi-level feature fusion module

combines the high-level and low-level features. A feature pyramid

network facilitates the connection between the encoder and the

decoder. It employs four parallel convolutions and encompasses

four distinct scales of perceptual fields to produce feature maps.

These feature maps are then up-sampled to the same resolution

and concatenated into a block feature map. This module

effectively captures both the global structure and small local

variations of the LV.

Third, the feature maps are supervised at each level in deep

supervision. This stage decodes the feature maps from the output

of each feature extraction module. The multi-scale feature maps

are up-sampled to a uniformly sized feature map with different

up-sampling rates (16, 8, 4, 2, 1), resulting in five activated

feature maps. These activated feature maps are then compared

with the ground truth to compute five loss values. All five loss
Frontiers in Cardiovascular Medicine 03
values utilize the same composite loss function, which comprises

three individual loss functions: dice loss, cross-entropy loss, and

mean absolute error loss. The equation for the composite loss

function is as follows:

LCOMP ¼ LWCE þ LGDICE þ LMMAE (1)

LWCE is the weighted binary cross-entropy loss, LGDICE is the

generalized dice loss, and LMMAE is the modified mean absolute

error loss. The definitions of the loss functions are:

LWCE(PRED, GT) ¼ �w � GT � log (PRED)� (1� GT) � log (1� PRED)

(2)

LGDICE(PRED, GT) ¼ 1� 2 � a � GT � PREDþ (1� GT) � (1� PRED)
a � (GT þ PRED)þ 2� GT � PRED

(3)

LMMAE(PRED, GT) ¼ log (1þ ejPRED�GTj) (4)

Where PRED is prediction, GT is ground truth, w and a are

balance weights. These three loss functions are utilized to

optimize the pixel-level similarity, overlapping degree, and spatial

Euclidean distance between the predicted segmentation results

and the ground truth, respectively.

All five losses are propagated back to optimize the model

parameters. This allows the extraction and fusion of high- and

low-level features to be supervised simultaneously, and it reduces

the risk of over fitting.
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The quantitative assessment of the LV can be divided into two

main parts: end-diastolic (ED) and end-systolic (ES) frame

detection and volume quantification. The ED and ES frame

detection algorithm calculates the predicted LV segmentation

area in two views (A2C and A4C) and then obtains the ED and

ES frames by comparing the maximum and minimum frames in

these two views. We used the traditional Simpson biplane disc

method for LV volume calculation.

All images were up-sampled to their original size. We need to

unify the size of the original images to satisfy the requirement of

training the PEQ-Net. The unified size is (256 × 256). We need

to calculate the quantitative metrics between the predicted

images and the original ground truth images. The original size is

(636 × 434). The original size of the images is bigger than the

unified size. To evaluate the performance of models precisely, the

predicted images should be consistent with the ground truth

images. Therefore, we up-sample the images with the unified size

to their original size.

A stochastic gradient descent method with a momentum of 0.9

was applied to minimize the combined error of the LV

segmentation. The initial learning rate was 0.002, decreasing by a

factor of 0.5 every 50 epochs. The study adopted the Pytorch

programming framework (14) to build the model. All

calculations were performed on a workstation with a Xeon

2.90 GHz CPU and an NVIDIA RTX A6000 GPU under the

Ubuntu 18.04 operating system.
2.2 Model training and validation

The DPS-Net, a convolutional neural network (CNN), was

constructed upon a modified U-net architecture with a

symmetric design. It aimed to achieve rapid and accurate

semantic segmentation. The development of DPS-Net utilized

36,890 frames of two-dimensional echocardiography from 340

patients, subsequently undergoing testing on both the CAMUS

dataset and the Echo Net-Dynamic dataset (9, 10). The datasets

are openly accessible. The DPS-Net exhibited high performance

on a large-scale dataset, indicating its significant adaptability

across various echocardiographic systems.

Our dataset consisted of 11,718 frames of two-dimensional

echocardiography obtained from 80 healthy children. It was

utilized for algorithm development. Echocardiography procedures

were conducted using VIVID E9 and E95 machines from

General Electric, Milwaukee, WI. All datasets were anonymized

and saved in DICOM format. Frame-by-frame labeling of the

dataset was performed by a team of 8 heart specialists. The labels

underwent further review by three senior experts. We used the

DPS-Net as a pretrained model due to differences between adult

and pediatric data. Then, we fine-tuned the weights using the

pediatric dataset, resulting in a model named PEQ-Net.

The study adopts stratified sampling to split data according to

patient number. The study splits 60% of the total patient number as

the training dataset randomly. The study splits 20% of the total

patient number as the validation dataset randomly. The

remaining 20% of the total dataset is the test dataset.
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2.3 Patients and imaging protocol

The study included 29 pediatric patients on ECMO from the

intensive care unit of Shenzhen Children’s Hospital from January

2017 to January 2022. Ethical approval was obtained for the

study [Ethics Approval 2020012].

All echocardiographic scans were conducted using a GE Vivid

echocardiography system (GE Healthcare, Milwaukee, WI). The

system was equipped with M5S and M6S probes, featuring

frequency ranges of 1.4–4.6 MHz and 2.5–6.4 MHz, respectively.

The data were digitally recorded to facilitate offline measurements.

The monitoring protocol followed ECMO echocardiography

guidelines. Bedside dynamic echocardiographic monitoring was

conducted before intubation, during support, before weaning, and

after weaning. Apical four-chamber views (A4C) and apical two-

chamber views (A2C) were acquired at the bedside, measured in

real-time, and digitally stored. The images routinely encompassed

1 to 3 cardiac cycles, with a dataset comprising 184 instances

featuring three cycles and 2 instances with a single cycle, and

provided complete left ventricular end-diastolic volume (LVEDV),

end-systolic volume (LVESV), and ejection fraction (EF) results

(referred to as junior-EF). Both AI models and echocardiography

experts utilized these images for offline quantitative analysis.

The AI algorithm automatically estimated EF (automated-EF)

from the A4C and A2C view echocardiography. While

echocardiography experts performed offline measurements to

calculate EF (expert-EF).

In total, 218 echocardiograms were conducted across all

patients. Each of these 218 echocardiographic examinations was

evaluated for junior-, automated-, and expert-EF, respectively.

Junior-EF measurements were attainable for all patients.

However, expert-EF measurements were not feasible in 27

datasets, resulting in a feasibility rate of 87.6%. Similarly, fully

automated-EF measurements were not feasible in 32 datasets,

yielding a feasibility rate of 85.3%. The infeasibility is attributed

to several factors, including non-standard image acquisition, poor

delineation of the endocardial border, incomplete image sets, and

the presence of arrhythmias such as ventricular fibrillation and

frequent premature beats. Consequently, the study encompassed

186 datasets that were ultimately included in the final analysis.
2.4 Automatic image analysis

After inputting the A4C and A2C view echocardiography to

the PEQ-Net, the model automatically captured the ED and ES.

And it automatically calculated the LVEDV, LVESV, and

automated-EF. We compared LV segmentations between manual

and automatic methods to evaluate the accuracy of automatic LV

segmentation. Metrics such as the Jaccard, Dice coefficient,

precision, recall, and Hausdorff distance (HD) were utilized.

Jaccard and Dice coefficients quantify the similarity between the

ground truth and the segmentation outcomes by measuring their

intersection over their union. Precision and recall metrics

evaluate the correctness and exhaustiveness of the positive pixel
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predictions made by the segmentation algorithm. Furthermore, the

HD assesses the maximum boundary discrepancy between the

segmentation results and the ground truth.
2.5 Expert verification

Two echocardiography experts, each with over 5 years of

experience, analyzed the same images using an EchoPAC system

(EchoPAC PC, version 203; GE Healthcare, Milwaukee

Consway). They quantified the LVEDV, LVESV, and expert-EF

using Simpson’s biplane method.

To evaluate both intraobserver and interobserver variability, a

subset of 25 patient datasets was randomly chosen and

resubmitted to the experts for reanalysis using the same protocol.

The experts recorded the analysis time and were blinded to the

original EF results. Additionally, only one cardiac cycle was

provided to ensure that all investigators analyzed the same

heartbeat. The inter- and intra-observer variability were evaluated

by intraclass correlation coefficients and the Bland–Altman test.
TABLE 2 Clinical and echocardiographic data.

Patient demographics (n = 29)
Age, months 57.5 (0∼160)
Males,% 13 (44.8)

Height, cm 106 (45∼160)
Weight, kg 16 (2.6∼53)
Heart rate, bpm 113.5 (12∼207)

Types of ECMOa,%
Veno-Arterial 25 (86.2)

Veno-Venous 4 (13.8)

Prognosis,%
2.6 Statistical analysis

SPSS 25.0 software served as the primary tool for analysis in

this study. Quantitative data underwent normality testing, and

normally distributed data are presented as the mean ± standard

deviation. The t-test was utilized for comparisons between

groups. While the paired-samples sign test was performed for

non-normally distributed data. Enumerated data are expressed as

percentages. A significance level of p < 0.05 was considered

statistically significant. The results for junior-EF and automated-

EF were compared with expert-EF. The intra-group correlation

coefficient (ICC) was calculated, and the Bland–Altman test was

employed to assess consistency. Additionally, the Bland–Altman

test was utilized to examine both inter- and intra-group

agreement of the measurements conducted by clinical experts.
Survival 24 (82.8)

Death 5 (17.2)

ECMO support time, day
All 7.0（4.0∼15.5）
Survival 6.5（4.3∼15.5）
Death 7.0（1.5∼21.0）

Medical history,% (n = 29)
Fulminant myocarditis 9 (31.0)
3 Results

Table 1 summarizes the characteristics of the study population

in the training dataset. Table 2 presents the baseline clinical and

echocardiographic data of the 29 patients. The diagnoses of this

patient group were as follows: nine patients with fulminant
TABLE 1 Characteristics of training data set.

n 80

Age, months 48.5 (22∼192)
Males,% 52 (65.0)

Height, cm 104 (58∼169)
Weight, kg 16.5 (5∼61)
Heart rate, bpm 98.5 (60∼128)

Ultrasound system,%
Vivid E9 65 (81.75)

Vivid E95 15 (18.75)
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myocarditis, twelve patients with severe pneumonia (including

two cases of bronchopulmonary dysplasia, three cases of acute

leukemia after chemotherapy, one case of cardiac tumors, and

one case of thalassemia), three patients with myocardial injury in

non-fulminant myocarditis (including one case each of splenic

infarction, hepatoblastoma after chemotherapy, and hemorrhagic

shock associated with intestinal infection), four patients with

postoperative congenital heart disease (including one case each of

single atrium, complete transposition of the great arteries,

complete anomalous pulmonary venous connection, and aortic

stenosis), and one patient with dilated cardiomyopathy.
3.1 Performance of PEQ-Net in LV
segmentation on local data sets

Table 3 presents the quantitative results of PEQ-Net in LV

segmentation. The segmentation performance of PEQ-Net is

assessed using metrics including Jaccard, Dice, and HD, with

corresponding values of 0.8994, 0.9407, and 5.0885, respectively.

Figure 2 visually illustrates the qualitative comparison of PEQ-

Net in LV segmentation. This visual analysis affirms that PEQ-

Net achieves precise segmentation of the LV region in ultrasound

sequences. Moreover, Figures 3, 4 provide a comprehensive

evaluation of PEQ-Net’s performance across multiple metrics,
Severe pneumonia 12 (41.4)

Myocardial injury in non-fulminant myocarditis 3 (10.4)

Post-operation of congenital heart disease 4 (13.8)

Dilated cardiomyopathy 1 (3.4)

Ultrasound system,% (n = 218)
GE Vivid E9 86 (39.5)

GE Vivid E95 132 (60.5)

Heart rate, bpm (n = 218)
Pre -ECMO (n = 25) 134（73∼207）
ECMO (n = 128) 117（12∼168）
Post-ECMO (n = 65) 109（70∼171）

aECMO, extracorporeal membrane oxygenation.
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TABLE 3 Performance of the PEQ-Net for segmentation in all frames.

Jaccard Dice Precision Recall HD Specificity FPR Accuracy
A2C 0.8903 0.9344 0.9531 0.9319 5.5760 0.9963 0.0037 0.9896

A4C 0.9081 0.9465 0.9623 0.9418 4.6312 0.9967 0.0033 0.9907

A2C + A4C 0.8994 0.9407 0.9579 0.9370 5.0885 0.9965 0.0035 0.9902

FIGURE 2

Quantitative results of PEQ-Net in LV segmentation. The red and green contour lines represent the ground truth and predicted masks in segmentation,
respectively.

FIGURE 3

High performance of the PEQ-Net for segmentation in all frames. The x-axis represents the different views, i.e., A2C, A4C, and A2C + A4C. The y-axis
represents each index. From left to right, each column represents the different indices, i.e., Jaccard, Dice, Precision, Recall and HD.

FIGURE 4

The P-R curve of PEQ-Net in LV segmentation. The red line
represents the A2C view. The green line represents the A4C view.
The blue line represents both A2C and A4C views. We use the
area under the curve to evaluate the performance.

Chen et al. 10.3389/fcvm.2024.1418741
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including Jaccard, Dice, Precision, Recall, and HD. These figures

underscore the high performance of PEQ-Net in LV

segmentation. Figure 5 demonstrates how PEQ-Net effectively

facilitates the convergence of the loss function, indicating stable

and efficient training. Figure 6 illustrates the strong agreement

between the regions detected by PEQ-Net and the region

of interest, further validating the model’s accuracy in

LV segmentation.
3.2 Assessment of different methods for
determining Ef

Tables 4, 5 presents the LVEDV, LVESV and EF results of

these three groups and their comparisons. The average time

required for automated EF analysis and manual measurement

was 16.11 ± 11.62 and 151.23 ± 3.65 s per case, respectively

(analyzed in 25 views).
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Using the paired-samples sign test, there was significant

difference between expert-EF and junior-EF in all groups. Junior-

EF was consistently higher than expert-EF and automated-EF in

all groups. However, no statistically significant differences were

observed between automated-EF and expert-EF in all groups.

Good correlations were observed between junior-EF, expert-EF,

and automated-EF using ICCs (Table 6, Figure 7). Bland–Altman

analysis revealed that the bias and limits of agreement were

relatively lower between junior-EF and expert-EF (mean bias:

2.305%, 95% CI: −10.413 to 15.022%; Figure 7e) compared to
FIGURE 5

Effectiveness evaluation of PEQ-Net in LV segmentation. The x-axis
is the training iteration. The y-axis is the loss function.

FIGURE 6

High agreement between the detected regions by the PEQ-Net and the regio
across different training iteration (5,000, 10,000, 20,000, 30,000, 40,000).

TABLE 4 LVEDV and LVESV assessed using various methods.

All(n= 186) Junior Automated Expert

LVEDV (ml) 33.77 (18.17∼57.57) 35.23 (19.50∼53.26) 34.90 (18.00∼53.11)
LVESV (ml) 12.27 (6.46∼25.26) 14.73 (7.79∼26.73) 14.00 (7.00∼24.25)

*The significance was set at a p-value <0.05 in the study.
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those between expert-EF and automated-EF (mean bias:

−0.490%, 95% CI: −6.812 to 5.831%; Figure 7f).
3.3 Intra-observer and inter-observer
variability

Out of 186 echocardiographic examinations, 25 patients were

randomly chosen for the intra-observer and inter-observer

repeatability test. The EF was measured repeatedly by clinical

experts. Overall, there were no statistically significant differences

between the intra-observer and inter-observer results in expert-

EF (all P > 0.05), as shown in Table 7.
4 Discussion

The primary finding of this study indicates that employing

automated AI for capturing ED and ES images and measuring

EF is technically feasible in pediatric patients. Our results

demonstrated that PEQ-Net achieved high accuracy in LV

segmentation, with high reproducibility and consistency indicated

by the high Dice coefficients. The AI approach closely aligns

with manual tracking performed by echocardiography experts,

outperforming assessments made by junior physicians. Moreover,

automated image analysis requires minimal time and provides

informative results that exhibit a high correlation with expert

standard measures, particularly in critically ill pediatric patients.
n of interest. From left to right, each column indicates the attention map

Z/p

Junior—Automated Junior—Expert Automated—Expert
−4.001/0.000* −8.625/0.000* −0.479/0.632
−5.311/0.000* −9.043/0.000* −0.356/0.722
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TABLE 5 Efs assessed using various methods.

Junior-EF Automated-EF Expert-EF Z/p

Junior—Automated Junior—Expert Automated—Expert
All (n = 186) 60.0 (35.0∼65.0) 56.2 (31.9∼62.7) 58.0 (33.5∼62.0) −5.598/0.000* −4.794/0.000* −1.767/0.079
EF≤ 40 (n = 60) 28.0 (20.2∼35.0) 23.5 (20.2∼30.9) 24.5 (21.0∼31.8) −3.740/0.000* −3.038/0.002* −1.737/0.082
EF > 40 (n = 126) 63.0 (60.0∼67.0) 59.2 (58.0∼62.3) 60.0 (58.0∼63.0) −4.188/0.000* −3.712/0.000* −1.735/0.083
HR≤ 140 (n = 154) 60.5 (35.0∼65.0) 56.6 (32.3∼63.3) 58.5 (33.0∼62.0) −5.099/0.000* −4.342/0.000* −1.881/0.070
HR > 140 (n = 32) 59.5 (30.7∼64.7) 55.2 (31.2∼60.5) 55.5 (31.7∼59.7) −2.300/0.021* −2.021/0.043* −1.552/0.121
PRE-ECMO (n = 20) 61.5 (47.5∼66.7) 56.6 (42.5∼62.4) 57.5 (43.5∼62.3) −2.427/0.015* −1.999/0.046* −1.680/0.093
ECMO support (n = 109) 47.0 (26.0∼63.5) 39.8 (23.1∼59.1) 40.0 (23.0∼60.0) −4.063/0.000* −2.988/0.003* −1.825/0.075
Post-ECMO (n = 57) 63.0 (61.0∼67.0) 59.1 (56.4∼62.8) 60.0 (58.5∼63.0) −2.920/0.004* −3.224/0.001* −0.338/0.736

*The significance was set at a p-value < 0.05 in the study. EF, ejection fraction (%); HR, heart rate; ECMO, extracorporeal membrane oxygenation.

TABLE 6 Results of intra-group correlation and agreement analysis of EF
in patients with ECMO.

Junior EF (%) Automated
EF (%)

Expert
EF (%)

Agreement: ICC (95% CI)
Junior EF 1 – –

Automated EF 0.936 (0.916∼0.950)* 1 –

Expert EF 0.932 (0.913∼0.946)* 0.983 (0.977∼0.987)* 1

Bland-Altman: bias (95% CI)
Junior EF 0 – –

Automated EF 2.795
(−9.582∼15.172)

0 –

Expert EF 2.305
(−10.413∼15.022)

−0.490 (−6.812∼5.831) 0

CI, confidence interval; EF, ejection fraction; ICC, intraclass correlation coefficient.

*p < 0.001.
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In pediatric clinical practice, pediatric cardiologists utilize

echocardiography to assess cardiac structure, function, and

hemodynamics. Functional echocardiography involves the

bedside use of cardiac ultrasound to track functional and

hemodynamic changes over time. Echocardiography plays a

crucial role in the management of patients undergoing ECMO

treatment, by providing information that helps physicians decide

when to intubate, guide catheter placement, monitor progression,

detect complications, and facilitate weaning of ECMO support

(15). EF serves as a vital ECMO indication and prognostic

echocardiographic marker, guiding treatment decisions and

monitoring cardiac function in patients with heart failure during

ECMO support. During ECMO weaning trials, the capability to

perform real-time and expedited assessments of left ventricular

function post-adjustment of the flow rate is crucial. This enables

the attending physician to swiftly implement targeted interventions,

thereby minimizing patient morbidity.

Bedside echocardiography provides clinicians with a wealth of

hemodynamic information, offering insights into clinical

conditions beyond assumed underlying physiology. Without

bedside echocardiography, clinicians may only speculate about

the underlying pathophysiology of compromised circulation (16),

often leading to incorrect assumptions. To fully realize its clinical

potential, bedside echocardiography must be readily available in

the pediatric intensive care unit, allowing for immediate access.
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The reliability of pediatric echocardiography, particularly in

critical care settings, is closely linked to the proficiency and

expertise of practitioners. However, limited access to appropriate

training programs and inter-disciplinary politics restrict the

utilization of this potentially valuable clinical information.

The dramatic increase in the use of echocardiography and the

consequent increase in the use of echocardiography by pediatric

intensive care unit physicians have exceeded the capacity of

adequate training (17–21). When decisions are made based on

EF, treatment of a subset of patients may be confounded due to

the large variability in EF measurements between operators

(22, 23). Especially when the heart rate of infants and young

children is relatively fast, and when the bedside test of a critically

ill patient requires rapid completion, the measured EF results

may be highly variable. Consequently, there has been interest in

AI-assisted automated measurement tools that can facilitate

the assessment of LV function and minimize variability

between echocardiographers.

Several automated AI methods have been employed in

echocardiography studies for cardiac function testing (24–26).

These studies used either semi-automatic EF measurement or

required manual correction, resulting in variable results and

increased measurement times (27). In contrast, our study

achieved rapid EF determination in pediatric patients using

echocardiography. The software algorithm utilized in this study

eliminates the need for manual enveloping of the endocardial

border. By simply inputting dynamic A4C and A2C views, the

model automatically captures end-diastolic (ED) and end-

systolic (ES) frames and calculates left ventricular end-diastolic

volume (LVEDV), left ventricular end-systolic volume

(LVESV), and ejection fraction (EF). This streamlined process

takes only a few dozen seconds to complete the measurement,

demonstrating superior temporal efficiency compared to

previously described methods.

In this paper, we present PEQ-Net, a segmentation and

quantification framework that allows multi-scale information

extraction and deep supervision. PEQ-Net facilitates the unified

modeling of multi-view echocardiographic sequences, effectively

extracting and fusing multi-level and multi-scale holistic semantic

features. It demonstrates outstanding generalization and robustness

while remaining adaptable to heterogeneous data. Clinical

evaluation experiments reveal that PEQ-Net achieves favorable
frontiersin.org
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TABLE 7 Interobserver and intraobserver reliability of EFs measurements
in expert and artificial intelligence.

(n = 25) Expert EFa (%)

Intraobserver Variability
Reading 1 47.5 (28.0∼60.0)
Reading 2 48.5 (27.5∼59.7)
p 0.889

ICC 0.984 (0.970∼0.994)
Bland-Altman 0. 500(−5.013∼6.013)

Interobserver Variability
Research 1 61.0 (60.0∼65.2)
Research 2 61.0 (60.0∼65.5)
p 0.701

ICCa 0.935 (0.842∼0.974)
Bland-Altman 0.083(−2.148∼2.315)

aEF, ejection fraction; ICC, intraclass correlation coefficient.

FIGURE 7

Correlations and bland-altman plots between different methods. (Top)Correlation plots and (Bottom)Bland-Altman plots between: automated EF and
junior EF (a,d); Expert and junior EF (b,e); automated EF and expert EF (c,f). CI, confidence interval; ICC, intraclass correlation coefficient; EF, sejection
fraction.
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results for both adult and pediatric datasets, displaying stability and

coherence specifically in pediatric ECMO echocardiographic data.

Compared with junior echocardiographers, it is closer to the

performance of clinical experts.

In pediatric intensive care bedside echocardiography, inter-

observer variability has always been a concern of the industry,

especially because children on ECMO have different clinical

states among critically patients in the ICU. The identification of

the endocardium is more difficult, and it increases the intra-

observer variability (28). The variability in EF evaluations of
Frontiers in Cardiovascular Medicine 09
children in intensive care influences decision-making for ECMO

and the management of ECMO weaning. This study leveraged

PEQ-Net to obtain automatic AI-assisted EF measurements

throughout the ECMO process in children, yielding results

superior to those of junior physicians and closely resembling

those of echocardiography experts. AI-assisted automated

echocardiography facilitates the accuracy of bedside assessments

and interpretation of cardiac function, and can improve the

management of critically ill pediatric patients.

Performance benefit has different situations when the study

adopts more advanced network architectures. First, adopting

more advanced network architectures directly might bring

declined performance. The architecture may not apply to

pediatric echocardiography. Second, more advanced networks

with elaborative modification might have better performance.

Researchers design deep learning networks according to the

challenges of datasets. Third, adopting more advanced network

architectures might be a trade-off choice. More advanced

network architectures might bring performance benefits in some

aspects. The architecture might also lose some performance in

other aspects.
5 Research limitations

This study has limitations. First, while previous research has

indicated the superior estimation of left ventricular (LV) function
frontiersin.org
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using 3D echocardiography, our study did not assess 3D

technology, which has the potential to provide more accurate

evaluations (26). Second, the exclusion of patients with atrial

fibrillation and arrhythmia from our study may limit the

generalizability of our findings. Further investigations are

necessary to assess the performance of the software in patients

with arrhythmias and irregular heartbeats. Although we

successfully utilized AI-assisted echocardiography to measure

ejection fraction (EF) in children with severe diseases,

particularly during ECMO weaning recovery, and we evaluated

intra-observer variability, additional study subjects are required

for further validation. Future studies should include a more

diverse range of subjects, encompassing healthy children and

those with different diseases. While the inclusion of this section

is not mandatory, it can be added to the manuscript if the

discussion extends into unusually long or complex territory.
6 Conclusions

AI-automated analysis of echocardiography for quantifying

left ventricular function in critically ill children with ECMO is

quicker than assessments by junior doctors. Machine learning-

enabled pediatric echocardiography image analysis for automated

assessment of ejection fraction is feasible and provides

results comparable to a manual determination by an

echocardiography expert.
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