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Background: There is increasing evidence regarding the association between
endotoxemia and the pathogenesis of atherosclerosis and myocardial infarction
(MI). During the acute phase of MI, endotoxemia might increase inflammation
and drive adverse cardiovascular (CV) outcomes. We aimed to explore the risk
factors and prognostic value of endotoxemia in patients admitted for acute MI.
Methods: Patients admitted to the coronary care unit of Dijon University Hospital
for type 1 acute MI between 2013 and 2015 were included. Endotoxemia,
assessed by plasma lipopolysaccharide (LPS) concentration, was measured
by mass spectrometry. Major adverse CV events were recorded in the year
following hospital admission.
Results: Data from 245 consecutive MI patients were analyzed. LPS concentration
at admission markedly increased with age and diabetes. High LPS concentration
was correlated with metabolic biomarkers (glycemia, triglyceride, and total
cholesterol) but not with CV (troponin Ic peak and N-terminal pro-brain
natriuretic peptide) or inflammatory biomarkers (C-reactive protein, IL6, IL8, and
TNFα). LPS concentration was not associated with in-hospital or 1-year outcomes.
Conclusions: In patients admitted for MI, higher levels of endotoxins were
related to pre-existing conditions rather than acute clinical severity. Therefore,
endotoxins measured on the day of MI could reflect metabolic chronic
endotoxemia rather than MI-related acute gut translocation.
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Introduction

Myocardial infarction (MI) is a frequent event that carries high morbidity and

mortality worldwide. Bacterial endotoxins (lipopolysaccharides, LPSs) are pathogen-

associated molecular patterns (PAMPs) that are part of the outer membrane of Gram-

negative bacteria. LPSs have been described as exerting a noxious effect by triggering

inflammation (TLR-4 recognition and NF-kB transcription) (1).

There is increasing evidence that endotoxemia is associated with MI through multiple

underlying mechanisms. First, chronic low-grade endotoxemia has been reported in
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metabolic disorders (2, 3), defining the concept of metabolic

endotoxemia (4). In addition, LPSs are closely linked to lipoprotein

metabolism by reverse LPS transport (5, 6). These conditions are

risk factors for MI, and emerging concepts suggest that

endotoxemia has a role in coronary artery disease (CAD) and the

genesis of MI (7, 8). Second, several studies have suggested an

alteration of the gut barrier function at the acute phase of MI,

resulting in acute endotoxemia (9, 10). Because endotoxins reduce

cardiac performance (11) and cause vasoplegia (12), they might

increase the risk of heart failure after MI and worsen short-term

patient outcomes. Finally, inflammation is thought to extend

myocardial injury (13) and promote recurrent cardiovascular (CV)

events (14), so endotoxemia might also have negative effects on

long-term recovery. Despite these potentially harmful effects, data

regarding acute endotoxemia and MI are scarce and further

evidence is needed (15).

The primary objective of the present study was to explore factors

associated with endotoxemia at hospital admission in patients with

MI and to determine whether endotoxemia at hospital admission

was related to metabolic conditions (thus chronic low-grade

translocation promoting atherosclerosis) or to acute gut barrier

failure in the context of MI. The secondary objective was to

determine the association of endotoxemia with inflammation,

initial MI severity, and short-term and long-term outcomes.
Methods

Patients

This study is an ancillary analysis of a prospectively acquired

database (RICO survey) (16). All consecutive patients admitted to

the coronary intensive care unit (ICU) of the Dijon University

Hospital (France) from January 2013 to April 2015 for type 1 MI

were prospectively included. Patients with prior coronary arterial

disease [MI, transluminal angioplasty, unstable angina, or coronary

artery bypass graft (CABG) surgery] or chronic kidney disease

were excluded. The present study agrees with the ethical guidelines

of the Declaration of Helsinki. Informed consent was obtained

from the participants before their inclusion in the study, and the

Ethics Committee of the University Hospital of Dijon approved

the protocol (BIOCARDIS-2016–9205AAO034S02117).
Data collection

Patient characteristics, including age and gender, were obtained at

hospital admission, along with medical history (hypertension,

diabetes, smoking, and family history of coronary artery disease,

main treatments [antiplatelets, angiotensin 2 receptor blockers

(ARB), angiotensin 2 converting enzyme (ACE) inhibitors, statins,

and beta-blockers], and clinical data [left ventricular ejection

fraction, heart rate (HR), blood pressure, catecholamine

administration, and infarction location]. Shock index was defined as

the heart rate divided by systolic blood pressure (SBP). Coronary

artery disease burden at coronary angiography through multivessel
Frontiers in Cardiovascular Medicine 02
disease and the SYNTAX (17) score were also collected. The Global

Registry of Acute Coronary Events (GRACE) risk score (18), a

robust prognosis tool following MI, was also calculated.
Determination of blood markers

Blood samples were taken on admission. N-terminal pro-brain

natriuretic peptide (Nt-ProBNP, normal value <125 pg/ml), blood

lipids [normal range 1.20–2.4 g/L for cholesterol, 0.4–0.6 g/L for

HDL cholesterol, and 0.4–1.5 g/L for triglycerides (TG)], glucose

(normal range 4.3–6.4 mmol/L), glycated hemoglobin (HbA1c,

normal value <6%), and C-reactive protein (CRP) (normal value

<4 mg/L) were measured. The troponin Ic peak (normal value

<0.1 µg/L) was obtained from three blood samples within 24 h

following admission. The estimated glomerular filtration rate

(eGFR) was calculated using the chronic kidney disease-

epidemiology collaboration formula (CKD-EPI).

Plasma was taken upon ICU admission in an EDTA

(ethylenediaminetetraacetic acid) blood collection tube. Blood

was centrifugated (2,000×g for 10 min at 4 °C), and plasma was

stored at −80 °C. LPS, lipid transfer protein activities

[phospholipid transfer protein (PLTP) and cholesteryl ester

transfer protein (CETP)], and cytokines were retrospectively

measured from this plasma collection.

LPS was quantified by measuring one of its components

[3-hydroxy myristate (3HM)] using liquid chromatography coupled

with tandem mass spectrometry, as previously described (19). Briefly,

samples were hydrolyzed for 3 h at 90 °C in the presence of

hydrochloric acid to release free fatty acids, which were subsequently

extracted with water and ethane/ethyl acetate (3/2 v/v). Dried

extracts were dissolved in ethanol and injected onto an SBC18

2.1 mm× 50 mm, 1.8 µm column, connected to an Infinity 1290

HPLC system (Agilent Technologies). Separation of hydroxylated

fatty acids was achieved at 45 °C at a flow rate of 0.4 ml/min using

ammonium formate (5 mM/0.1% formic acid) as eluent A (55% for

0.5 min) and 95% acetonitrile as eluent B (100% reached in 2.5 min

and maintained for 5 min). MS/MS detection was performed in

negative mode using a QqQ 6490 triple quadrupole mass

spectrometer equipped with a JetStream ESI source to quantify the

selected ions as follows: for 3HM, precursor ion 243.2 Da and

product ion 59 Da; for 3-hydroxytridecanoic acid (IS), which was

used as the internal standard, precursor ion 229.2 Da and product

ion 59 Da.

PLTP and CETP activities were measured in undiluted plasma

using commercially available fluorescence activity assays (Roar

Biomedical), according to the manufacturer’s instructions.

Incubations were performed at 37 °C for 30 min (for PLTP) or 3 h

(for CETP), with fluorescence monitoring (excitation, 465 nm;

emission, 535 nm) throughout the incubation period with a Victor2

multilabel counter (PerkinElmer, Waltham, United States). Transfer

activities were calculated from the slope of fluorescence increase

between 1 and 30 min (for PLTP) or between 1 min and 1 h (for

CETP) and expressed as arbitrary fluorescence units (AU).

Cytokines were measured using a Luminex® Human Magnetic

assay (R&D Systems, Minneapolis, USA). The assays were
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TABLE 1 Association between LPS plasma concentration and patient’s
characteristics.

Variable n (%), mean ±
SD or median

(IQR)
N = 245

Total LPS or r p
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performed according to the manufacturer’s instructions (including

for sample collection and preparation). Plasma was not diluted for

this analysis. Standards and samples were analyzed on a Luminex®

apparatus (BioPlex 200, Bio-Rad, Munich, Germany) using BioPlex

Manager Software (Version 5, Bio-Rad, Hercules, CA, USA). For all

cytokines, standard curves ranged from 3.2 to 10,000 pg/ml.

Demographic characteristics
Age, years 62 ± 13 0.173 0.007

Female No 176 (71.8%) 106.36 (82.45–131.16) 0.946

Yes 69 (28.2%) 106.18 (84.47–129.99)

BMI, kg/m2 27 (25–29) 0.192 0.003

Medical history
Hypertension No 139 (56.7%) 104.78 (83.16–127.42) 0.521

Yes 106 (43.3%) 108.23 (86.14–133.28)

Diabetes No 211 (86.1%) 103.03 (82.45–124.74) <0.001

Yes 34 (13.9%) 139.60 (113.86–
230.62)

Family history of
CAD

No 168 (68.6%) 108.98 (83.49–133.13) 0.141

Yes 77 (31.4%) 102.95 (83.11–125.39)

Current smoking No 137 (55.9%) 110.44 (91.60–132.65) 0.022

Yes 108 (44.1%) 102.06 (79.58–121.80)

Chronic treatments
Antiplatelet No 241 (98.4%) 106.32 (83.30–131.00) 0.938

Yes 4 (1.6%) 107.04 (77.49–133.89)
Outcomes

Plasma markers included endotoxin plasma concentration,

cytokine plasma concentration, and CRP.

Clinical outcomes included in-hospital major adverse CV

events (MACEs), such as CV death, heart failure (defined as

Killip class >1), and recurrent myocardial infarction, ventricular

and supraventricular arrhythmia, and ICU length of stay. A

follow-up at 1 year with the patient, next of kin, or the treating

physician was conducted by mail or telephone. Occurrences of

MACEs, defined as CV death, recurrent myocardial infarction,

hospitalization for heart failure, unscheduled percutaneous

coronary intervention (PCI), coronary artery bypass surgery,

unstable angina or angina pectoris, were collected.

Aspirin No 223 (91.0%) 106.13 (83.44–129.14) 0.570

Yes 22 (9.0%) 115.68 (74.40–139.42)

ARB No 209 (85.3%) 106.07 (82.75–128.84) 0.191

Yes 36 (14.7%) 115.28 (95.36–136.59)

ACE inhibitors No 219 (89.4%) 106.32 (83.06–130.28) 0.572

Yes 26 (10.6%) 107.20 (88.77–144.31)

Statin No 214 (87.3%) 107.88 (83.72–131.71) 0.173

Yes 31 (12.7%) 98.82 (75.14–121.03)

Beta-blockers No 210 (85.7%) 106.36 (83.06–130.38) 0.961

Yes 35 (14.3%) 104.61 (90.90–133.92)

Data are expressed as n (%), mean ± standard deviation (SD), or median (IQR).

LPS is expressed as 3HM (pmol/L). p-values are given for the association between

each variable and LPS plasma concentration.
Statistical analysis

No sample size calculation was performed for this study. All

the patients included in the cohort were analyzed. Dichotomous

variables are expressed as n (%), and continuous variables

are expressed as means ± standard deviations or medians

[interquartile ranges (IQR)]. A Kolmogorov–Smirnov test was

performed to assess the normality of continuous variables. Non-

normally distributed variables were log-transformed when

needed. The Mann–Whitney test or Student’s t-test was used to

compare continuous data, as appropriate. Pearson correlation

analyses (for normally distributed variables) or Spearman

correlation analyses (one or two non-Gaussian variables) were

performed. The threshold for significance was set at p < 0.05.

Multivariate linear regression models were built to estimate LPS

levels based on significant variables in univariate analysis, with

an inclusion threshold of p < 0.10. Variable selection was

stepwise. The normality of residuals and homoscedasticity were

checked graphically; the model was also checked for

autocorrelations of residuals (Durbin–Watson test) and

multicollinearity (variance inflation factor). Missing data were

considered at random and were omitted. SPSS version 12.0.1

(IBM Inc., Armonk, NY, USA) was used for all analyses.
Results

Baseline characteristics

Two hundred and forty-five patients were analyzed. Baseline

characteristics are presented in Table 1. The mean age was 62 ±

13 years, most patients were men (72%), and the median body
Frontiers in Cardiovascular Medicine 03
mass index (BMI) was 27 (25–29). We identified 92 patients

(37.6%) with hypercholesterolemia and 34 (14%) with diabetes.

Most patients had ST-segment elevation (Table 2).
Variables associated with endotoxemia

Themedian LPS concentration was 106 (83–131) pmol/L of 3HM.

The distribution of LPS concentration in our population is illustrated in

Figure 1. Endotoxemia was associated with age, diabetes, and obesity

(Table 1, Figure 2), as well as with total cholesterol (r = 0.191, p =

0.003), triglyceridemia (r = 0.201, p = 0.002), and glucose metabolism

parameters (blood glucose, HbA1c) (Table 3). LPS was lower in

smokers (102.06 pmol/L of 3HM (79.58–121.80) vs. 110.44 pmol/L

of 3HM (91.60–132.65), p = 0.22). PLTP activity was positively

correlated with LPS concentrations (r = 0.146, p = 0.022). At

admission, patients with high endotoxemia had a faster heart rate

(r = 0.19, p < 0.01), and a higher shock index (≥0.7) was associated
with higher LPS concentrations. In multivariate analysis,

triglycerides, total cholesterol, history of diabetes, and age were

independently associated with LPS concentration (Table 4).
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1419001
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Distribution of the population according to LPS concentration at
admission. Results are expressed as % of the population for each
range of LPS concentration.

TABLE 2 Association between LPS plasma concentration and clinical data
on admission.

Variable n (%), mean ± SD,
or median (IQR)

N = 245

Total LPS or r p

Clinical data
LVEF, % 55 (45–60) −0.069 0.283

LVEF <40% No 219 (89.8%) 106.18 (83.06–128.54) 0.203

Yes 25 (10.2%) 113.98 (90.45–155.10)

HR, bpm 76 (67–88) 0.191 0.003

SBP, mmHg 141 ± 27 0.131 0.043

DBP, mmHg 83 ± 19 0.100 0.123

Catecholamine No 230 (93.9%) 106.15 (83.37–130.54) 0.827

Yes 15 (6.1%) 113.98 (83.06–131.83)

Shock index≥ 0.7 No 191 (80.3%) 104.78 (82.22–125.75) 0.034

Yes 47 (19.7%) 117.01 (90.64–163.53)

STEMI No 97 (39.6%) 103.87 (79.72–125.67) 0.181

Yes 148 (60.4%) 108.99 (85.24–133.56)

Anterior wall
location

No 150 (61.2%) 106.10 (82.91–128.31) 0.396

Yes 95 (38.8%) 110.24 (85.18–133.51)

Heart failure No 201 (82.0%) 108.51 (83.69–131.75) 0.162

Yes 44 (18.0%) 96.28 (79.71–122.72)

Time to admission,
min

160 (101–338) 0.038 0.549

GRACE risk score 137 ± 36, n = 238 0.110 0.089

Angiographical data
Coronary
angiography

No 2 (0.8%) 94.60 (83.06-x) 0.515

Yes 243 (99.2%) 106.40 (83.44–131.32)

SYNTAX score 8 (5–14), n = 238 0.071 0.275

Multivessel disease No 137 (55.9%) 106.18 (84.49–129.29) 0.811

Yes 108 (44.1%) 107.33 (81.79–131.58)

PCI No 45 (18.4%) 105.62 (84.78–123.27) 0.641

Yes 200 (81.6%) 108.23 (83.08–132.14)

Plasma markers
Creatinine, µmol/L 77 ± 15 −0.054 0.400

Troponin Ic peak,
ng/ml

26.0 (5.3–93.5) 0.077 0.228

Nt-ProBNP, pg/ml 400 (103–1,247) 0.000 0.996

DBP, diastolic blood pressure; STEMI, ST-elevation myocardial infarction.

Data are expressed as n (%), mean ± standard deviation (SD), or median (IQR). LPS is

expressed as 3HM (pmol/L). The shock index was calculated as the ratio of heart

rate to systolic blood pressure. p-values are given for the association between

each variable and LPS plasma concentration. p-values presented are not

corrected for multiple comparisons.

Nguyen et al. 10.3389/fcvm.2024.1419001
Relationship between endotoxemia and
inflammation

Interleukin (IL)-6 and CRP were below the detection threshold

in most patients (74% and 84%, respectively). We found no

association between the measured cytokines [IL-6, IL-8, tumor

necrosis factor (TNF)-α] and LPS (p > 0.05). A level of CRP

higher than 10 mg/L was not associated with LPS (Table 5).
Relationship between endotoxemia and
short-term outcome

LPS blood concentration was not associated with initial severity

(Table 2) nor with the occurrence of MACE (or any of its
Frontiers in Cardiovascular Medicine 04
components) or all-cause mortality (p = 0.4) during hospital stay,

as assessed by GRACE and SYNTAX scores. However, LPS was

associated with a longer ICU stay (r = 0.18, p = 0.005) (Table 5).
Relationship between endotoxemia and
long-term (1-year) outcome

LPS blood concentration was not associated with the

occurrence of 1-year MACE (or any of its components) nor with

all-cause mortality (p = 0.9, Table 5).
Discussion

Lipopolysaccharide plasma concentration at hospital admission

was associated with metabolic conditions (in particular cholesterol,

triglyceride concentrations, and diabetes) and age rather than with

MI severity. LPS concentrations were not associated with

inflammatory biomarkers, coronary artery disease severity

assessed by angiography, or short-term and long-term occurrence

of MACE.

When compared with measurements obtained using the same

method and in the same laboratory, the LPS plasma

concentrations in our cohort were slightly higher than those

reported in healthy volunteers [106 (83–131) vs. 96 (77–116)]

but lower than in patients with septic shock [106 (83–131) vs.

134 (126–142)] (20). These findings are in line with previous

studies that reported increased endotoxin concentrations in

patients with coronary artery disease (10, 21), which led to a
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FIGURE 2

Association between LPS concentration and metabolic parameters at admission. p-values were computed using the Spearman test for correlation and
the Mann–Whitney test for group comparisons. n= 235 for HbA1c, 245 for glycemia, 245 for diabetes, and 244 for total cholesterol, triglyceridemia,
and obesity. 3HM, 3-hydroxy myristate.
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TABLE 3 Association between LPS plasma concentration and lipid and
glucose metabolism.

Variable n (%) or
median (IQR)

N = 245

Total LPS or r p

LDL cholesterol, g/L 1.32 (1.09–1.60) 0.099 0.124

HDL cholesterol, g/L 0.47 (0.38–0.56) 0.095 0.138

Total cholesterol, g/L 2.09 (1.80–2.40) 0.191 0.003

Triglycerides, g/L 1.16 (0.81–1.80) 0.201 0.002

PLTP, AU 186.7 ± 33.0 0.146 0.022

CETP, AU 31.3 ± 11.3 −0.051 0.424

LBP, µg/ml 26.1 ± 10.2 −0.132 0.040

HbA1c, % 5.9 (5.7–6.3) 0.197 0.002

Hyperglycemia
(>11 mmol/L)

No 219 (89%) 105.62 (83.05–127.42) 0.010

Yes 26 (11%) 126.58 (94.85–171.39)

LDL, low-density lipoprotein; HDL, high-density lipoprotein; LBP, lipopolysaccharide-

binding protein.

Data are expressed as n (%), mean± standard deviation (SD), or median (IQR). LPS is

expressed as 3HM (pmol/L). p-values are given for the association between each

variable and LPS plasma concentration. p-values presented are not corrected for

multiple comparisons.

TABLE 5 Associations between LPS plasma concentration, inflammation,
and short- and long-term outcomes.

Variable n (%) or
median (IQR)

N = 245

Total LPS or r p

Inflammation
IL-6 > 3.2 (pg/ml) No 181 (73.9%) 106.59 (83.69–131.00) 0.799

Yes 64 (26.1%) 102.39 (82.00–132.47)

IL-8 > 3.2 (pg/ml) No 146 (59.6%) 107.98 (86.70–133.62) 0.144

Yes 99 (40.4%) 104.51 (78.95–125.75)

TNF-α (pg/ml) 9.31 (6.23–12.65) −0.015 0.821

CRP > 10 mg/L No 204 (83.6%) 106.50 (83.65–131.16) 0.617

Yes 40 (16.4%) 103.72 (81.99–130.83)

Short-term outcome (in-hospital)a

Length of ICU stay, days 3 (3–4) 0.180 0.005

MACE No 180 (73%) 108.37 (85.19–133.13) 0.119

Yes 65 (27%) 97.48 (79.80–126.24)

Death No 242 (98.8%) 106.36 (83.37–130.84) 0.380

Yes 3 (1.2%) 89.12 (52.89–x)

Recurrent MI No 236 (96.3%) 106.36 (83.65–131.58) 0.413

Yes 9 (3.7%) 97.48 (68.46–127.93)

Heart failure No 187 (76.3%) 108.12 (83.62–132.69) 0.329

Yes 58 (23.7%) 100.41 (81.23–127.18)

Ventricular arrhythmia No 230 (93.9%) 106.50 (83.72–131.71) 0.305

Yes 15 (6.1%) 94.89 (82.22–124.62)

Supraventricular
arrhythmia

No 230 (93.9%) 106.25 (83.37–131.94) 0.676

Yes 15 (6.1%) 110.44 (82.22–125.33)

Long-term outcome (1-year)b

MACE No 212 (86.5%) 106.15 (83.09–130.58) 0.636

Yes 33 (13.5%) 111.42 (86.28–132.56)

Death No 231 (94.3%) 106.32 (83.16–130.67) 0.941

Yes 14 (5.7%) 108.65 (83.35–133.21)

Recurrent MI No 241 (98.4%) 106.18 (83.30–131.00) 0.859

Yes 4 (1.6%) 112.45 (83.75–132.93)

Heart failure No 238 (97.1%) 106.25 (83.06–130.84) 0.399

Yes 7 (2.9%) 116.15 (91.88–246.44)

Unscheduled PCI No 228 (93.1%) 106.15 (83.09–130.00) 0.364

Yes 17 (6.9%) 113.90 (95.74–134.16)

CABG No 237 (96.7%) 106.40 (83.53–131.50) 0.400

Yes 8 (3.3%) 99.89 (76.80–121.32)

Unstable angina No 244 (99.6%) 106.25 (83.23–131.16) 0.865

Yes 1 (0.4%) 112.45

Angina pectoris No 243 (99.2%) 106.32 (83.44–130.67) 0.616

Yes 2 (0.8%) 212.79 (80.26–x)

LPS is expressed as 3HM (pmol/L). p-values are given for the association between
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hypothesis about the role of LPS proinflammatory activity in

atherosclerosis development (22, 23) and MI pathogenesis (7).

However, whether low-grade endotoxemia in MI patients is

related to pre-existing metabolic conditions or acute digestive

translocation linked to an MI event remains to be determined.

Moreover, as LPS is mostly inactive in human blood, the LPS

burden is imperfectly captured by LPS activity measurement (i.e.,

an increase in activity could represent either higher translocation

or a decreased host inactivation capacity) (24). Our findings,

which suggest an increased LPS mass concentration, further

suggest an increase in gut-derived absorption rather than a

default in the inactivation process.

Endotoxemia has been shown to produce low-grade

inflammation, which is involved in the pathogenesis of obesity

(25). Lipid and carbohydrate metabolism are also associated with

endotoxemia (26). In particular, LPS absorption might occur

through chylomicron metabolism, which is closely related to

triglyceride absorption (27). Obesity is associated with

dysregulations in lipid (i.e., hypertriglyceridemia, low HDL

cholesterol, high LDL cholesterol) (28) and carbohydrate (i.e.,

hyperglycemia, hyperinsulinemia, and insulin resistance) (29)

each variable and LPS plasma concentration. p-values presented are not corrected

for multiple comparisons.
aIn-hospital MACE: CV death, recurrent MI, and HF.
b1-year MACE: CV death, recurrent MI, HF, unscheduled PCI, CABG, unstable

angina, and angina pectoris.
TABLE 4 Variables independently associated with LPS plasma concentration.

Variable Standardized
β

β 95% CI p VIF

Age, per year 0.192 0.835 0.347 to 1.322 0.001 1.179

BMI > 30 kg/m2 −0.018 −2.667 −20.081 to 14.747 0.763 1.162

HR, per log unit 0.053 29.479 −33.226 to 92.184 0.355 1.088

Diabetes 0.375 63.484 43.470 to 83.497 <0.001 1.196

TG, per g/L 0.235 11.427 5.653 to 17.201 <0.001 1.209

Total cholesterol,
per g/L

0.204 26.337 10.73 to 41.944 0.001 1.246

Glycemia >
11 mmol/L

0.100 19.148 −3.246 to 41.542 0.093 1.179

n= 238 patients; R2 = 0.308; adjusted R2 = 0.287; Durbin–Watson test: 2.048;

F-ratio = 14.650; p < 0.001. β values are regression coefficients.
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metabolism, both of which were associated with endotoxemia in

our cohort. Nevertheless, there was no association between

obesity and endotoxemia after adjustment for these confounding

conditions. Therefore, our results give new insight into the

relationship between obesity and endotoxemia by suggesting that

this association is driven by metabolic alterations. During the

acute phase of gut barrier disruption, PLTP negatively correlates

with LPS concentration, probably reflecting increased elimination

capacity (30–32). In contrast, the positive association between

PLTP activity and LPS reported here might be related to the
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increase in PLTP activity documented in patients with metabolic

syndrome (33), further suggesting the presence of metabolic

endotoxemia in our cohort. We did not observe associations

between endotoxemia and inflammation in our cohort, probably

due to the early measurement of inflammatory biomarkers

(before the peak was reached). We observed lower LPS levels in

smokers. Whereas smoking and endotoxemia have been

described as increasing the risk of incident atherosclerosis (23),

previous studies did not report an association between smoking

and increased endotoxin activity (34).

In a previous study reporting on endotoxemia attributed to gut

barrier failure in the acute phase of MI, the authors noted a peak

value for LPS activity on day 2 and associations between LPS

concentration (delta day 2− day 1) and adverse post-MI CV

events (9). In our cohort, LPS measured at admission was

associated with heart rate and shock index, suggesting a link

between LPS and hemodynamic changes in MI. LPS is known to

trigger inflammation, and these hemodynamic changes might

reflect inflammation-related vasoplegia. LPS was also correlated

to longer cardiac ICU length of stay, suggesting the clinical

consequences of acute translocation. Nevertheless, we found no

association between LPS measured at admission and post-MI

adverse events, thus suggesting that LPS concentration measured

at admission has few clinical consequences.

Some limitations need to be underlined. This was a single-center

study; therefore, our findings require external validation. There was

no sample size calculation, and some analyses might lack power. The

inflammation parameters were taken very early (at hospital

admission), and many measurements were below the threshold for

detection (probably measured before peak). As a consequence, the

relationships between LPS, vascular tone, and acute inflammation

warrant further evaluation. Repeated or daily measurements of

LPS could have provided additional information on the

translocation mechanisms in the acute phase of MI. A

combination of LPS activity and LPS mass measurement may also

have provided further insight. A comparison with patients

undergoing percutaneous coronary intervention without evidenced

atherosclerosis and with atherosclerosis but no myocardial

infarction could have provided additional information on the

respective roles of metabolic and acute endotoxemia. Describing

the reasons for patients’ ICU length of stay duration could have

provided additional interesting information. We measured the

total 3HM; thus, it is possible that part of the 3HM measured

might be derived from human metabolites. However, bacterial LPS

is the major part of total 3HM, and total 3HM is highly associated

with LPS concentration (19).

In conclusion, at admission, higher LPS levels were related to

metabolic alterations (cholesterol, triglyceride, and diabetes) and

age. They were also associated with hemodynamic modifications

(higher heart rate and shock ratio) and longer cardiac ICU

length of stay but were not associated with inflammation and

short- or long-term MACEs. Altogether, endotoxins measured at

admission in patients with MI seemed to reflect low-grade

metabolic endotoxemia due to pre-existing conditions leading to

myocardial infarction rather than acute clinical severity.

Endotoxins, therefore, do not appear to be a relevant therapeutic
Frontiers in Cardiovascular Medicine 07
target for treating acute MI, but targeting endotoxemia could

represent a promising strategy to prevent metabolic disorders

and subsequent coronary artery disease progression. However,

these findings require further confirmation.
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