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Prediction of in-hospital mortality
risk for patients with acute
ST-elevation myocardial
infarction after primary PCI based
on predictors selected by GRACE
score and two feature
selection methods
Nan Tang, Shuang Liu, Kangming Li, Qiang Zhou, Yanan Dai,
Huamei Sun, Qingdui Zhang, Ji Hao and Chunmei Qi*

Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou,
Jiangsu, China
Introduction: Accurate in-hospital mortality prediction following percutaneous
coronary intervention (PCI) is crucial for clinical decision-making. Machine
Learning (ML) and Data Mining methods have shown promise in improving
medical prognosis accuracy.
Methods: We analyzed a dataset of 4,677 patients from the Regional Vascular
Center of Primorsky Regional Clinical Hospital No. 1 in Vladivostok, collected
between 2015 and 2021. We utilized Extreme Gradient Boosting, Histogram
Gradient Boosting, Light Gradient Boosting, and Stochastic Gradient Boosting for
mortality risk prediction after primary PCI in patients with acute ST-elevation
myocardial infarction. Model selection was performed using Monte Carlo Cross-
validation. Feature selection was enhanced through Recursive Feature Elimination
(RFE) and Shapley Additive Explanations (SHAP). We further developed hybrid
models using Augmented Grey Wolf Optimizer (AGWO), Bald Eagle Search
Optimization (BES), Golden Jackal Optimizer (GJO), and Puma Optimizer (PO),
integrating features selected by these methods with the traditional GRACE score.
Results: The hybrid models demonstrated superior prediction accuracy. In
scenario (1), utilizing GRACE scale features, the Light Gradient Boosting Machine
(LGBM) and Extreme Gradient Boosting (XGB) models optimized with BES
achieved Recall values of 0.944 and 0.954, respectively. In scenarios (2) and (3),
employing SHAP and RFE-selected features, the LGB models attained Recall
values of 0.963 and 0.977, while the XGB models achieved 0.978 and 0.99.
Discussion: The study indicates that ML models, particularly the XGB optimized
with BES, can outperform the conventional GRACE score in predicting in-
hospital mortality. The hybrid models’ enhanced accuracy presents a significant
step forward in risk assessment for patients post-PCI, offering a potential
alternative to existing clinical tools. These findings underscore the potential of
ML in optimizing patient care and outcomes in cardiovascular medicine.

KEYWORDS

in-hospital mortality, percutaneous coronary intervention, ST-elevation myocardial
infarction, global registry of acute coronary events, machine learning prediction,
feature selection
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1419551&domain=pdf&date_stamp=2020-03-12
mailto:wwtgy12581@163.com
https://doi.org/10.3389/fcvm.2024.1419551
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1419551/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1419551/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1419551/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1419551/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1419551/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1419551/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1419551/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1419551
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Tang et al. 10.3389/fcvm.2024.1419551
1 Introduction

Cardiovascular disease (CVD) constitutes a dominant global

health challenge, particularly accentuated within low- and middle-

income countries (LMICs). The growing prevalence of CVD risk

factors within these regions obviously increases the burden of

mortality associated with this disease (1–3). Myocardial infarction

(MI) is a severe medical condition stemming from a sudden

reduction in blood flow to the heart, resulting in tissue damage.

Clinical manifestations typically include chest pain, shortness of

breath, and weakness (4, 5). Preventative measures mostly contain

lifestyle changes and pharmacological interventions (6). Treatment

modalities include the management of beta-blockers, diuretics,

ACE inhibitors, calcium channel blockers, and nitrates.

The effective management of ST-segment elevation myocardial

infarction (STEMI) is considered important in inpatient care, a fact

emphasized by the guidance provided in the 2012 and 2017 ESC

Guidelines. These guidelines prioritize early reperfusion therapy,

particularly through main percutaneous coronary intervention

(PCI), for optimal STEMI treatment. The diagnosis of STEMI

poses challenges due to its potential to represent conditions,

requiring careful consideration of various clinical factors during

electrocardiogram interpretation (7, 8). Furthermore, STEMI rises

as a complication of infective endocarditis, associated with a

distinguished 30-day mortality rate (9). Timely diagnosis and

immediate restoration of blood flow, preferably through primary

PCI, are key steps in reducing myocardial damage and

preventing complications following STEMI (10).

Despite the developments in PCI technologies, the in-hospital

mortality (IHM) subsequent to PCI in emergency cases persists

at a remarkably high rate. A study conducted by Moroni (11)

clarified that IHM often correlates with pre-existing serious

cardiovascular conditions, with procedural complications

attributing to a minority of cases. This suggests an imperative for

enhanced treatment modalities for severe cardiovascular

situations, particularly in addressing cardiogenic shock. However,

the utility of procalcitonin (PCT) as a prognostic indicator in

these conditions remains controversial. Covino et al. (12)

observed that early assessment of PCT in patients with intra-

abdominal infection (IAI) did not yield a significant impact on

IHM, while Dutta et al. (13) highlighted the potential of PCT

levels in predicting mortality in disapprovingly ill surgical

patients. Within the spectrum of STEMI, Dawson et al. (14)

reported a lack of substantial reduction in IHM despite changes

in technical characteristics. These findings emphasize the demand

for further research activities and targeted interventions aimed at

justifying IHM following PCI in emergency scenarios.

In contemporary clinical practice, a multitude of risk grading tools

are employed to assess the risk of IHM among patients. Notable among

these are the History, Electrocardiogram, Age, Risk factors, initial

Troponin (HEART) score, the Thrombolysis in Myocardial

Infarction (TIMI) score, and the Global Registry of Acute Coronary

Events (GRACE) score, as identified by Liu (15). Nevertheless, the

efficacy of these tools can fluctuate across diverse patient populations,

with certain instruments demonstrating suboptimal performance in

present-day practice (16). Within main care backgrounds, there is an
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observable trend toward utilizing routine healthcare data for risk

grading. However, comprehensive documentation regarding the

specific tools applied and their performance remains lacking (17).

Additionally, within the intensive care situation, there is incredulity

regarding the relevance and reliability of scales employed to measure

job stressors. This underscores the imperative for further

investigation and scholarly inquiry in this domain (18).

Regarding the GRACE scale, despite advancements in treatment

approaches, it continues to be a critical tool for evaluating the risk of

adverse outcomes in cases of serious coronary syndromes (19).

Continuous monitoring of mortality rates in coronary care

elements using the GRACE score indicates that while it generally

performs adequately, there are still areas where improvements can

be made (20). Additionally, research has shown that the GRACE

score is effective in predicting major cardiac events in patients

presenting with chest pain and suspected acute coronary syndrome

(21). Moreover, a modified version of the GRACE score, identified

as the angiographic GRACE score, has been developed and

validated as a beneficial tool for predicting IHM, specifically in

Japanese patients with acute myocardial infarction (22).

Over the past few decades, Data Mining (DM) and Machine

Learning (ML) have emerged as influential tools in medicine,

particularly in predicting and diagnosing cognitive diseases (23).

These methods have been applied to a wide variety of medical

conditions, including type 2 diabetes, hypertension, cardiovascular

disease, renal diseases, liver diseases, mental illness, and child health

(24). The usage of ML in medical informatics has seen a significant

increase, with Support Vector Machine (SVM) and Random Forest

(RF) being the most popular algorithms for classification problems

(25). However, there is no single algorithm that is universally

suitable for diagnosing or predicting diseases, and the combination

of different processes often yields the greatest results (26).

ML models have shown potential in predicting IHM following

PCI in patients with serious STEMI. Studies conducted by Li (27)

and Yang (28) employed data from the Chinese Acute Myocardial

Infarction (CAMI) registry to develop prediction models, achieving

both high performance and interpretability. Moreover, Deng (29)

applied a RF algorithm to forecast both no-reflow and IHM in

STEMI patients undergoing key PCI, demonstrating superior

discrimination. Falcao (30) identified predictors of IHM in

patients with STEMI undergoing pharmacoinvasive treatment,

including age, comorbidities, and practical success. Additionally,

Tanık (31) found that the PRECISE-DAPT score, a predictive

tool for bleeding risk, was independently associated with IHM in

STEMI patients undergoing primary PCI. Furthermore, Bai (32)

compared the performance of various ML models in predicting

1-year mortality in STEMI patients with hyperuricemia, with the

CatBoost model showing the highest accuracy. To validate the

accuracy of ML models, particularly the XGBoost model, in

predicting 1-year mortality in patients with anterior STEMI, Li

(33) conducted further research. Collectively, these studies

highlight the significant potential of ML in improving risk

prediction for STEMI patients post-PCI, offering valuable

insights into prognosis and treatment strategies. However, there

is a gap in existing literature related to ML prediction model

development based on imperative features of patients rather than
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those four parameters leading to GRACE score development. Also,

integrating currently developed optimization algorithms for

enhanced prediction accuracy by hybrid and ensemble

approaches are the innovative methods which their absence is

strongly felt in the literature review.

This study aims to introduce a new approach to investigate the

risk factors contributing to IHM in patients with MI following

PCI, applying advanced ML techniques. The research methodology

involved gathering datasets related to various features of patients to

assess their impact on the mortality risk of patients utilizing

classifiers like Extreme Gradient Boosting (XGB), Light Gradient

Boosting (LGB), Stochastic Gradient Boosting (SGB), and

Histogram Gradient Boosting (HGB). Monte Carlo Cross-

Validation (MCCV) was used to select the best prediction models

based on their Accuracy. Techniques, for instance, Recursive

Feature Elimination (RFE) and Shapley Additive Explanations

(SHAP), were employed to identify important features for

classification. Three different scenarios were designed to predict

the risk of IHM within 30 days to provide clinicians with an

estimate of patient survivability or mortality likelihood pre-

treatment. The first scenario studies the efficacy of the traditional

GRACE scale system (including Age, patient age, heart rate (HR),

systolic blood pressure (SBP), and acute heart failure (AHF) class),

widely entrenched within hospital protocols. The second and third

scenarios employ a subclass of features selected via the Shapley

Additive explanations (SHAP) and Recursive Feature Elimination

(RFE) methods, respectively. All analysis conducted in Python

programming software. By comparing the prediction performance

of base single models and their hybrid framework (optimized with

meta-heuristic algorithms such as Augmented Gray Wolf

Optimizer (AGWO), Bald Eagle Search Optimization (BES),

Golden Jackal Optimizer (GJO), and Puma Optimizer (PO))
FIGURE 1

Boosting approach in ML.

Frontiers in Cardiovascular Medicine 03
utilizing these scenarios, the study aims to give valuable insights to

enhance risk assessment strategies and patient care paradigms for

MI patients undergoing PCI intervention.
2 Classification and model selection
based on machine learning techniques

The boosting approach involves utilizing a “weak” or “base”

learning algorithm repeatedly, each time with a different subset of

training examples (or a varied distribution or weighting over the

examples). In each iteration, the base learning algorithm generates

a new weak prediction rule. After numerous rounds, the boosting

algorithm combines these weak rules into a single prediction rule,

aiming for a substantially improved level of accuracy compared to

any individual weak rule (Figure 1). This iterative process

enhances the overall predictive power of the model (34).
2.1 Extreme Gradient Boost (XGB)

The Extreme Gradient Boost Classifier (XGBC) represents a

sophisticated implementation of the gradient boosting technique,

employing an ensemble approach to combine multiple sets of

base learners (trees) to establish a strong model capable of

making significant predictions (35). XGBC offers various

advantages, including the ability to leverage parallel processing

for improved computational efficiency, providing flexibility in

setting objectives, incorporating built-in cross-validation, and

effectively addressing splits in the presence of negative loss. With

these advantages, XGBC emerges as a highly suitable choice for

analyzing classification data. Applying a tree-based methodology,
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XGBC constructs decision trees to classify training data, facilitating

the achievement of specific target outcomes (36).

The gradient boosting procedure encompasses the subsequent

sequential steps:

• The initialization of the boosting algorithm involves the

description of the function F0(x) (Equation 1):

F0(x) ¼ argmin
Xn
i�1

L(yi, ) (1)

• The iterative calculation includes the derivation of the gradient

of the loss function (Equation 2):

rim ¼ �a
@(L(yi, F(Xi)))

@F(xi)

� �
F(X)¼Fm�1(x)

(2)
Where α is the learning rate.

• Subsequently, each hm(x) is fitted based on the gradient

developed at each iterative step:

• The purpose of the multiplicative factor ym for each terminal

node is executed, and subsequently, the boosted model Fm(x)

is formulated (Equation 3):

Fm(x) ¼ Fm�1(x)þ m hm(x) (3)
2.2 Light Gradient Boosting (LGB)

LGB is a rapid training outline that blends decision tree

algorithms with boosting methods. It prioritizes speed, using

histogram-based techniques to accelerate training and conserve

memory (37). Different from traditional trees, LGB employs leaf-

wise tree growth, efficiently identifying high-branching gain

leaves to optimize performance (38, 39).

The calculation procedures of LGB, delineated step by step

in (40), involve finding a projected function f̂ (x) that

approximates the function f �(x) based on the given training

dataset X ¼ {( xi, yi )}
m
i¼1. The primary objective is to minimize

the expected values of specific loss functions, signified as

L(y, f (x)) (Equation 4).

f̂ (x) argmin
f

Ey,x L(y, f (x)) (4)

In the process of approximating the final model, LGB will integrate

a combination of multiple regression trees, represented as
PT
t¼1

ft(x)

(Equation 5).

fT (X) ¼
XT
t¼1

ft(X) (5)
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The regression trees signified as wq (x), q [ {1, 2, . . . , N },

denote decision rules, where N is the number of leaves in each

tree. q signifies the decision rule, and w is a vector representing

the weights of the leaf nodes. The model is incrementally trained

at step t in an additive manner.

Gt ffi
XN
j¼1

L(yi, Ft�1(xi)þ ft(xi)) (6)

The Newton’s method is employed to rapidly estimate the

objective function, and (Equation 6) is simplified by eliminating

the constant term:

Gt ffi
XN
j¼1

(gift(xi)þ 1
2
hif

2
t (xi)) (7)

In the given equation, gi and hi denote the first- and second-order

gradient statistics of the loss functions. If the sample set for leaf j is

denoted as Ij, then (Equation 7) can be transformed into (Equation 8):

Gt ¼
XJ
j¼1

((
X
ieIj

gi)vj þ 1
2
(
X
ieIj

hi þ l)v2
j ) (8)

Equations 9, 10 are employed to calculate the optimal leaf weights

v�
j and the extreme values of GK concerning the tree structure q(x):

v�
j ¼�

P
ieIj

giP
ieIj hi þ l

(9)

G�
T¼� 1

2

XJ
j¼1

(
P

ieIj gi)
2P

ieIj
hi þ l

(10)

The term v�
j signifies the weight function assessing the effectiveness

of the tree structure q(x). Ultimately, the objective function is derived

by consolidating the splits.

G ¼ 1
2

(
P

ieIl
gi)

2P
ieIl

hi þ l
þ (

P
ieIr

gi)
2P

ieIr
hi þ l

þ (
P

ieI gi)
2P

ieI hi þ l

 !
(11)

The objective function is defined as the sum of the splits with Il
and Ir representing the samples in the left and right branches,

respectively (Equation 11).
2.3 Histogram-based Gradient
Boosting (HGB)

Histograms are valuable tools for visualizing data distribution

and frequency, especially with repetitive data. Grouping input

data into bins, as in histograms, enhances model flexibility.

Combining histogram-based methods with gradient boosting
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leads to strong ML ensembles, yielding high-performance models

(41). HGBoost employs numeral-based data structures like

histograms instead of sorted continuous values during tree-

building, enabling it to capture complex nonlinear relationships

in datasets effectively. This integration of gradient boosting with

histogram-based techniques allows HGBoost to excel in modeling

and optimizing feature connections (42).

Histogram-based Gradient Boosting Classification (HGBC)

represents a difficult iteration of gradient boosting, employing

decision trees as fundamental models and leveraging histograms

to achieve outstanding improvements in computational efficiency.

Observed remarks show that this methodology yields superior

outcomes, diminishes ensemble size, and expedites inference,

rendering it an attractive proposition for tackling intricate

datasets within academic investigations (43).
2.4 Stochastic Gradient Boosting
Machines (SGB)

Friedman (44) proposed Stochastic Gradient Boosting

Machines (SGB), a method extensively employed in both

classification and regression tasks. Decision stumps or regression

trees serve as common choices for weak classifiers within SGB.

The main aim of SGB is to train weak learners to minimize

loss functions, such as mean square errors, with subsequent

weak learners benefiting from the residuals of preceding ones

for training.

Consequently, there is a reduction in the value of the loss

function for the present weak learners. Employing the bagging

technique serves to mitigate correlation among these learners,

with each undergoing training on subsets sampled without

replacement from the entirety of the dataset. The final prediction

is then derived through the amalgamation of predictions

generated by this cohort of weak learners (45).
2.5 Monte-Carlo cross-validation (MCCV)
for model selection

Numerous methods, such as the Akaike information criterion

(46) and Cp statistics (47), tackle the task of model selection.

Nevertheless, cross validation (CV) emerges as a standout

approach (48–51), arranging a predictive perspective in this

process. In CV, upon selecting a model (a), the n samples

(referred to as S) undergo a division.

The initial component, identified as the calibration set (Sc),

consists of nc samples applied for fitting the model, represented

by the submatrix XaSc and sub-vector YSc . The subsequent

section termed the validation set (Sv), comprises nv ¼ n� nc
samples dedicated to model validation, depicted by the submatrix

XaSv and sub-vector YSv . This arrangement leads to a total of

n
nv

� �
possible sample divisions. In each division, the model is

fitted using the nc samples from the standardization set Sc,

resulting in the estimation b̂aSc . Treating the samples in the
Frontiers in Cardiovascular Medicine 05
validation set as if they were future data points, the fitted model

predicts the response vector ySv (Equation 12).

ŷaSv ¼ Xt
aSv b̂aSc (12)

The Accuracy across all samples in the validation set is considered

by (Equation 13):

Accuracy(Sv , a) ¼ 1
nv

jjySv � ŷaSv jj2 (13)

The formula involves calculating the Euclidean normof a vector within

a framework where a set S is comprised of elements from various

validation sets, each corresponding to different sample splits denoted

as
n
nv

� �
. In this framework, the CV standard is defined by

excluding a specific number of samples nv for validation, providing a

method for systematically evaluating models on subsets of data.

CVnv (a) ¼
P

Sv[S Accuracy(Sv , a)

n
nv

� � (14)

For each a [ R, the computation of CVnv (a) is conducted.

(Equation 14) serves as an estimate for Accuracy within the

constraints of finite samples. The CV criterion is focused on

identifying the optimal a� that maximizes values across all CVnv (a)

for a [ R. As a result, the model is characterized by variables

indexed by the integers in a� is chosen.
The widely used leave-one-out Cross-Validation (LOO-CV),

where nv ¼ 1, is extensively applied in chemometrics. However,

research findings have shown that models selected through LOO-

CV can be inaccurately asymptotic. Although LOO-CV can

choose a model with a bias ba ¼ 0 that approaches infinity

encompassing all non-zero elements in ba, it tends to include

unnecessary additional variables in the model (52). This suggests

that the model’s dimension Pa is not optimally concise,

potentially leading to overfitting concerns.

It has been established that, in general, CV, under the

conditions nc ! 1 and nv=n ! 1 (53), the likelihood of

selecting the model with the best predictive capability tends

toward unity when nv samples are reserved for validation.

Consequently, the CVnv (a) benchmark (Equation 14) shows

asymptotic consistency. Yet, practically computing CVnv with a

large nv is infeasible due to its exponential computational

complexity. To tackle this issue, MCCV offers a simple and

efficient solution. For a given α, the samples are randomly split

into two sets: Sc(i) (of size nc) and Sv(i) (of size nv). This

process is repeated N times, defining the repeated MCCV

criterion as follows (Equation 15):

MCCVnv (a) ¼
1

Nnv

XN
i¼1

kySv(i) � ŷaSv(i)k2 (15)
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Employing the Monte Carlo method greatly decreases computational

complexity. Theoretically, decreasing the number of samples for

model calibration requires increasing the number of repetitions.

Typically, it is deemed adequate to set N ¼ n2 to ensure that

MCCVnv achieves similar performance to traditional CVnv (54).

In this study, 70% of the samples were considered for the fitting

(training) of the prediction models, 30% were allocated for the

validation process (testing), and finally, two LGBM and XGBC

models with an accuracy of 0.97 and 0.98 have been selected,

and in the following, only these two models will be examined in

their hybrid version.
3 Detailed data assessment

3.1 Data description and preprocessing

The study used data from patients treated at the Regional

Vascular Center of Primorsky Regional Clinical Hospital in

Vladivostok from 2015 to 2021. Patients were selected for

inclusion in the STEMI and PCI study based on criteria confirmed

upon their admission to the hospital. Exclusion criteria comprised

non-ST elevation myocardial infarction, unconfirmed STEMI, or

the absence of an indication for PCI. Finally, 4,677 patients were

included in the study, from which 4,359 patients were in the

“Alive” group who did not die within 30 days of the study after

PCI, and 318 patients were in the “Die” group who died in

hospital. The “Die” group comprised patients who passed away at

any point during these 30 days, including those who did not

survive to undergo post-PCI assessments. Conversely, the “Alive”

group consisted of patients who survived the entire 30-day period

and were monitored in the hospital throughout. It is important to

note that patients with missing data were excluded from the

dataset of those patients with no risk of death due to the

abundance of information (the number of samples decreased to

2,709). For 318 patients who experienced IHM after PCI, the

Multiple Imputation by Chained Equations (MICE) method was

used to handle missing data. MICE achieves multiple imputation

by creating multiple complete datasets, analyzing each dataset

separately, and then combining the results to reduce the bias that

a single imputation method might introduce (55). This method

fully considers the uncertainty of the data when dealing with

missing data, especially suitable for the complex multivariate data

structure in this study. Compared with single imputation, MICE

can provide more reliable statistical inference when dealing with a

large amount of missing data. Ultimately, a cleaned dataset of

3,027 patients with 41 features, as described below in related

categories, was chosen for the prediction task:

3.1.1 Cardiovascular parameters
SPAP (Systolic Pulmonary Arterial Pressure), LVRMI (Left

Ventricular Regional Motion Index), EF LV (Left Ventricular

Ejection Fraction), ESV (End-Systolic Volume), LVRWTI (Left

Ventricular Relative Wall Thickness Index), La1 (Left Atrial

Diameter), Ra2 (Right Atrial Diameter), Ra1 (Right Atrium

Pressure), PI (Pulsatility Index), EDV (End-Diastolic Volume),
Frontiers in Cardiovascular Medicine 06
La2 (Left Atrial Pressure), SBP (Systolic Blood Pressure), DBP

(Diastolic Blood Pressure).

3.1.2 Blood parameters
NEUT (Neutrophils), EOS (Eosinophils), WBC (White Blood

Cell count), Hb (Hemoglobin), RBC (Red Blood Cell count), PLT

(Platelet count), LYM (Lymphocyte count).

3.1.3 Coagulation parameters
TT (Thrombin Time), INR (International Normalized Ratio),

APTT (Activated Partial Thromboplastin Time), PCT (Plateletcrit).

3.1.4 Metabolic parameters
Urea [Blood Urea Nitrogen (BUN)], Glu (Glucose), Cr

(Creatinine).

3.1.5 Anthropometric parameters
Age (Patient’s Age), Weight (Patient’s Weight), Height

(Patient’s Height), BMI (Body Mass Index).

3.1.6 Diagnostic parameters
Killip class [Killip Classification (classification of heart failure

severity)], Form STEMI (STEMI Diagnosis), CKD (chronic

kidney disease), AFib (Atrial Fibrillation), Diabetes (Diabetes

Mellitus), COPD (Chronic Obstructive Pulmonary Disease), aMI

(Acute Myocardial Infarction) And Sex (Patient’s Gender).
3.2 Feature selection

3.2.1 Shapley Additive Explanations (SHAP)
SHAP, a method for attributing features additively, draws from

both game theory and local explanations (56). The Shapley value

has gained popularity as a method for providing interpretable

feature attribution in ML models (57). SHAP simplifies inputs by

transforming the original inputs x into a simplified representation z

through a mapping function x ¼ hx(z). This simplification enables

the approximation of the original model f (x) using a linear

function of binary variables based on z (Equation 16):

f (x) ¼ g(z) ¼ w0 þ
XM
i¼1

wizi (16)

z is a binary vector with M elements representing input

features, w0 denotes the attribution value of the model when z is

all zeros, calculated as f (hx(0)), and wi represents the attribution

value of the ith feature (Equations 17, 18).

wi ¼
X

S[F={i}

jSj!(M � jSj!� 1)!
M!

[ fx(S< {i})� fx(s)] (17)

fx(S) ¼ f (h�1
x (Z)) ¼ E[ f (x)jxs] (18)

SHAP stands out due to its three core properties: local

accuracy, consistency, and proficiency in handling missing data.
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1419551
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Tang et al. 10.3389/fcvm.2024.1419551
It uses the SHAP value wi as a unified metric for additive feature

attributions. In the SHAP framework, F represents the subset of

non-zero inputs in z, while S indicates the subset of F obtained

by excluding the ith feature (58). Known for its model-agnostic

nature, SHAP shows impressive adaptability across various ML

and DL models, effectively determining the relative importance

of individual input features within additive feature attribution

methodologies (59). Table 1 reports SHAP values obtained for

each feature in the dataset based on each base models and

selected features.

Figure 2 illustrates the features identified by the SHAP method

for the LGB model, while Figure 3 shows the selected features for

the XGB model. In the LGB model, ten features were recognized

as essential factors in modeling and forecasting, while the XGB

model identified 13 features. After a comprehensive examination
TABLE 1 SHAP values and selected features from the dataset based on each

NO Parameter SHAP values (LGB) Selected feature
1 Sex 0.007

2 Age 0.135

3 Height 0.070

4 Weight 0.073

5 BMI 0.106

6 SBP 0.041

7 DBP 0.100

8 PBP 0.052

9 HR 0.291 ✓

10 Cr 0.088

11 Killip class 0.147

12 EF LV 0.216 ✓

13 EDV 0.068

14 ESV 0.135

15 LVRWTI 0.087

16 LVRMI 0.328 ✓

17 SPAP 0.419 ✓

18 La1 0.082

19 La2 0.064

20 Ra1 0.080

21 Ra2 0.081

22 WBC 0.151

23 NEUT 0.669 ✓

24 LYM 0.051

25 EOS 0.345 ✓

26 RBC 0.117

27 Hb 0.138

28 PLT 0.085

29 Glu 0.452 ✓

30 Urea 0.481 ✓

31 PCT 0.064

32 PI 0.080

33 INR 0.532 ✓

34 TT 0.554 ✓

35 APTT 0.067

36 Form STEMI 0.033

37 AFib 0.021

38 Diabetes 0.007

39 CKD 0.024

40 aMI 0.004

41 COPD 0.006
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of the relationships, it becomes apparent that the correlation

between systolic pulmonary arterial pressure and heart rate,

along with the correlation between neutrophils and glucose, is

direct. Conversely, the relationship between neutrophils and

eosinophils shows an inverse trend.

3.2.2 Recursive Feature Elimination (RFE)
The Recursive Feature Elimination (RFE) selection method

(60) fundamentally operates through a recursive procedure

wherein features are systematically ranked based on a specified

measure of their significance.

A feature ranking criterion that performs well for individual

features may not be suitable for assessing feature subsets

effectively. Metrics such as Dj(i) or (wi)
2 measure the impact of

removing single features on the objective function but may
base model (scenario 2).

s (LGB) SHAP values (XGB) Selected features (XGB)
0.026

0.217

0.176

0.205

0.181

0.091

0.146

0.090

0.445 ✓

0.189

0.259 ✓

0.305 ✓

0.102

0.150

0.149

0.570 ✓

0.493 ✓

0.159

0.111

0.130

0.147

0.283 ✓

0.886 ✓

0.117

0.436 ✓

0.259

0.209

0.118

0.574 ✓

0.651 ✓

0.086

0.152

0.684 ✓

0.569 ✓

0.179

0.052

0.025

0.025

0.084

0.000

0.005
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FIGURE 2

Feature selection and SHAP analysis for LGB.
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struggle when removing multiple features simultaneously, which is

crucial for obtaining a concise subset. To overcome this limitation,

RFE employs an iterative approach to systematically remove the

least relevant features in each iteration. RFE considers potential

changes in feature importance across various feature subsets,

particularly for highly correlated features. The order of feature

elimination determines the final ranking, and the top n features

are selected from this ranking for the feature selection process

(61). Train the classifier, compute the ranking criterion for

all features, and then remove the feature with the smallest

ranking criterion.

When features are eliminated one by one, they are

correspondingly ranked. However, the features ranked highest

(eliminated last) may not necessarily be individually the most

relevant. The optimal subset is determined by considering

features collectively rather than individually. It is important to

note that RFE does not affect correlation methods, as the ranking

criterion is computed based solely on information from

individual features. Table 2 reports the RFE ranking obtained for

each feature in the dataset based on each base models and

selected features.
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The features selected using RFE for the LGB and XGB models

are visually depicted in Figures 4, 5, respectively. The selected

features consist of 6 parameters for the LGB model and 8 for

the XGB model. Upon scrutiny of the presented matrix, it

becomes apparent that the left ventricular regional motion

index and the left ventricular relative wall thickness index, both

cardiovascular parameters, display a direct relationship with

each other. Additionally, it is remarkable that neutrophils

demonstrate a strong correlation with heart rate, systolic

pulmonary arterial pressure, and Killip classification.

Conversely, thrombin time shows no significant relationship

with other selected parameters.

In this study, NEUT, TT, BUN, Glu, and SPAP were identified as

key factors for the risk of IHM after PCI in patients with STEMI

through the above-mentioned feature selection methods. NEUT

play a central role in infection and inflammation, and their high

levels in MI may indicate inflammatory processes associated with

myocardial damage (62). Inflammation not only promotes

atherosclerosis but may also lead to plaque rupture, increasing the

risk of cardiac events (63). TT is an indicator for assessing the

coagulation cascade, and its prolongation may suggest abnormal
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FIGURE 3

Feature selection and SHAP analysis for XGB.
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coagulation factor activity, increasing the risk of thrombosis after

myocardial infarction (64). Additionally, prolonged TT may be

associated with the use of anticoagulant drugs, which is common

in the management of heart diseases. BUN reflects renal

insufficiency in heart diseases, which may affect fluid and

electrolyte balance, activate the renin-angiotensin-aldosterone

system, leading to increased blood pressure and cardiac load,

affecting cardiac function and clinical outcomes (65). High blood

glucose is an independent risk factor for cardiovascular diseases,

and chronic hyperglycemia promotes oxidative stress and

inflammatory responses, leading to abnormal vascular endothelial

function and accelerated atherosclerosis, exacerbating myocardial

injury and the risk of cardiovascular events (66). Elevated SPAP is

associated with changes in cardiac structure and function, and

after myocardial infarction, it may indicate increased right

ventricular load, leading to dysfunction, affecting the heart’s

pumping ability, increasing the risk of heart failure and death (67).

These characteristics affect patient outcomes through various

biological pathways, and a deeper understanding of these

mechanisms can help better understand the disease development

process and develop targeted treatment strategies.
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4 Optimization methods

In this study, we combined four metaheuristic algorithms: the

Augmented Grey Wolf Optimizer (AGWO), Bald Eagle Search

Optimization (BES), Golden Jackal Optimizer (GJO), and Puma

Optimizer (PO). These algorithms, each mimicking unique

behaviors in nature, possess different search strategies that

effectively avoid local optima and demonstrate efficient search

capabilities and robustness in complex decision spaces. To

optimize model performance, we employed grid search and

cross-validation methods to fine-tune hyperparameters. Grid

search systematically iterates through predefined hyperparameter

values and evaluates each combination using cross-validation.

Cross-validation divides the dataset into multiple subsets, using

one subset as a test set and the rest as training sets, to assess the

model’s generalization ability. This study specifically utilized the

Monte Carlo Cross-Validation (MCCV) method, which evaluates

the performance of optimizers under different hyperparameter

settings through random sampling to determine the optimal

parameter combination, thereby maximizing the model’s

predictive accuracy.
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TABLE 2 RFE ranking and selected features from the dataset based on each base model (scenario 3).

NO Parameter RFE ranking (LGB) Selected features (LGB) RFE ranking (XGB) Selected features (XGB)
1 Sex 39 39

2 Age 25 23

3 Height 26 34

4 Weight 28 30

5 BMI 4 ✓ 38

6 SBP 24 35

7 DBP 34 16

8 PBP 33 31

9 HR 13 8 ✓

10 Cr 15 17

11 Killip class 30 7 ✓

12 EF LV 14 14

13 EDV 27 15

14 ESV 20 13

15 LVRWTI 1 ✓ 25

16 LVRMI 2 ✓ 11

17 SPAP 8 6 ✓

18 La1 22 10

19 La2 31 19

20 Ra1 32 24

21 Ra2 11 12

22 WBC 9 20

23 NEUT 6 ✓ 1 ✓

24 LYM 17 26

25 EOS 23 5 ✓

26 RBC 18 22

27 Hb 10 21

28 PLT 16 36

29 Glu 3 ✓ 9

30 Urea 7 4 ✓

31 PCT 29 29

32 PI 19 32

33 INR 12 2 ✓

34 TT 5 ✓ 3 ✓

35 APTT 21 37

36 Form STEMI 37 28

37 AFib 35 27

38 Diabetes 38 33

39 CKD 36 40

40 aMI 40 41

41 COPD 41 18

Tang et al. 10.3389/fcvm.2024.1419551
4.1 Augmented Grey Wolf
Optimizer (AGWO)

The AGWO algorithm emphasizes the search parameter (A),

fluctuating the global Grey Wolf Optimization (GWO). It

matches gray wolves’ hunting behavior, where a leader, a, directs

the pack, supported by secondary wolves, b, aiding in decision-

making. a represents the estimated outcomes targeted at

resolving the research issue (68). The hunting process is

categorized into four different sections as follows (69):

4.1.1 Foraging for prey
Exploring prey locations is enabled through the divergence of

search agents, a condition satisfied when jAj surpasses

1. Parameter A, essential in balancing exploration and
Frontiers in Cardiovascular Medicine 10
exploitation, is primarily contingent upon parameter a as

described in (Equation 19):

~a ¼ 2� cos(rand)� t=Max iter (19)

~A ¼ 2�~a:r1
!�~a (20)

~C ¼ 2:r2
! (21)

The parameter a randomly and nonlinearly transitions from 2 to

1 as the iteration (t) increases, while r1 and r2 represent

consistently dispersed random vectors ranging between 0 and 1

(Equations 20, 21). This process continues until it reaches the

maximum iteration.
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FIGURE 4

Feature selection and RFE analysis for LGB.

Algorithm 1 Pseudocode outlining the AGWO.

Initialize population of grey wolves randomly
Estimate the fitness of each wolf in the population
Repeat until stopping standards are met:
Update a and b positions based on fitness
Renew other wolves’ positions based on a and b positions
Apply search operator to explore new solutions
Assess the fitness of new solutions
Update a and b positions if necessary

Return the best solution found

Tang et al. 10.3389/fcvm.2024.1419551
4.1.2 Surrounding the prey
The mathematical formulation relating to the encirclement of

prey is described as follows (Equations 22, 23):

~D ¼ j~C:Xpi
�!� Xi

!j (22)

Xiþ1
��! ¼ Xpi �~A:~D (23)

X represents the vector indicating the location of the grey wolf,

while Xp signifies the vector demonstrating the location of the prey.

4.1.3 Hunting and tracking
In the proposed AGWO algorithm (Algorithm 1), the strategy

for hunting is determined exclusively by the parameters a and b,

which are defined in (Equations 24–26).

Da
�! ¼ j C1

�!
: Xai
�!� Xi

!j, Db
�! ¼ j C2

�!
:Xbi
�!� Xi

!j (24)

X1
�! ¼ Xai

�!� A1
�!

: Da
�!

, X2
�! ¼ Xbi

�!� A2
�!

:Db
�!

(25)

X1þi
��! ¼ X1

�!þ X2
�!

=2 (26)
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4.1.4 Attacking the Pre
The coordinated efforts of search agents may aid in the process

of preying on a target; this investigation is conducted when the

magnitude of set A is less than one.
4.2 Bald Eagle Search Optimization (BES)

Alsattar et al. introduced the Bald Eagle Search (BES)

algorithm, drawing inspiration from the discerning hunting

strategy observed in bald eagles (70). This algorithm is arranged

around three sequential phases reflective of the bald eagle’s
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FIGURE 5

Feature selection and RFE analysis for XGB.
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hunting behavior. Initially, the algorithm identifies spatial domains

characterized by a delicate presence of potential targets.

Subsequently, within these delineated spaces, extensive

exploration is conducted to determine optimal solutions. Finally,

similar to the decisive swooping action of the bald eagle, the

algorithm strategically converges towards superior solutions (71).

Through this emulation of the bald eagle’s hunting strategy, the

BES algorithm demonstrates a deliberate and efficient approach

to optimization problem-solving (72).

4.2.1 Space selection stage
During this phase, bald eagles strive to select a search area

abundant with food, aiming for optimal conditions. Here is the

mathematical representation of this stage (Equation 27):

Xnew,i ¼ Xbest þ b�r(Xmean � Xi) (27)

b control’s location changes; r is a random number between 0

and 1. Xnew,i is a new position, Xbest is the best position found,

Xmean is the average position of all eagles and Xi is the current

eagle’s position.
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4.2.2 Searching-in-space stage
During this stage, the bald eagle conducts a methodical search

across various directions within the designated space to locate

potential prey. It strategically assesses optimal hunting positions

and plans its swooping maneuvers accordingly. This stage can be

succinctly described in mathematical terms as (Equations 28–34):

Xnew,i ¼ Xi þ f (i)�(Xi � Xiþ1)þ g(i)�(Xi � Xmean) (28)

g(i) ¼ gr(i)
(maxjgrj) (29)

f (i) ¼ fr(i)
(maxjfrj) (30)

gr(i) ¼ r(i): sin (w(i)) (31)

fr(i) ¼ r(i): cos (w(i)) (32)

w(i) ¼ b: p:rand (33)

r(i) ¼ w(i)þ S:rand (34)

S quantifies the total number of search attempts, while b

denotes the angle delineating the direction of the search. The
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term rand encompasses a numerical value within the inclusive

range of 0 to 1.

4.2.3 Swooping stage
In the final phase, each bald eagle begins a swinging motion from

a superior location toward its predefined prey. The mathematical

definition of this behavior in this phase is presented as follows

(Equations 35–41):

Xnew,i ¼ rand: Xbest þ g1(i):(Xi � B1: Xmean)

þ f1(i):(Xi � B2: Xbest) (35)

g1(i) ¼ gr(i)
(maxjgrj) (36)

f1(i) ¼ fr(i)
(maxjfrj) (37)

gr(i) ¼ r(i): sin (w(i)) (38)

fr(i) ¼ r(i): cos (w(i)) (39)

w(i) ¼ b: p:rand (40)

r(i) ¼ w(i) (41)

B1, B2e[1, 2]

.

The comprehensive depiction of the BES algorithm is accessible

through the subsequent pseudocode (Algorithm 2), and the

flowchart of BES is illustrated in Figure 6.
Algorithm 2 Pseudocode outlining the Bald Eagle Search Optimization.

Randomly assign initial values: Xi for n points.
Determine the fitness values of the initial points: f (Xi)
While (until the termination criteria are met)

Selecting Space
For (every individual i within the population)
Xnew ¼ Xbest þ b�r(Xmean � Xi)

If f (Xnew) , f (Xi)
Xi ¼ Xnew

If f (Xnew) , f (Xbest)
.Xbest ¼ Xnew

End If
End If

End For
Searching in Space
For (each individual denoted as i within the population)
Xnew ¼ Xi þ f (i)�(Xi � Xiþ1)þ g(i)�(Xi � Xmean)

If f (Xnew) , f (Xi)
.Xi ¼ Xnew

If f (Xnew) , f (Xbest)
.Xbest ¼ Xnew

End If
End If

End For
Swooping and Descending
For (each member i among the population)
.Xnew ¼ rand: Xbest þ g1(i):(Xi � B1: Xmean)þ f1(i):(Xi � B2: Xbest)

If f (Xnew) , f (Xi)
.Xi ¼ Xnew

If f (Xnew) , f (Xbest)
.Xbest ¼ Xnew

End If
End If

End For
Set k ¼ kþ 1

End While
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4.3 Golden Jackal Optimizer (GJO)

The Golden Jackal Optimizer (GJO) represents a recent

advancement in swarm-based optimization methodologies

strategically developed to optimize diverse engineering systems

and processes (73). Drawing inspiration from the collaborative

hunting tactics observed in golden jackals, the GJO includes

three important subprocesses: Prey Exploration, Surrounding, and

Attacking (74, 75). Within this section, the mathematical

formulation of the GJO is clarified.

At the beginning of the optimization process, the generation of

a set of prey location matrices is initiated, achieved via the

randomization method described in (Equation 42):

Y1,1 � � � Y1,j � � � Y1,n

Y2,1 � � � Y2,j � � � Y2,n

� � �
..
.

YN�1,1

YN ,1

� � �
..
.

� � �
� � �

� � � � � � � � �
..
.

..

. ..
.

YN�1,j � � � YN�1,n

YN ,j � � � YN ,n

2
66666664

3
77777775

(42)

The method that the golden jackal hunts, where the E value is

greater than 1, is illustrated numerically. N is the number

of prey populations at this stage, and n is the total number

of variables.

Y1(t) ¼ YM(t)� E:jYM(t)� rl:prey(t)j (43)

Y2(t) ¼ YFM(t)� E:jYFM(t)� rl:prey(t)j (44)

In the given equation, t represents the iteration number, YM(t) and

YFM(t) denote the positions of male and female golden jackals,

respectively, while prey(t) represents the prey’s position vector. The

updated positions of the golden jackals are Y1(t) and Y2(t),

respectively. The variable E signifies the prey’s evading energy,

calculated using a specific formula (Equations 45, 46):

E ¼ E1:E0 (45)

E1 ¼ c1: 1� t
T

� �� �
(46)

The equation assesses the ability of prey to avoid predators,

considering several aspects. Firstly, a random value within

the range of −1 to 1, denoted as E0, represents the prey’s

starting energy level. The parameter T signifies the

maximum number of iterations, while c1 is a constant value

typically set to 1.5. E1 indicates how quickly the prey’s

energy decreases over time.(Equations 47, 48) apply the

distance between the golden jackal and the prey, expressed

as jYM(t)� rl:prey(t)j, where rl denotes a vector of random
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FIGURE 6

The flowchart of BES.
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numbers resulting from the Levy flight function.

rl ¼ 0:05:LF(y) (47)

LF(y) ¼ 0:01� (m� s)=(jv(1=b)j),

s ¼ G(1þ b)� sin(pb=2)

G
1þ b

2

� �
� b� (2b�1)

8>><
>>:

9>>=
>>;

(48)
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The calculation uses random values for u and v that fall

between 0 and 1, and it also includes a constant b that is

often set to 1.5 by default.

Y(t þ 1) ¼ Y1(t)þ Y2(t)
2

(49)

The formula calculates the prey’s updated location, Y(t þ 1),

based on the positions of the male and female golden jackals.
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The reduced capability of the prey to evade emerges when it

faces violence from the golden jackals. This mathematical

expression illustrates a decline in evading energy when jEj is less

than or equal to 1.

Y1(t) ¼ YM(t)� E:jrl:YM(t)� prey(t)j (50)

Y2(t) ¼ YFM(t)� E:jrl:YFM(t)� rl:prey(t)j (51)

The comprehensive depiction of the GJO algorithm is outlined in

the pseudocode provided below (Algorithm 3) and Figure 7

illustrates the flowchart of GJO.
Algorithm 3 Pseudocode delineation of the Golden Jackal Optimizer.

Inputs: The population size N and maximum number of iterations T
Outputs: The position of the prey and its corresponding fitness value
Initiate the random population of prey denoted as Yi for i ¼ 1, 2, : : : , N
While (t , T)
Compute the fitness values of the prey
Y1 = determine the best position of the male jackal among the prey individuals
Y2 = identify the second-best position of the female jackal among the prey

individuals
For (each member of the prey population)
Modify the evading energy E in accordance with (Equations 47, 49)
Adjust the variable rl by applying (Equations 49, 50)

If (jEj � 1) (Exploration Stage)
Refine the prey’s location in space via the use of (Equations 43, 44, 49).
If (jEj . 1) (Exploitation Stage)
Adjust the prey’s position based on (Equations 49–51).

End For
. t ¼ t þ 1
End While

Return Y1
4.4 Puma optimizer (PO)

The Puma algorithm was subjected to review by Abdollah

Zadeh et al. (76), and its description is as follows:

4.4.1 Inspiration
The Puma, also called cougar or mountain lion, is a large

American feline found across a vast range from the Andes to

Canada. It is known for its adaptability, nocturnal nature,

and ambush hunting style, preying on deer, rodents, and

occasionally domestic animals (77–79). Pumas prefer dense

scrub and rocky habitats, establish large territories, and

display typical territorial behavior (80). They typically capture

large prey every two weeks, relocating it for feeding over

several days. Pumas are solitary, except for mothers and cubs,

and rarely encounter each other except to share prey or

in small communities centered around a dominant

male’s territory (81).

4.4.2 Mathematical representation
This section presents the PO algorithm, which draws

inspiration from the hunting behaviors of pumas. Different

from conventional meta-heuristic optimizers, PO introduces a

unique mechanism for transitioning between the exploration
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and exploitation phases. It conceptualizes the best solution as a

male puma and views the entire optimization space as a

puma’s territory, with other solutions representing female

pumas. Purposeful and intelligent phase selection guides

solutions through exploration or exploitation in each

iteration. Drawing from puma behavior, diverse optimization

approaches are employed in each phase, enhancing the

algorithm’s efficiency.
4.4.2.1 Puma-inspired intelligence (phase transition
mechanism)
The algorithm, inspired by puma behavior, features an

exploitation phase for revisiting known hunting grounds and

an exploration phase for discovering new territories. It

incorporates a sophisticated mechanism resembling an

advanced hyper-heuristic algorithm, integrating diversity and

intensification components for scoring. The phase transition

section adopts two approaches inspired by puma intelligence:

inexperienced pumas explore new territories while targeting

promising areas for ambush.
4.4.2.1.1 Inexperienced phase. In its early stages, the puma lacks

experience and often engages in exploration activities

simultaneously due to its unfamiliarity with its environment and

lack of awareness of hunting locations within its territory.

Conversely, it seeks hunting opportunities in favorable areas. In

the Puma algorithm, during the initial three iterations, both

exploration and exploitation operations are carried out

concurrently until initialization is completed in the phase

transition phase. In this section, as the exploitation and

exploration phases are selected in each iteration, only

two functions (f1 and f2) are applied and calculated using

(Equations 52–55):

f1Explor ¼ PF1:
Seq1costExplore
SeqTime

 !
(52)

f1Exploit ¼ PF1:
Seq1costExploit
SeqTime

 !
(53)

f2Explor ¼ PF2:
Seq1costExplore þ Seq2costExplore þ Seq3costExplore

Seq1Time þ Seq2Time þ Seq3Time

 !
(54)

f2Exploit ¼ PF2:
Seq1costExploit þ Seq2costExploit þ Seq3costExploit

Seq1Time þ Seq2Time þ Seq3Time

 !
(55)

The values of Seqcost, associated with both exploitation and

exploration phases, are determined using (Equations 52–55),

while SeqTime remains constant at 1. PF1 and PF2, parameters

with predetermined values, are used to prioritize the functions f1
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1419551
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 7

The flowchart of GJO.
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and f2 during the optimization process.

Seq1CostExplore ¼ jCostInitialBest � Cost1Exlorej (56)

Seq2CostExplore ¼ jCost2Explore � Cost1Exlorej (57)

Seq3CostExplore ¼ jCost3Explore � Cost2Exlorej (58)

Seq1CostExploit ¼ jCostInitialBest � Cost1Exloitj (59)
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Seq2CostExploit ¼ jCost2Exploit � Cost1Exloitj (60)

Seq3CostExploit ¼ jCost3Exploit � Cost2Exloitj (61)

In Equations 56, 61, the term CostInitialBest represents the cost of the

initial optimal solution generated during the initialization phase.

Additionally, six variables, namely Cost1Exlore, Cost
2
Exlore, Cost

3
Exlore,

Cost1Exloit, Cost2Exloit, and Cost3Exloit, denote the costs associated
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with the best solutions obtained from the exploitation and

exploration phases across three repetitions (Equations 57–60).

After evaluating the functions f1 and f2 following the third

iteration, a decision is made to exclusively pursue either

exploration or exploitation phases. The positive experiences of

other Pumas influence this choice. To determine which phase to

prioritize, the coordinates of both the exploitation and exploration

points are computed by applying (Equations 62, 63):

ScoreExplore ¼ (PF1:f1Explor)þ (PF2:f2Explor) (62)

ScoreExploit ¼ (PF1:f1Exploit)þ (PF2:f2Exploit) (63)

After computing ScoreExplore and ScoreExploit using (Equations 62,

63), the system determines whether to proceed with the

exploration or exploitation phase based on their values. If

ScoreExploit � ScoreExplore, the exploitation stage is entered;

otherwise, the exploration step is chosen. However, a serious

consideration arises at the end of the third iteration: each step

independently generates solutions exceeding the total population

size. To address this, the total cost of solutions from both phases

is calculated at the end of the third iteration. Only the best

solutions from the entire pool are retained, ensuring that the

population size remains constant by replacing the current solutions.

4.4.2.1.2 Experienced and Skilled phase. After three generational

iterations, the Pumas acquire a satisfactory level of experience to

opt for a singular optimization phase for subsequent iterations.

Within this phase, three distinct scoring functions, namely f1, f2,

and f3, are applied. The main function, f1, prioritizes either the

exploration or exploitation phase based on their comparative

performance, with a particular emphasis on the exploration

phase. This function is determined using (Equation 52).

f exploit1t ¼ PF1:
Costexploitold � Costexploitnew

Texploit
t

					
					 (64)

f exploit1t ¼ PF1:
Costexploreold � Costexplorenew

Texplore
t

					
					 (65)

Equations 64, 65 define f exploit1t and f exploit1t for the exploitation and

exploration phases at iteration t. Costexploitold and Costexplorenew are costs

before and after improving the current selection, while Texplore
t and

Texploit
t indicate unselected iterations. PF1, set between 0 and 1,

determines the importance of the first function: advanced values

prioritize it.

The second function gives preference to the phase that

outperforms the other, focusing on resonance. It assesses good

performances sequentially, aiding in the selection of the exploitation

phase. (Equations 66, 67) are employed to calculate this function.

f
exploit
2t ¼ PF2:

(Cost
exploit
old:1

� Cost
exploit
new,1 )þ (Cost

exploit
old:2

� Cost
exploit
new,2 )þ (Cost

exploit
old:3

� Cost
exploit
new,3 )

T
exploit
t:1 þ T

exploit
t:2 þ T

exploit
t:3

						
						

(66)
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f
explore
2t ¼ PF2:

(Cost
explore
old:1

� Cost
explore
new,1 )þ (Cost

explore
old:2

� Cost
explore
new,2 )þ (Cost

explore
old:3

� Cost
explore
new,3 )

T
explore
t:1 þ T

explore
t:2 þ T

explore
t:3

							
							
(67)

Equations 66, 67 introduce functions for exploration and exploitation

in an optimization process, with costs representing solution

performance. Updates to solution costs are tracked across current

and past selections. Iteration counts capture unselected iterations

between selections. The parameter PF2 influences the effectiveness of

the exploration-exploitation balance. Overall, these elements form a

framework for optimizing strategies.

The third function in the selection mechanism emphasizes

diversity by increasing in value when its priority rises and

decreasing when it declines. It ensures that less frequently

selected phases still have a chance to be chosen, preventing the

algorithm from getting trapped in local optima. This function is

depicted in (Equations 68, 69).

f exploit3t ¼ if selected, f exploit3t ¼ 0
otherwise, f exploit3t þ PF3

(
(68)

f explore3t ¼ if selected, f explore3t ¼ 0
otherwise, f explore3t þ PF3

(
(69)

Equations 68, 69 define functions f exploit3t and f explore3t separately,

representing the third function in exploitation and exploration stages

over iterations signified by t. (Equation 54) specifies that if a stage is

not chosen, the value of its corresponding third function increases

by a parameter PF3 in each iteration; otherwise, it is set to zero. PF3
is a user-adjustable parameter ranging between 0 and 1, determining

the likelihood of selecting a stage. A higher PF3 increases the

chances of selecting the stage with a lower score and vice versa.

(Equations 70, 71) compute the cost associated with changing stages.

Fexploit
t ¼ (aexploit

t :( f exploit1t ))þ (aexploit
t :( f exploit2t ))

þ (dexploitt :(lc: f exploit3t )) (70)

Fexplore
t ¼ (aexplore

t :( f explore1t ))þ (aexplore
t :( f explore2t ))

þ (dexploret :(lc: f explore3t )) (71)

c ¼ {{jCostold � Costnewj}exploitation, {jCostold � Costnewj}exploration},
0 � lc

(72)

a
explore,exploit
t ¼
if Fexploit . Fexplore, aexploit ¼ 0:99, aexplore ¼ aexplore � 0:01, 0:01

otherwise, aexplore ¼ 0:99, aexploit ¼ aexploit � 0:01, 0:01

(

(73)

d
exploit
t ¼ 1� a

exploit
t (74)
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d
explore
t ¼ 1� a

explore
t (75)

Equations 70, 71 determine final costs for exploitation and exploration

phases, with parameters a and d varying based on phase results,

prioritizing diversity. (Equation 73) penalizes parameter a of the

phase with higher cost, adjusting it linearly by 0.01. This approach,

as discussed in (82), relies on lc, representing non-zero cost

differences between exploitation and exploration phases (Equation 72).
4.4.2.2 Exploration
In the exploration phase, inspired by the behavior of pumas

searching for food, a random search is conducted within the

territory. Pumas either explore new areas or approach other

pumas to potentially share prey. Initially, the entire population is

sorted in ascending order, and then each puma refines its

solutions using (Equations 74, 75).

If rand1 . 0:5, Zi,G ¼ RDim�(Ub� LB)þ LB

Otherwise, Zi,G ¼ Xa,G þ G:(Xa,G � Xb,G)þ G:(((Xa,G � Xb,G)� (Xc,G � Xd,G))

þ ((Xc,G � Xd,G)� (Xe,G � X f ,G)))

(76)

G ¼ 2:rand2 � 1 (77)

Equations 76, 77 involves randomly generating numbers within

specified bounds and dimensions for problem-solving.

Depending on certain conditions, one of two equations is

selected to produce a new solution. This solution is then used to

improve the current solution (Equations 78–81).

Xnew ¼ Zi:G , if j ¼ jrand or rand3 � U

Xa,G , otherwise

(
(78)

NC ¼ 1� U (79)

p ¼ NC
Npop

(80)

if Cost Xnew , Cost Xi , U ¼ U þ P (81)
TABLE 3 The results of hyperparameters tunning in LGBC-based hybrid mod

Prediction scenarios Model

num leaves max
Scenario 1 LGAG 321

LGBE 131

LGGJ 792

LGPO 613

Scenario 2 LGAG 654

LGBE 999

LGGJ 981

LGPO 274

Scenario 3 LGAG 213

LGBE 140

LGGJ 442

LGPO 299
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4.4.2.3 Exploitation
In the exploitation stage, the PO algorithm employs two operators

inspired by puma behaviors: ambush hunting and sprinting.

Pumas, in nature, typically ambush prey from concealed

positions or chase them down in open spaces. (Equation 82)

simulates the behavior of chasing prey, reflecting one of these

hunting strategies.

Xnew ¼

if rand4 � 0:5, Xnew ¼

mean(Soltotal)

Npop

 !
:Xr1 � (�1)b � Xi

1þ (a:rand5)

otherwise, if rand6 � L, Xnew ¼ Pumamale þ (2:rand7): exp (rand1):X
r
2 � Xi

otherwise, Xnew ¼ (2� rand8)�
F1:R:X(i)þ F2:(1� R):Pumamale)

(2:rand9 � 1þ randn2)
� Pumamale

8>>>>>>>>><
>>>>>>>>>:

(82)

Equation 82 in the PO algorithm embodies two strategies inspired

by puma behaviors: fast running and ambush hunting. During

exploitation, if a randomly generated number exceeds 0.5, the

fast-running strategy is applied; otherwise, the ambush strategy is

chosen. These strategies involve different movements towards

prey, with various parameters and random factors influencing

the process.

The Puma optimizer stands out for its higher implementation

complexity compared to other optimizers due to its multiple phases

and operations involved in creating intelligent systems. In each

iteration, the cost function is applied only once for each search

agent, ensuring acceptable computational complexity, as detailed

in the relevant section.
4.5 Hybrid models’ development

AGWO, BES, GJO, and PO optimizers integrated with base

models to supplement the efficacy of the selected models. As

presented in Tables 3, 4, the fine tunned hyperparameters in the

hybridization process for LGBC and XGBC are reported. For

instance, the hyperparameters n_estimators, max_depth, and
els development.

Hyperparameter

depth learning rate n estimators max bin
285 0.168 317 681,000

148 0.361 119 289,000

45 0.747 796 844,000

999 0.504 999 1,000

213 0.566 813 685,100

648 0.736 889 753,000

539 0.746 822 788,114

921 0.497 867 66,000

286 0.126 681 385,140

411 0.651 214 293,000

845 0.740 226 922,419

633 0.771 77 253,000
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TABLE 4 The results of hyperparameters tunning in XGBC-based hybrid models development.

Prediction scenarios Model Hyperparameter

n estimators max depth learning rate colsample bytree subsample reg alpha reg lambda
Scenario 1 XGAG 581 48 0.237 0.371 0.382 0.14 0.641

XGBE 628 134 0.196 0.657 0.658 0.007 0.189

XGGJ 414 282 0.474 0.902 0.894 0.334 0.005

XGPO 341 999 0.927 0.999 0.873 0.001 0.999

Scenario 2 XGAG 168 34 0.2781 0.391 0.617 0.236 0.468

XGBE 345 315 0.16 0.152 0.294 0.067 0.065

XGGJ 478 167 0.933 0.465 0.590 0.236 0.005

XGPO 999 234 0.99 0.269 0.999 0.999 0.001

Scenario 3 XGAG 691 31 0.017 0.681 0.914 0.642 0.260

XGBE 333 371 0.324 0.578 0.484 0.143 0.143

XGGJ 201 393 0.208 0.232 0.393 0.635 0.005

XGPO 394 595 0.614 0.488 0.667 0.001 0.072
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learning_rate are crucial for optimizing ensemble methods like

Gradient Boosting Machines. n_estimators define the number of

trees in the ensemble, with more trees generally improving

performance but increasing computational cost and overfitting

risk. max_depth limits the depth of each tree, balancing the

ability to capture complex patterns with the risk of overfitting;

deeper trees can capture more details but may overfit, while

shallower trees might underfit. learning_rate, specific to boosting

algorithms, scales the contribution of each tree, with lower rates

enhancing robustness and preventing overfitting but requiring

more iterations.

Furthermore, Figure 8 illustrates the convergence of hybrid

models based on LGB across all three scenarios over 200

iterations. In the second scenario, the initial iterations for the

hybrid models commence with a modest Accuracy of

approximately 0.5, whereas in the third scenario, they begin

with a higher Accuracy of around 0.6. Remarkably, the LGBE
FIGURE 8

The convergence plot of LGB-based hybrid models in all three scenarios.
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(S3) model achieves a remarkable accuracy of 0.97 within

approximately 140 iterations. The convergence patterns of

XGB-based hybrid models are depicted in Figure 9. Initially,

the models display an accuracy of approximately 0.6. The

XGBE (S3) model attains an Accuracy of nearly one after 125

iterations. Furthermore, the XGAG (S1) model achieves an

Accuracy of 0.91 by the 110th iteration, indicating the

weakest performance of features in scenario (1) in training

hybrid models.
5 Analysis of results

5.1 Metrics for evaluating predictions

The importance of performance evaluation criteria in assessing

ML algorithms is highlighted in the article, emphasizing the need to
frontiersin.org
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FIGURE 9

The convergence plot of XGB-based hybrid models in all three scenarios.

TABLE 5 Estimation metrics results for models’ prediction performance based on scenario (1).

Model Phase Index values

Accuracy Precision Recall F1-score MCC HSS
LGBM Train 0.902 0.877 0.902 0.876 0.446 0.117

Test 0.890 0.853 0.890 0.868 0.126

All 0.893 0.821 0.906 0.862 0.133

LGAG Train 0.913 0.908 0.913 0.882 0.298 0.210

Test 0.924 0.914 0.924 0.902 0.349

All 0.916 0.909 0.916 0.888 0.312

LGBE Train 0.949 0.946 0.949 0.945 0.677 0.623

Test 0.932 0.925 0.932 0.927 0.521

All 0.944 0.939 0.944 0.940 0.633

LGGJ Train 0.926 0.917 0.926 0.916 0.495 0.452

Test 0.925 0.913 0.925 0.916 0.434

All 0.926 0.916 0.926 0.916 0.477

LGPO Train 0.940 0.935 0.940 0.936 0.618 0.570

Test 0.927 0.919 0.927 0.921 0.479

All 0.936 0.930 0.936 0.931 0.580

XGBC Train 0.914 0.904 0.914 0.908 0.445 0.430

Test 0.913 0.907 0.913 0.909 0.410

All 0.913 0.905 0.913 0.908 0.435

XGAG Train 0.923 0.912 0.923 0.908 0.446 0.406

Test 0.928 0.917 0.928 0.918 0.448

All 0.924 0.913 0.924 0.911 0.446

XGBE Train 0.959 0.958 0.959 0.957 0.747 0.698

Test 0.943 0.938 0.943 0.939 0.604

All 0.954 0.952 0.954 0.951 0.706

XGGJ Train 0.937 0.932 0.937 0.928 0.574 0.521

Test 0.931 0.921 0.931 0.923 0.486

All 0.935 0.928 0.935 0.926 0.548

XGPO Train 0.947 0.943 0.947 0.942 0.658 0.620

Test 0.939 0.933 0.939 0.935 0.571

All 0.944 0.940 0.945 0.940 0.633
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select metrics tailored to the specific problem. For comprehensive

comparative analysis in classification tasks, widely recognized

measures such as Accuracy, Precision, Recall, F1-Score, Correlation

Coefficient (MCC), and Heidke Skill Score (HSS) are employed.

Accuracy serves as the primary metric for evaluating the

accuracy of predictions. Precision, Recall, and F1-Score

complement Accuracy, especially in scenarios with imbalanced

data distributions. Precision measures the Accuracy of positive

predictions, while Recall identifies all relevant instances within a

class. The F1-Score combines both Precision and Recall to

provide a balanced assessment. The MCC evaluates the reliability

of binary classifications by considering true positives, true

negatives, false positives, and false negatives. Higher MCC scores

indicate more accurate predictions. MCC is particularly useful for

assessing classifiers, especially in cases of unbalanced datasets, as

it treats both positive and negative samples equally. These

metrics, defined by (Equations 83–87):

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(83)

Precision ¼ TP
TPþ FP

(84)
TABLE 6 Estimation metrics results for models’ prediction performance base

Model Phase

Accuracy Precision
LGBM Train 0.916 0.922

Test 0.933 0.936

All 0.921 0.926

LGAG Train 0.934 0.936

Test 0.942 0.946

All 0.936 0.939

LGBE Train 0.966 0.968

Test 0.957 0.958

All 0.963 0.965

LGGJ Train 0.947 0.947

Test 0.932 0.935

All 0.942 0.943

LGPO Train 0.961 0.962

Test 0.946 0.946

All 0.957 0.957

XGBC Train 0.944 0.943

Test 0.924 0.933

All 0.938 0.939

XGAG Train 0.950 0.949

Test 0.938 0.945

All 0.946 0.948

XGBE Train 0.981 0.980

Test 0.972 0.972

All 0.978 0.978

XGGJ Train 0.958 0.957

Test 0.944 0.950

All 0.953 0.955

XGPO Train 0.966 0.968

Test 0.957 0.958

All 0.963 0.965
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Recall ¼ TPR ¼ TP
P

¼ TP
TPþ FN

(85)

F1� Score ¼ 2� Recall � Precision
Recallþ Precision

(86)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPþ FP)(TPþ FN)(TNþ FP)(TNþ FN)

p (87)

TP represents the number of true positives, TN stands for the

total of true negatives, FP indicates the number of false positives,

and FN denotes the count of false negatives.

The HSS is a statistical metric devised by meteorologist Paul

Heidke to evaluate the accuracy of categorical forecasts, primarily

in meteorology (83). It involves comparing observed and

forecasted categorical outcomes, taking into account hits, correct

rejections, false alarms, and misses. The HSS formula provides a

comprehensive assessment of predictive skills (Equation 88).

HSS ¼ 2� (TPFN � FPTN )
(TP þ TN )� (TN þ FN )þ (TP þ FP)� (FP þ FN )

(88)

HSS is a metric used in meteorology to assess the accuracy of
d on scenario (2).

Index values

Recall F1-score MCC HSS
0.917 0.919 0.550 0.561

0.933 0.934 0.594

0.921 0.923 0.562

0.934 0.935 0.632 0.638

0.942 0.943 0.656

0.936 0.937 0.639

0.966 0.967 0.817 0.793

0.957 0.957 0.734

0.963 0.964 0.794

0.947 0.947 0.694 0.664

0.932 0.933 0.590

0.942 0.943 0.664

0.961 0.961 0.780 0.747

0.946 0.946 0.662

0.957 0.957 0.747

0.944 0.943 0.674 0.642

0.924 0.928 0.573

0.938 0.939 0.642

0.950 0.949 0.709 0.691

0.938 0.941 0.652

0.946 0.947 0.691

0.981 0.980 0.885 0.865

0.973 0.972 0.821

0.978 0.978 0.867

0.958 0.957 0.756 0.732

0.944 0.946 0.682

0.953 0.954 0.733

0.966 0.967 0.817 0.793

0.957 0.957 0.734

0.963 0.964 0.794
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TABLE 7 Estimation metrics results for models’ prediction performance based on scenario (3).

Model Phase Index values

Accuracy Precision Recall F1-score MCC HSS
LGBM Train 0.932 0.931 0.932 0.931 0.606 0.610

Test 0.939 0.940 0.939 0.940 0.621

All 0.934 0.937 0.934 0.934 0.610

LGAG Train 0.939 0.933 0.939 0.933 0.599 0.594

Test 0.948 0.964 0.948 0.944 0.636

All 0.942 0.936 0.942 0.936 0.609

LGBE Train 0.980 0.980 0.980 0.980 0.882 0.864

Test 0.971 0.971 0.971 0.971 0.818

All 0.977 0.977 0.977 0.977 0.864

LGGJ Train 0.956 0.953 0.956 0.953 0.723 0.706

Test 0.956 0.953 0.956 0.953 0.695

All 0.956 0.953 0.956 0.953 0.715

LGPO Train 0.967 0.966 0.967 0.966 0.801 0.793

Test 0.965 0.965 0.965 0.965 0.778

All 0.966 0.965 0.966 0.966 0.794

XGBC Train 0.942 0.940 0.942 0.941 0.653 0.643

Test 0.938 0.941 0.938 0.939 0.625

All 0.941 0.940 0.941 0.940 0.643

XGAG Train 0.955 0.955 0.955 0.955 0.741 0.728

Test 0.949 0.952 0.949 0.950 0.696

All 0.953 0.954 0.953 0.953 0.728

XGBE Train 0.992 0.991 0.992 0.991 0.951 0.938

Test 0.986 0.986 0.986 0.985 0.907

All 0.990 0.990 0.990 0.990 0.939

XGGJ Train 0.965 0.963 0.965 0.963 0.787 0.777

Test 0.963 0.962 0.963 0.963 0.762

All 0.964 0.963 0.964 0.963 0.779

XGPO Train 0.980 0.980 0.980 0.980 0.886 0.854

Test 0.964 0.964 0.964 0.964 0.773

All 0.975 0.975 0.975 0.975 0.854

FIGURE 10

Graphical comparison of accuracy metric for the three scenarios in prediction models.
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categorical weather forecasts. It compares observed and forecasted

events. A score of 1 indicates perfect agreement, and 0 suggests

performance equivalent to random chance.
5.2 Findings and discussion

The results are presented across three scenarios. In the first

scenario, the GRACE Scale was applied, incorporating four

parameters: HR, Age, SBP, and Killip Class, which are

traditionally employed in hospitals (84). Table 5 provides a

comprehensive comparison of performance metrics,

encompassing Accuracy, Precision, Recall, F1-Score, MCC, and

HSS, for the LGBM model alongside its hybrid models (LGAG,
FIGURE 11

Graphical comparison of precision metric for the three scenarios in predict

FIGURE 12

Graphical comparison of recall metric for the three scenarios in prediction
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LGBE, LGGJ, and LGPO) and the XGBC model with its hybrid

versions (XGAG, XGBE, XGGJ, and XGPO) across scenario (1)

during both training and testing phases and for all data.

Especially, the XGBE model displayed remarkable performance,

achieving an Accuracy of 0.954, outperforming other models.

Close behind, the LGBE and XGPO models each attained an

Accuracy of 0.944. Particular significance was the superior

performance demonstrated by the BES optimizer.

In the second scenario, the features selected by SHAP were

used, which included ten parameters for the LGBM model and

13 parameters for the XGBC model. Table 6 presents the results

of evaluation metrics for the two mentioned single models and

their hybrid versions based on scenario (2). The LGBM model

was characterized by its relatively lower performance, evidenced
ion models.

models.
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by an Accuracy score of 0.921. Conversely, the LGBE model

emerged as a standout performer within the domain of LGBM

hybrid models, showing notable efficacy with an Accuracy score

of 0.963. Especially, the XGBC model displayed the highest level

of performance, boasting an impressive Accuracy value of 0.978,

thereby establishing itself as the benchmark against which all

other models are measured.

The features selected by RFE were applied in the third scenario,

comprising six features in the LGBM-based models and eight

features in the XGBC-based model. According to Table 7, the

XGBE model was the peak performer, boasting an exceptional

Accuracy score of 0.990. Following closely, the LGBE model secured

the second position with a commendable Accuracy of 0.977, while

the XGPO model secured the third rank with an Accuracy score of
FIGURE 13

Graphical comparison of F1-score metric for the three scenarios in predicti

FIGURE 14

Graphical comparison of MCC metric for the three scenarios in prediction
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0.975. In contrast, the LGBM simple model presented the least

impressive performance among the models under analysis.

In general, based on the comparative representations presented

in Figures 10–14, it is evident that the models from the third

scenario outperform those from the first and second scenarios

according to the metrics of Accuracy, Precision, Recall, F1-Score,

and MCC.

Table 8 displays the evaluation criteria values used to assess

the effectiveness of the models in distinguishing between the

Alive and Die classes for the first scenario, while Tables 9, 10

present these metric values for the second and third

scenarios, respectively.

In all three scenarios, the models demonstrated higher

accuracy in predicting and classifying patients in the Die class
on models.

models.
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TABLE 10 The results of the evaluation criteria for assessing the
effectiveness of the constructed models in classifying patients in
scenario (3).

Model Phase Index values

Precision Recall F1-score
LGBM Alive 0.649 0.644 0.647

Die 0.963 0.964 0.964

LGAG Alive 0.786 0.518 0.624

Die 0.952 0.985 0.968

LGBE Alive 0.891 0.863 0.877

Die 0.986 0.989 0.987

LGGJ Alive 0.854 0.637 0.730

Die 0.963 0.989 0.976

LGPO Alive 0.856 0.771 0.811

Die 0.977 0.987 0.982

XGBC Alive 0.701 0.651 0.675

Die 0.964 0.971 0.968

XGAG Alive 0.943 0.764 0.754

Die 0.976 0.973 0.971

XGBE Alive 0.970 0.919 0.944

Die 0.992 0.997 0.994

XGGJ Alive 0.846 0.754 0.797

Die 0.975 0.986 0.980

XGPO Alive 0.869 0.866 0.868

Die 0.986 0.987 0.986

TABLE 8 The results of the evaluation criteria for assessing the
effectiveness of the constructed models in classifying patients in
scenario (1).

Model Phase Index values

Precision Recall F1-score
LGBM Alive 0.301 0.109 0.160

Die 0.913 0.974 0.943

LGAG Alive 0.826 0.134 0.230

Die 0.918 0.997 0.956

LGBE Alive 0.777 0.563 0.653

Die 0.956 0.983 0.969

LGGJ Alive 0.695 0.377 0.489

Die 0.938 0.983 0.960

LGPO Alive 0.724 0.518 0.604

Die 0.952 0.980 0.965

XGBC Alive 0.551 0.419 0.476

Die 0.941 0.965 0.953

XGAG Alive 0.720 0.317 0.440

Die 0.933 0.987 0.959

XGBE Alive 0.844 0.630 0.722

Die 0.963 0.988 0.975

XGGJ Alive 0.777 0.430 0.553

Die 0.944 0.987 0.965

XGPO Alive 0.799 0.546 0.649

Die 0.955 0.986 0.970

TABLE 9 The results of the evaluation criteria for assessing the
effectiveness of the constructed models in classifying patients in
scenario (2).

Model Phase Index values

Precision Recall F1-score
LGBM Alive 0.572 0.641 0.605

Die 0.962 0.950 0.956

LGAG Alive 0.648 0.701 0.673

Die 0.969 0.961 0.965

LGBE Alive 0.778 0.852 0.813

Die 0.985 0.975 0.980

LGGJ Alive 0.687 0.704 0.696

Die 0.969 0.967 0.968

LGPO Alive 0.767 0.775 0.771

Die 0.977 0.977 0.976

XGBC Alive 0.662 0.690 0.676

Die 0.968 0.964 0.966

XGAG Alive 0.702 0.739 0.720

Die 0.973 0.968 0.970

XGBE Alive 0.936 0.824 0.876

Die 0.982 0.994 0.988

XGGJ Alive 0.739 0.778 0.758

Die 0.977 0.972 0.974

XGPO Alive 0.778 0.852 0.813

Die 0.985 0.975 0.980
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compared to the Alive class. Comparing the performance of the

models in the Alive class in the first scenario, the XGBE model

displayed superior performance with a Precision of 0.844,

representing a 12.36% decrease compared to its Precision in the

Die class. Conversely, the LGBE model outperformed the LGPO
Frontiers in Cardiovascular Medicine 25
model with a Precision of 0.777. Moving to the second and

third scenarios, the XGBE model achieved Precision values of

0.936 and 0.970, respectively, showing improved performance

by 9.83% and 12.99% compared to the first scenario.

Furthermore, the LGBE model maintains consistent

performance in the second scenario, with a marginal difference

of 0.13%, while in the third scenario, it demonstrated superior

performance with a 12.79% increase.

In the first scenario, the XGBE model achieved the

maximum performance in the Die class with a Precision of

0.963, while the LGBE, XGPO, and LGPO models displayed

nearly identical performance in this class, with Precision

values of 0.956, 0.955, and 0.952, respectively. Moving to the

second scenario, the XGPO model demonstrated superior

performance in classifying patients in the Die class with a

Precision of 0.985, while the XGBE model ranked third with a

slight difference of 0.31%. Lastly, in the third scenario, the

XGBE model surpassed all others with an impressive

Precision of 0.992 in the Die class, securing the top position.

The LGBE model followed closely behind with a Precision of

0.986, earning the second rank.

Figure 15 presents a visual comparison of the models

introduced in this research across scenarios (1), (2), and (3),

using Precision, Recall, and F1-score metrics. In the LGBM and

XGBC basic models, the Recall values are lower than those of

other hybrid models in the Alive class, with values of 0.109 and

0.419 for the first scenario, 0.641 and 0.690 for the second

scenario, and 0.644 and 0.651 for the third scenario, respectively.

The lowest Recall value is attributed to the LGBM model in

scenario (1) for the classification of Alive patients, while the

highest value is recorded for the XGBE model in the third
frontiersin.org
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FIGURE 15

Comparative visual display of evaluation metrics for models across three scenarios in the Die and alive classes.
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scenario and LGAG in the first scenario in the Die class, both with

a value of 0.997.

Figure 16 displays the confusion matrix depicting the

classification performance in scenario (1), using the four features

introduced by the GRACE Scale. This visual representation offers

insights into the model’s classification outcomes across various

diagnostic categories. The LGBM model showed the highest error

rate in misclassifying individuals from the Alive class into the

Die group, with 253 patients misclassified. Following closely, the

LGAG model ranked next, committing a similar error with 246

misclassified patients. Conversely, the LGAG model

demonstrated the lowest error rate, misclassifying only eight

deceased patients into the Alive class.

Additionally, the XGBC model incorrectly classified 97 dead

patients into the Alive group. In contrast, the LGBE model
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showcased superior performance compared to other hybrid

models based on LGBM, with 124 and 46 misclassifications in

the Alive and Die classes, respectively. Similarly, the XGBE

model exhibited the lowest misclassification rate compared to

other XGBC-based hybrid models.

Figure 17 depicts the correct and incorrect classification results

of the models based on scenario (2), while Figure 18 represents

those based on scenario (3). In the second scenario, SHAP was

employed to identify effective features in modeling, whereas the

third scenario employed RFE, resulting in an obvious increase in

model accuracy. In scenario (2), as illustrated in Figure 17, the

LGBM model continued to display the highest misclassification

rate in the Alive class, speciously placing 102 patients in the Die

class; however, it had enhanced its performance by 59.68% in

correctly classifying the group of living patients. Conversely, the
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FIGURE 16

Confusion matrices depicting the accuracy of individual models within scenario (1).
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LGBE and XGPO models demonstrated the lowest errors in

classifying living patients, misclassifying only 42 patients while

correctly classifying 242 patients. The XGBE model excelled in

classifying dead individuals, accurately classifying 2,727 patients

while misclassifying only 16 patients.

In scenario (3), as delineated in Figure 18, notable

discrepancies appear in the classification of alive patients.

Specifically, the LGAG model shows a significant degree of

error, misclassifying 137 patients. Similarly, the LGBM model

demonstrates a considerable level of misclassification, with

99 patients incorrectly assigned to the Alive class. Contrarily,

the XGBE model displays admirable performance, achieving

261 correct classifications and 23 misclassifications within the

Alive group. Impressively, the XGBE model makes minimum

errors, with only eight deceased patients erroneously

categorized as Alive.
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In general, the models in scenario (1) show the weakest

performance, while the highest performance is observed in

the third scenario. The application of scenario (1) in hospitals

entails a high risk, as it relies only on four features: HR, Age,

SBP, and Killip Class. Conversely, in scenario (2), the models

employ ten features for LGBM and 13 features for XGB,

leading to significantly higher accuracy compared to

predictions based on the GRACE score. In scenario (3), the

efficiency of the models surpasses that of scenarios (1) and 2

despite using fewer features 6 for the LGBM model and 8 for

the XGB model. It is noteworthy that despite the reduced

number of parameters, higher accuracy has been achieved.

Upon comparing the two models, it can be concluded that the

XGBE model offered the highest accuracy with eight features.

This level of accuracy allows hospitals and healthcare

professionals to predict the probability of survival more
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FIGURE 17

Confusion matrices depicting the accuracy of individual models within scenario (2).
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accurately, thereby reducing in-hospital mortality rates and

tailoring treatments accordingly.

On the other hand, scenario (3) demanded a diminished

set of parameters in comparison to scenario (2), thereby

reducing the time required for testing. Such efficiency is

particularly admirable in the context of patients’ serious

conditions, where timely intervention is paramount.

Moreover, the efficient testing regimen of scenario three not

only hastens decision-making but also mitigates financial

burdens. The decreased number of requisite tests translates

to lower costs incurred by both patients and healthcare

facilities, emphasizing the compelling value proposition of

the model’s heightened accuracy.

Figures 19, 20 depict HSS values for models based on

LGBM and XGBC, respectively, to assess the accuracy of
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the predictions. In Figure 19, the mean HSS value for the

third scenario approximates 0.7, while for the second

scenario, it is around 0.65. Notably, the overall mean HSS

value for the first scenario is approximately 0.4. This

delineates that in scenario (1), the predictive accuracy

stands at roughly 40%, which deviates from acceptable

performance standards. Conversely, as depicted in

Figure 20, the mean HSS value is about 0.5, highlighting

the models’ lack of precision in scenario one concerning

patient prediction and classification accuracy. Moreover, the

mean HSS value for XGBC-based models in scenarios (2)

and (3) averages approximately 0.67 and 0.71, respectively.

Collectively, these findings prove the superior performance

of models in scenario (3), revealing their exceptional

forecasting capabilities and optimal operational efficiency.
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FIGURE 18

Confusion matrices depicting the accuracy of individual models within scenario (3).
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5.3 Comparative analysis

In this section, for comparing the Accuracy of predictions

conducted by the best developed model (XGBE in the third

scenario) in the study by those models in existing literature, the

metric results are reported in Table 11. The results reveal that

the Accuracy, Precision, and F1-score of the XGBE were 3% to

5% higher than the developed Catboost in the previous study.
6 Conclusion

Cardiovascular disease presents a significant global health

challenge, especially in low-income countries, contributing to
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increased mortality rates. Myocardial infarction (MI) arises from

reduced blood flow to the heart, leading to tissue damage and

symptoms like chest pain and shortness of breath. Effective

management of ST-segment elevation myocardial infarction

(STEMI) was critical, with early reperfusion therapy, particularly

through percutaneous coronary intervention (PCI), prioritized for

optimal care. This study employed advanced machine learning

(ML) techniques to investigate risk factors influencing in-hospital

mortality (IHM) in MI patients following PCI. Many ML

classifiers, such as Extreme Gradient Boosting (XGB), Light

Gradient Boosting (LGB), Stochastic Gradient Boosting (SGB),

and Histogram Gradient Boosting (HGB), were used, and Monte

Carlo cross-validation (MCCV) assisted in selecting top-

performing models. Three scenarios were designed to evaluate

forecast accuracy, one of which (scenario 1) was based on the
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FIGURE 19

The chart illustrates the HSS values of LGBM models across three scenarios.

FIGURE 20

The chart illustrates the HSS values of XGBC models across three scenarios.

TABLE 11 Comparison results between the accuracy of the best developed model with models in existing literature.

Developed model Reference Accuracy Precision F1-score
Categorical boosting (Catboost) (32) 0.96 0.95 0.97

XGBE (XGB optimized with BEO) This study 0.99 0.99 0.99
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traditional GRACE scaling system which can be calculated using

online calculators available on medical websites or through

electronic health record systems. The objective of this study was

to provide insights to improve risk assessment and patient care

strategies for MI patients undergoing PCI by using more

imperative features of the patients rather than those utilized in

traditional methods (GRACE score), which are extracted by
Frontiers in Cardiovascular Medicine 34
feature selection methods. Additionally, meta-heuristic

algorithms, including Gray Wolf Optimizer (AGWO), Bald Eagle

Search Optimization (BES), Golden Jackal Optimizer (GJO),

and Puma Optimizer (PO), were employed to enhance

prediction accuracy.

In the evaluation of scenario (1) using the F1-Score standard,

the LGBE and XGBE models demonstrated superior performance
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with values of 0.940 and 0.951, respectively. In the second scenario,

these values increased to 0.964 and 0.978, indicating an

improvement of 2.4% and 2.76% in model performance.

Moreover, in scenario (3), these models showed further

performance enhancements, with F1-score values increasing by

3.79% and 3.9%. The MCC value for the LGBE and XGBE

models in the third scenario reached the highest level, with

scores of 0.864 and 0.939, respectively. Despite scenario (1)’s

reliance on only four features and its consequent weak

performance, scenarios (2) and (3) demonstrate improved

accuracy by applying more parameters. Especially, scenario (3)

surpasses the others in efficiency despite employing fewer

features, with the XGB model achieving the highest accuracy

using eight features. This improved accuracy enables hospitals to

predict survival probabilities more precisely, thereby reducing in-

hospital mortality rates and permitting tailored treatments.

Scenario (3)’s streamlined parameter testing process makes it the

preferred choice, offering swift decision-making and cost

reductions while ensuring accurate forecasts, particularly critical

in serious patient conditions. Furthermore, the model

constructed in this study can be integrated into clinical decision

support systems, such as electronic health record (EHR) systems,

to automatically provide risk scores when assessing STEMI

patients, assisting doctors in considering the patient’s IHM risk

when choosing treatment strategies. Thus, a personalized

treatment plan can be developed based on the patient’s IHM risk

level. For example, in high-risk patients, more proactive

preventive treatment measures, such as early cardiac

rehabilitation programs or intensified medication therapy, can be

considered. At the same time, the predictive results of the model

can serve as a basis for discussion among multidisciplinary

teams, promoting communication and collaboration among

medical personnel with different professional backgrounds, and

jointly developing the best treatment plan for the patient.
7 Limitations

The main limitation of this study is the single-center nature of

the data source, which may limit the assessment of the model’s

generalizability. Additionally, although we have established an

effective predictive model, we have not conducted detailed

analyses on different patient subgroups, which may affect the

model’s applicability within specific subgroups. Future studies

will address these limitations by collecting multicenter data and

performing subgroup analyses to improve the model’s

generalizability and accuracy.
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