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Electrocardiogram (ECG) is a non-invasive approach to capture the overall
electrical activity produced by the contraction and relaxation of the cardiac
muscles. It has been established in the literature that the difference between
ECG-derived age and chronological age represents a general measure of
cardiovascular health. Elevated ECG-derived age strongly correlates with
cardiovascular conditions (e.g., atherosclerotic cardiovascular disease).
However, the neural networks for ECG age estimation are yet to be
thoroughly evaluated from the perspective of ECG acquisition parameters.
Additionally, deep learning systems for ECG analysis encounter challenges in
generalizing across diverse ECG morphologies in various ethnic groups and
are susceptible to errors with signals that exhibit random or systematic
distortions To address these challenges, we perform a comprehensive
empirical study to determine the threshold for the sampling rate and duration
of ECG signals while considering their impact on the computational cost of
the neural networks. To tackle the concern of ECG waveform variability in
different populations, we evaluate the feasibility of utilizing pre-trained and
fine-tuned networks to estimate ECG age in different ethnic groups.
Additionally, we empirically demonstrate that finetuning is an environmentally
sustainable way to train neural networks, and it significantly decreases the
ECG instances required (by more than 100×) for attaining performance similar
to the networks trained from random weight initialization on a complete
dataset. Finally, we systematically evaluate augmentation schemes for ECG
signals in the context of age estimation and introduce a random cropping
scheme that provides best-in-class performance while using shorter-duration
ECG signals. The results also show that random cropping enables the
networks to perform well with systematic and random ECG signal corruptions.
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Introduction

An electrocardiogram (ECG) is the gold-standard modality

used to capture the overall electrical activity produced by the

contraction and relaxation of the cardiac muscles. Its core aim is

to capture cardiac function and abnormalities (1–7).

Electrophysiologists analyze the ECG by extracting medically

established parameters (e.g., heart rate variability (HRV),

duration length of PR, QRS, and ST intervals, etc,) and compare

them with clinical guidelines to make an accurate diagnosis.

However, the ECG interpretation process is subjective, requires

highly trained experts, and is prone to errors due to its time-

consuming nature. In recent years, deep learning has

revolutionized the field of computer vision, medical imaging, and

drug discovery (8–19) due to its ability of automatic feature

extraction. Specifically, convolutional neural networks (CNNs)

(20) have helped overcome the challenge of subjective ECG

interpretation by learning the patterns associated with the cardiac

condition (21). A multitude of innovative deep-learning

architectures have been trained on large-scale ECG data to detect

irregular heart rhythms (22–24), abnormal cardiac pulsations

(25–27), and incidents of myocardial infarction (i.e., heart attack)

(28–30). However, deep learning methodologies typically focus

on optimizing performance for a single diagnostic task, such

as detecting arrhythmias or predicting myocardial infarctions.

This approach leads to a lack of efficient solutions that can

analyze twelve-lead ECG signals for multiple diseases and

provide a comprehensive overview of cardiac health. The

primary reasons for this gap are the lack of datasets containing

diverse cardiac disease ground truths for the same ECG signals

and the performance degradation of neural networks when

retrained for new tasks. Therefore, developing a quantifiable

metric to assess overall cardiovascular health would be of great

clinical significance.

ECG signals can be utilized to derive a metric of overall

cardiovascular well-being because they capture a fingerprint of

many biological processes occurring within the human body. To

elaborate, it has been shown that long-term mental stress,

anxiety, and chronic depression (31, 32) can have a significant

impact on heart rate and HRV, thereby modifying the ECG

signal waveform and imprinting the presence of mental distress

in the ECG signals (33, 34). Furthermore, using the UK Biobank

database, Verwiej et al. (35) empirically proved that twelve-lead

ECG signals are correlated with 300 genetic loci. ECG signal

amplitudes and waveform duration evolve with healthy aging.

Concurrently, ECG signal waveforms are also affected by latent

cardiovascular factors (i.e., cardiac diseases and structural

changes). Given the genetic underpinning, regular aging, and

latent cardiovascular factors influencing the ECG signals, ECG

can be utilized to derive complex metrics such as age.

Specifically, ECG-derived age (ECG age) using deep neural

networks can be used as a measure of cardiovascular well-being

(36, 37). Neural networks are ideal for this task because of their

capability to learn patterns associated with age-related waveform

changes and latent cardiovascular factors, such as cardiovascular
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diseases (CVDs). This allows the networks to associate with each

patient an estimate (i.e., ECG age), which is close to the

chronological age for healthy individuals but is higher than the

patient’s chronological age for individuals with CVDs. In

literature, it has been established that a large positive difference

between estimated ECG age and chronological age (i.e., delta

age) is associated with several cardiovascular disorders (38, 39),

CVD risk factors (40), cardiac anomalies, and a higher mortality

rate (41). By evaluating overall cardiovascular well-being using

ECG age/delta age, medical professionals can track the cardiac

health of patients who do not exhibit positive results through

conventional diagnostic tests for CVDs but display preliminary

symptoms, leading to effective patient management while

limiting disease progression.

Several deep learning-based (42–44) methodologies have been

proposed to estimate ECG age from twelve-lead ECG signals

effectively. The existing studies can be stratified as technical or

applied based on the objective of the methodology. The technical

studies propose one-dimensional (1-D) neural networks for

estimating ECG age and highlight its significance in a new

population race. On the other hand, applied studies utilize the

pre-trained network proposed in the technical studies to establish

an association of ECG age with CVDs, cardiac anomalies, higher

mortality rate, etc. Attia et al. (37) propose a simple 1-D CNN to

estimate ECG age using raw twelve-lead ECG signals. The study

details an architecture that contains eight convolutional blocks

for capturing the temporal features and one convolutional block

for modeling the spatial features. Additionally, the authors

studied the changes in the ECG age for a cohort of 100 patients

to gain insight into the variations with the disease diagnosis over

twenty years. Lima et al. (45) suggest the use of a relatively

deeper 1-D residual neural network to predict the ECG age for

the Brazilian population. The network contains a convolutional

block for primary feature extraction followed by four residual

blocks for advanced feature extraction without loss of temporal

information due to max-pooling. Empirical results from this

study highlight that ECG age can be a statistically significant

predictor of CVD risk. Chang et al. (40) utilize an ECG12Net

architecture, originally designed for detecting Hypokalemia and

Hyperkalemia from ECG signals, for estimating ECG age. The

authors employed Class Activation Mapping (CAM) techniques

to visualize the regions of the signals highly emphasized by

the network.

The outcomes of the technical studies (i.e., pre-trained neural

networks) have been employed in the applied studies to estimate

ECG age in the sick and healthy population segments to

establish an association of ECG age with CVDs and cardiac

anomalies. Ladejobi et al. (46) utilize the AttiaNet to estimate the

ECG age of primary care outpatients who had no cardiovascular

diseases. The statistical results of the study showed that delta

age � 1 standard deviation (i.e., SD) had higher CVD and all-

cause mortality, than delta age � 1 SD, suggesting that ECG

can serve as an independent predictor of all-cause and

cardiovascular mortality. Toya et al. (39) employ AttiaNet to

establish an association between ECG age and vascular aging by
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highlighting a strong positive correlation between large positive

delta age and peripheral microvascular endothelial function

(PMEF). The results specify that PMEF accompanied by large

positive delta age increases the chances of adverse cardiovascular

events. Benavente et al. (47) estimate the ECG age of Russian

and Norwegian populations using AttiaNet to analyze the

mortality rate in the two countries. The analysis indicates that

increased delta age in the Russian population compared to the

Norwegian population is in alignment with higher CVD

mortality rates in Russia. Wall et al. (48) employ a simple multi-

layer perceptron (MLP) trained using 577 ECG features of

healthy volunteers to estimate ECG age. The authors improve the

effectiveness of neural network training and interpretability

by utilizing the Synthetic Minority Oversampling Technique

(SMOTE) for balancing the dataset and SHapley Additive

exPlanations (SHAP) for computing feature importance. The

discussion emphasized that ECG age can exhibit a reversal

of aging with effective treatment and timely patient care.

Even though these applied studies successfully establish

associations between ECG age and cardiovascular disorders,

the strength association could be increased by improving the

network performance through modifying and tuning

the network architecture and employing robust loss functions

and training routines.

A thorough analysis of the current studies reveals four

significant limitations, with two stemming from the viewpoint of

ECG data acquisition and the other two from the standpoint of

ECG waveform variability and lack of robustness to signal

distortions. The limitations due to ECG data acquisition arise

because existing work ignores the impact of the sampling rate

and signal duration on the predictive ability of neural networks.

The sampling rate determines the density of information carried

in a fixed duration of signal (e.g., a 100 Hz signal contains 100

information points within a 1-s duration), thereby impacting the

morphology of the signals (critically at peak R amplitude).

Similarly, signal duration is another parameter that determines

the amount of temporal information carried by the signals, and

greater temporal knowledge can allow the network to detect

changes in the heart rate (i.e., HRV), abnormal heartbeats, and

rhythms. Hence, it is imperative to ascertain whether the neural

network’s performance for ECG age estimation is subject to

variations due to different sampling rates and signal duration

during training.

Another limitation of deep learning systems for ECG analysis is

their insufficient robustness to variations in ECG morphology

across different ethnic populations and their susceptibility to

systematic and random signal corruptions. Data augmentation

has been heavily employed in mainstream computer vision (e.g.,

horizontal and vertical flipping) and natural language processing

(e.g., synonym replacement) to tackle the challenge of overfitting

by increasing the effective dataset size. For instance, by randomly

flipping the ECG signals across the zero-volt baseline or

reversing the ECG signal, the effective dataset size can be

increased to 4� the original data set size. Consequently,

augmentation techniques have improved neural network

performance in medical imaging (49), drug discovery (50), and
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speech recognition (51). Similarly, ECG augmentation may assist

neural networks in generalizing effectively for small ethnic

populations having limited datasets due to a lack of subjects or

digital transformation. Furthermore, augmentation schemes can

increase instances corresponding to rare CVDs, allowing

networks to learn patterns corresponding to rare disorders.

However, data augmentation techniques have not been employed

in studies estimating ECG age and coping with signal

corruptions and distortions. Therefore, it is important to

determine the impact of different data augmentation routines on

the age estimation performance of the network. Finally, a

significant limitation of existing methodologies is the insufficient

evaluation of network generalizability across diverse ethnic

populations. Hence, it is imperative to determine strategies for

neural network models trained on large ECG datasets for

particular racial populations that can be utilized to estimate ECG

age for different ethnic groups.

In light of these shortcomings in the literature, this paper

conducts an empirical study on the AttiaNet (37) and ResNet1D

(45) architectures that have been popular in the domain for

estimating ECG age and establishing its clinical significance.

Fundamentally, the article has the following key contributions:

1. We analyze the impact of the sampling rate on neural networks

by training the networks at five different data acquisition rates

and comparing their performance to establish a tradeoff

between age estimation performance and signal information

density. In addition, we analyze the impact in terms of

computational cost, RAM, GPU memory utilization, and

storage space requirement for networks across sampling rates

and signal duration.

2. We investigate the degradation in the age estimation

performance with the decrease in temporal information to

determine a threshold for the signal duration that yields

acceptable performance. Furthermore, we examine whether

higher sampling rates can compensate for the loss of

temporal information in the signals.

3. We examine the effect of different ECG augmentation

techniques on network performance and suggest a novel

augmentation routine for ECG age estimation. Additionally,

we explore whether data augmentation could compensate for

the performance loss due to shorter signal duration or

corruption in ECG morphology.

4. We evaluate the feasibility of transfer learning and fine-tuning

as strategies for generalizing across diverse signal morphologies.

Additionally, we analyze the network’s performance by fine

tuning it with datasets of varying sizes. Finally, we compare

the training time and GPU power consumption of the fine-

tuned networks and networks trained from scratch to

showcase an environmentally sustainable pathway for ECG

age estimation.

To the best of our knowledge, this study fills critical gaps in

the literature and allows medical practitioners to use neural

networks to estimate ECG age across diverse sampling rates,

signal lengths, and racial populations encountered at large

hospitals with high racial and ethnic diversity. Furthermore,
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the study serves as a valuable resource for fellow researchers

in this field, clarifying ambiguities and imparting insights,

such as the pivotal influence of data acquisition variables

on network performance. This, in turn, empowers researchers

to make well-informed and judicious decisions for their

future methodologies.

The subsequent sections of the manuscript are structured as

follows: Section “Neural network architectures and empirical

methodology” provides a comprehensive account of the empirical

methodology, encompassing an overview of neural network

architectures, experiment design, and underlying empirical

objectives. Section “Experimental setup” elucidates the experimental

setup detailing the dataset, neural network training and evaluation

routine, evaluation metrics, and implementation details that

facilitate the reproducibility of the results. Section “Results and

discussion” highlights the principal outcomes of the empirical study

and discusses their implication on deep learning methodology

design and prospective clinical applications for ECG age estimation.

Section “Conclusion” provides a synthesis of our findings and

concludes the article.
Neural network architectures and
empirical methodology

One-dimensional CNNs are popular for estimating age from

twelve-lead ECG signals. Early convolutional layers detect

amplitude changes, while deeper layers identify complex patterns

like the QRS waveform. Advantages of convolution kernels over

fully connected networks include shared kernel weights across the

signal and the ability to combine information from multiple leads.

These benefits make one-dimensional CNNs effective at extracting

relevant features from ECG signals. Convolutional features are

stacked along the channel dimension, and pooling operations

reduce the temporal dimension while capturing salient features.

The resulting dense feature map is processed by a multi-layer

perceptron for ECG age estimation. For our preliminary study, we

trained and evaluated the ECG12Net architecture (40) adopted for

the ECG age estimation in the Taiwanese population.

Subsequently, we utilized the widely adopted and commonly used

architectures for ECG age estimation to conduct this study. A

summary of technical terms pertaining to neural networks and

their explanation is provided in the Glossary.
AttiaNet architecture

Attia et al. (37) propose a one-dimensional neural network using

convolutional layers in temporal and spatial domains for effective

ECG feature extraction. The network includes eight temporal

convolutional blocks followed by a spatial convolutional block for

feature fusion across all leads. Each block consists of a

convolutional layer with ReLU activation, batch normalization for

stabilization and generalization, and max-pooling for dimension

reduction. Kernel sizes are adjusted across layers: seven for the

initial block, five for intermediate layers, and three for deeper
Frontiers in Cardiovascular Medicine 04
layers, enabling adjustment in the receptive field of the network as

the feature map dimension decreases. Mathematically, the

fundamental convolutional building blocks of the AttiaNet

architecture can be expressed as follows:

onv mðx; K ; uÞ ¼ ðwi ⊛ x þ biÞ; 81 � i � K; wi [ u; bi [ u
Conv batchnorm mðx; K ; uÞ ¼ ReLUðBNðConv mðx; K ; uÞÞÞ

Conv Block mðx; K; P; uÞ ¼
MaxpoolðConv batchnorm mðx; K ; uÞ; PÞ;

(1)

where the symbol x stands for the input feature map, K represents

the number of convolutional kernels, m is the convolutional kernel

size, and P denotes the size of maxpool window; u encapsulates

the weights and biases of all convolutional kernels. Operator ⊛
defines the one-dimensional convolution operation, wi and bi

represent the weight and bias of the ith convolutional kernel, BN

indicates the batch normalization operation applied to the output

of convolution, and ReLU is the activation function that

introduces non-linearity in the network (Eq. 1).
ResNet1D architecture

Lima et al. (45) adapt the ResNet1D architecture to estimate

ECG age in a Brazilian cohort. Initially, a convolutional block,

similar to AttiaNet, extracts preliminary features, which are then

processed through four residual blocks for advanced feature

extraction. The network uses a large kernel size of 17 to capture

distant temporal relations. The residual blocks reduce the

temporal dimension by a factor of 4 while increasing the channel

dimension by 64. Skip connections are included to minimize

information loss and address vanishing gradients, incorporating

max-pooling and 1� 1 convolutions to align feature map

dimensions. The mainstream network pathway of the residual

blocks comprises two convolutional layers, with each convolution

followed by a dropout layer to reduce potential overfitting.

Furthermore, the skip connection is merged with the mainstream

before the final activation, batch normalization, and dropout to

ensure that the output of the residual blocks is normalized.

Mathematically, the core residual blocks of the ResNet1D

architecture implement the following operations:

Skip Path ¼ Conv 1ðMaxpoolðx; PÞ; C; usÞ
Main Conv 1 ¼ DropoutðConv batchnorm 17ðx; C; u1ÞÞ

Main Conv 2 ¼ Conv 17ðMain Conv 1; C; u2Þ
Resblock Output ¼ DropoutðReLUðBNðMain Conv 2

þSkip PathÞÞÞÞ;

(2)

where the symbol x is the input to the residual block, C indicates

the number of convolutional kernels, P represents the temporal

pooling window length, u1 and u2 are the main stem convolution

kernel parameters, and us is the 1� 1 convolutional kernel

parameter for the skip-connection. Figure 1 provides a visual

overview of the design of the AttiaNet and ResNet1D

architectures in terms of the core convolutional and

residual blocks (Eq. 2).
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FIGURE 1

A visual overview of the (A) AttiaNet and (B) ResNet1D architectures in terms of their fundamental building blocks.
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Empirical methodology design

This subsection describes the motivation, objectives, and details

of the experiments that are part of this empirical investigation.

Sampling rate
One of the key data acquisition parameters for ECG signals is

the sampling rate. ECG sampling rate determines the information

density in a signal within a fixed duration. The sampling rate

parameter must be carefully tuned in the ECG data collection

protocol because a sub-optimal sampling rate may provide

savings in terms of storage space but can negatively impact the

signal morphology and introduce artifacts due to the loss of

high-frequency information (i.e., aliasing). Conversely, ECG

signals captured at a very high sampling rate may have excessive

storage requirements, signal noise, and limited performance

benefits, making the ECG analysis challenging. As a result, the

ECG sampling rate parameter should be thoroughly examined to

assist the researchers in building cutting-edge deep learning

architectures. In order to achieve this objective and ensure the

applicability of our results across diverse neural network

architectures, we employ the AttiaNet and ResNet1D models to

train on 10-s twelve-lead ECG data at both 100 Hz and 500 Hz

sampling rates. Subsequently, we compare the model

performance difference between the two sampling rates

considering the network training time, memory utilization, and

inference time to comprehensively evaluate the impact of the

sampling rate at computation cost.
Frontiers in Cardiovascular Medicine 05
Signal duration
Similarly, ECG signal duration is another parameter that needs

to be carefully selected in the data collection protocol for providing

sufficient temporal information to electrophysiologists for making

effective disease diagnoses. The performance of the neural

network architecture for ECG age estimation may vary based on

the extent of temporal information provided to the model as input.

Longer signal duration encompasses electric impulse information of

multiple cardiac cycles, allowing the networks to adjust the ECG

age for abnormalities like abnormal HRV and arrhythmia.

However, longer ECG signals require a larger storage budget and

computation resources, thereby limiting the widescale adoption of

ECG on consumer machines and mobile devices. In light of this

tradeoff between network performance and computation/storage

requirements, we train AttiaNet and ResNet1D architectures across

five different signal durations (i.e., 2, 4, 6, 8, and 10 s) to establish

a recommended ECG signal length for acceptable ECG age

estimation performance while accounting for network training

time, memory utilization, and inference time. We conduct these

experiments using the 500 Hz sampling rate to minimize the

impact of the sampling rate on the performance of the networks.

Additionally, we analyze whether upsampling short ECG signals

could partially compensate for the loss of temporal information for

the ECG age estimation task.
Data augmentation and signal corruption
Along with the data acquisition parameters, data preprocessing

and data set size (i.e., ECG instances) can significantly impact the
frontiersin.org
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neural networks’ performance. Data augmentation schemes are

popular in mainstream computer vision and natural language

processing to tackle the data-demanding nature of the networks.

These schemes generate additional data instances by applying

transformations or modifications to existing data while retaining

the essential characteristics and structure of the original data,

thereby increasing the effective size of the data, minimizing

overfitting, improving the generalizability, and increasing the

robustness to unseen data. Consequently, designing an effective

data augmentation scheme for ECG age estimation could allow

for significant improvement in the existing networks’

performance or equivalent performance with a smaller data set

size. To determine the augmentation’s impact and identify the

best-performing scheme, we train both AttiaNet and ResNet1D

architectures by individually applying reverse, flip, and

reverse&flip augmentations to every training batch with a certain

fixed probability. Additionally, we analyze the effect of training

the network with arbitrary random crops of ECG signal (say,

k-s) out of the 10-s original signal (sampling rate of 500 Hz),

thereby evaluating the performance uplift for ECG age estimation

with shorter duration ECG signals. Finally, we investigate

whether systemic elimination or corruption of certain ECG

components (e.g., QRS transform, T-wave) due to technical

issues in ECG machines or random loss of signal information

due to poor contact of electrodes can degrade the performance of

neural networks. Subsequently, we examine whether random

crop augmentation schemes can compensate for the loss of signal

information and allow networks to provide acceptable

performance with corrupted ECG signals. For this final

component of the study, we only utilize the AttiaNet model due

to the computationally heavy nature and long training times of

the ResNet1D architecture.

Transfer learning
A key factor that determines the wide-scale adaptability of

neural network-based methodologies is their ability to generalize

on a diverse variety of unseen data. Network generalizability over

diverse ethnic populations is critical in the case of ECG-driven

age estimation and diagnostic tools due to a well-established

correlation between genetic loci and ECG signals (35). Although

prior studies of ECG age estimation have verified the network’s

performance on holdout sets drawn from the same data source

(37) or with external validation sets from the same geographical

region (45), it is essential to establish whether existing pre-

trained models can be employed to estimate ECG age in a

completely different ethnic population. To meet this objective, we

evaluate the performance of the ResNet1D architecture with pre-

trained weights from the CODE cohort study on the PTB-XL

dataset (52). In this empirical investigation, we are compelled to

restrict our experiments to the ResNet1D architecture because

pre-trained weights of AttiaNet on the Mayo Clinic ECG dataset

are not publicly available. One key advantage of neural networks

over conventional machine learning methodology is their ability

to transfer knowledge (i.e., transfer learning) between similar

tasks while working with the same modality of input. We

hypothesize that the ResNet1D architecture with pre-trained
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weights from the CODE cohort study can be fine-tuned to

maximize the performance on the PTB-XL dataset or match the

performance with a significantly smaller portion of training data.

We assess the efficacy of transfer learning in the context of ECG

age estimation by fine-tuning the network with uniformly

sampled fine-tuning training sets of varying sizes. Additionally,

we compare the performance attained by the ResNet1D model

with fine-tuning and scratch training with small training set

sizes, thereby emphasizing the significance of transfer learning

and fine-tuning for developing models which could generalize

over different ethnic populations with limited ECG data. Figure 2

shows the workflow of the ECG age estimation pipeline and the

key objectives of this study.
Experimental setup

In this section, we present vital information about the dataset

for neural network training, the ECG augmentation strategies

and their protocols, and the implementation specifics of the

experiments performed to facilitate the reproducibility of this

empirical investigation.
Datasets and augmentation schemes

The PTB-XL (52) dataset comprises 21,799, 10-s twelve-lead

ECG records of 18,869 patients, obtained using ECG machines

from Schiller AG over seven years (October 1989–June 1996).

Two cardiologists have stratified the ECGs in the dataset into five

superclasses. The metadata of PTB-XL also provides a fold_id for

a 10-fold cross-validation split that accounts for patient-level

splitting, meaning all records of a particular patient are assigned

to the same fold. Table 1 presents the clinical characteristics of

the PTB-XL dataset. For the transfer learning study, we utilize

the weights of ResNet1D architecture trained using the Clinical

Outcomes in Digital Electrocardiography (CODE) cohort

developed by the TeleHealth Network of Minas Gerais (TNMG),

Brazil. The CODE cohort contains a total of 1,558,415 patients

with a mean age of 51:6+ 17:6 years and 40.2% male.

In our study, we employ the ecg_augmentation1 package

written in Python to examine the impact of various

augmentations on the performance of the networks. During

training, each augmentation (i.e., reverse, flip, and reverse&flip)

is applied with a probability of 0.5 to a training batch, allowing

the network to train on the transformed and original signals with

equal likelihood. In contrast, random crop augmentation is

applied with a 100% likelihood to each batch, resulting in a

selection of a k-s patch with an arbitrary starting point that lies

in the range of [0, 10-k]. Random crop augmentation

significantly increases the dataset size by feeding the network
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FIGURE 2

Overview of the ECG age estimation workflow, highlighting the insights gained from this empirical study.

TABLE 1 Clinical characteristics of the PTB-XL (52) dataset.

Characteristic Description
Total ECG Records 21,799

Total Patients 18,869

Gender Distribution 52% male, 48% female

Age Range 0 to 95 years (Median: 62 years, Interquartile Range: 22
years).

Diagnosis Label
Distribution

- Normal ECG (NORM): 9,514 records
- Myocardial Infarction (MI): 5,469 records
- ST/T Change (STTC): 5,235 records
- Conduction Disturbance (CD): 4,898 records
- Hypertrophy (HYP): 2,649 records

ECG Statement
Annotations

Annotated by up to two cardiologists; 71 different ECG
statements conforming to the SCP-ECG standard
(diagnostic, form, rhythm).

Data Acquisition Standard set of 12 leads with reference electrodes on the
right arm. Metadata on age, sex, weight, height.
Annotations with SCP-ECG statements, heart axis,
infarction stadium.

Data Validation Large fraction of records validated by a second
cardiologist and a technical expert focusing on signal
characteristics.

Data Preprocessing Personal information pseudonymized. Age recorded in
compliance with HIPAA standards.

File Format WaveForm DataBase (WFDB) format. 16-bit precision at
1V/LSB resolution.

2https://pytorch.org/.
3https://github.com/antonior92/ecg-age-prediction.
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with a different segment of the 10-s signal at every epoch. We

ensure that these augmentations are applied across the twelve-

lead, thereby ensuring that the network receives a temporally

correct and consistent order of information from all leads. On

the other hand, the experiments evaluating the impact of

corrupted signals employ feature masks (i.e., PR, QRS, and QT

masks) or random masks, which are applied with a probability of
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0.25 to each lead. Independent application of masks to the ECG

leads forces the networks to utilize the information in

uncorrupted leads, thereby preventing the network from relying

on particular ECG leads.
Implementation details

The study utilized Python to evaluate the impact of data

acquisition parameters, network training, and generalizability.

The networks are implemented using PyTorch (version 1.9),2

while the utility functions are provided by Pandas, Scipy, and

Matplotlib. Specifically, the AttiaNet is implemented from scratch

using the details provided in the manuscript. The source code

and pre-trained weights of ResNet1D architecture are obtained

from the open-source GitHub repository.3 Before initiating the

experiments, the WFDB files for 100 Hz and 500 Hz ECG

signals in the PTB-XL dataset are converted into NumPy arrays

and loaded into the system memory to minimize the I/O during

network training and evaluation, thereby minimizing disk load

and seek times. The Numpy arrays are fed to a custom PyTorch

Dataset module to apply augmentations with a fixed probability to

training batches. PyTorch Datasets are forwarded to PyTorch

Dataloader to generate data batches using multiple CPU cores,

thereby maximizing GPU utilization during training and

minimizing training times. Mean square error is used as a loss
frontiersin.org
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function to quantify the discrepancy between the network-generated

ECG age and the chronological age. Subsequently, the Adam

optimizer is utilized to update the network weights based on the

loss function. The networks are trained for 200 epochs with a

batch size of 96 and an initial learning rate of 0.001. A learning

rate scheduler decreases the learning rate by a factor of 10 after

every 80 epochs, allowing the networks to converge effectively.

During the training, the network weights are saved for epochs that

result in a minimum mean square error on the holdout validation

set. To robustly evaluate the objective of our experiments, the

networks are trained with 10-fold cross-validation labels provided

in the PTB-XL dataset, and the best weights are saved for every

fold. The provided test errors in the results section are the average

of the 10-fold, thereby adding to the confidence and robustness of

the outcomes of this empirical investigation.

The details pertaining to the individual experiments are as follows.

In order to investigate the impact of data acquisition parameters,

intermediate sampling rates (i.e., 200, 300, and 400 Hz) are generated

by applying interpolation schemes on the 100 Hz ECG signals. To

determine the impact of temporal duration on the network

performance, the first k-s (i.e., k ¼ 2; 4; 6, and 8) of the 10-s signal

are used to train, validate, and test the neural networks. To evaluate

the generalizability of the pre-trained network, we use ResNet1D

architecture with CODE cohort weights during the network

evaluation. To finetune the ResNet1D architecture, the convolutional

layers until the third residual block are frozen, thereby allowing the

training of the fourth residual block and fully connected layer.

Neural network training and evaluation are performed on a

supercomputing cluster provided by Texas A&M High-

Performance Research Computing. Specifically, a node

comprising 16 CPU cores, 64 GB of system memory, and an

Nvidia T4 GPU with 16 GB of VRAM is utilized for running the

experiments.
Evaluation metrics

We evaluate the performance of the ECG age estimation

networks with the following well-known metrics for regression:

• Mean square error (MSE): The error is computed by taking the

square of the difference of the ECG estimated age and

chronological age averaged across all the instances in the

dataset. MSE is often used in our experiments to compare the

accuracy of different networks trained with varying data

acquisition parameters and augmentation schemes.

• Mean absolute error (MAE): The error is computed as the

absolute difference between ECG age and chronological age.

MAE is preferred to interpret the variations in ECG age

estimated by the networks.

• Training and inference time: The training time per epoch and

inference time for the entire test set is reported in seconds to

compare the operational efficiency of the neural networks

both during the re-training phase and deployment.

• Disk and VRAM utilization: Storage requirement for storing

the the neural network parameters along with VRAM
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utilization is reported in MBs to clarify the hardware

requirements for the training and deployment of the networks.

• Parameter count and multiplications-additions: Number of

trainable and non-trainable weights of the networks along

with the count of multiplications and additions is reported to

measure the computational complexity.

Results and discussion

In this section, we present the results of the four empirical

investigations and discuss their impact on future deep learning-

based methodologies for ECG age estimation. Our preliminary

experiments with ECG12Net architecture proposed for the

Taiwanese population resulted in a test MSE of 117.14 on the

PTB-XL dataset. The limited performance of the ECG12Net

architecture is due to overfitting caused by a large number of

parameters in the network backbone. We observed the ResNet1D

architecture has relatively fewer parameter and has been robustly

evaluated on multiple ECG datasets for the South American

population. Consequently, for this empirical study, we have

utilized AttiaNet and ResNet1D architectures over the ECG12Net

due to their superior age estimation performance.
Impact of sampling rate

In this first empirical study, we evaluate the impact of ECG

sampling rate on the performance of the neural networks

considering computational cost, VRAM and disk utilization, and

inference times. Figure 3A presents the variations in the train and

test MSE for the AttiaNet and ResNet1D architectures across

sampling rates ranging from 100 Hz to 500 Hz. A high-level

analysis of the line plot indicates that both train and test MSE

show an overall decreasing trend as the sampling rate increases

from 100 Hz to 500 Hz. For AttiaNet architecture, train MSE

decreases from 152.7 to 129.4 as the sampling rate increases.

However, the train MSE remains higher than the test MSE,

suggesting a potential underfitting due to a simplistic 1D CNN

design of the AttiaNet architecture. The dotted line highlights that

AttiaNet experiences a sharp drop in MSE (i.e., improvement in

age estimation) as the sampling rate increases from 100 Hz to 200

Hz, followed by a plateau at 300 Hz and a gradual decrease at

higher sampling rates. Overall, as the sampling rate increases from

100 Hz to 500 Hz, the test MSE decreases from 112.7 to 102.1,

resulting in a 9.4% improvement in performance.

For ResNet1D architecture, train MSE remains below the test

MSE for all sampling rates, thereby overcoming the issue of

underfitting experienced by the AttiaNet architecture. At 100 Hz,

the significant gap between the train and test MSE for the

ResNet1D architecture implies that the network is overfitting the

data due to low information density (1,024 data points) and high

parameter count (6.94 million). Increasing the sampling rate, the

test MSE decreases sharply from 148.4 to 108.8 (26.6%

improvement) at 200 Hz and reaches a minimum of 103.4 (30.3%

improvement) at 300 Hz. Interestingly, the performance of the

ResNet1D architectures diverges from the minima as the sampling
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FIGURE 3

(A) Line plot highlighting the trends in train and test MSE for the AttiaNet and ResNet1D architecture across the five different sampling rates. (B) Line
plot highlighting the trends in train and test MSE for the AttiaNet and ResNet1D at 500 Hz when trained with signals of different lengths.
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rate increases further to 500 Hz. This divergence in the performance

is due to the design of the ResNet1D top, which directly connects the

output of the 1D convolution to the linear output unit. As the

sampling rate increases by 100 Hz, the data points in the signal

grow by 1,024 units, resulting in increasingly longer feature maps

at 400 Hz and 500 Hz. After the final convolutional layer, the

flattened feature maps are directly connected to the output neuron,

creating an information bottleneck, which results in performance

degradation. Nevertheless, AttiaNet and ResNet1D architectures

benefit significantly from the higher sampling rates between 300

and 500 Hz.

Tables 2 and 3 provide an overview of several important

measures for evaluating the AttiaNet and ResNet1D

architectures, including parameter count, computational cost,

disk and VRAM utilization, as well as training and inference

times. We note that the parameter count for AttiaNet (ranging

from 593.5 k to 599.6 k) and ResNet1D (ranging from 6.94 M to

7.02 M) models grow slightly with the sampling rate because of

the increasing feature map length at the output of the

convolutions, thereby requiring more weights to connect to the

fully connected layers. Nevertheless, the parameter count change

across sampling rates has a negligible impact on disk utilization

(less than 1 MB). Despite having approximately 12 times fewer

parameters and disk utilization (599.6 K occupying 2.4 MB)

compared to ResNet1D (7.021 M occupying 28.09 MB), the

AttiaNet architecture yields significantly lower test MSE at 500

Hz, indicating the effectiveness of lightweight and streamlined

architectures for ECG age estimation tasks. The substantial
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discrepancy in the parameter count across the two architectures,

along with the large kernel size utilized in ResNet1D (k ¼ 17),

makes ResNet1D 458� (at 500 Hz) more computationally

expensive compared to the AttiaNet in terms of the number of

floating point multiplicative and additive operations in the

forward pass. Consequently, the practical application of the

ResNet1D architecture is limited to machines with high

computational capacity and modern GPUs. Furthermore, the

ResNet1D necessitates of extensive GPU memory allocation for

storing kernels and feature maps during forward and backward

propagations, resulting in nearly 6 GB of VRAM utilization

(21� higher). In contrast, AttiaNet training requires less than

300 MB VRAM, rendering it feasible to train on older GPUs

with smaller VRAMs or even CPUs. The reduced computational

cost and VRAM utilization enable AttiaNet to complete an

epoch of over 16,000 ECG instances in just 4.1 s, while the

ResNet1D architecture takes 245 s (at 500 Hz). Notably, the

training of ResNet1D using tenfold cross-validation (200 epochs

per fold) on T4 GPUs (power rating of 70 Watts) consumes 136

h and 9,527 watt-hours of energy, whereas training AttiaNet

takes 2.27 h and consumes 160 watt-hours of energy (60� less).

Hence, AttiaNet emerges as the sustainable choice for ECG age

estimation. Moreover, the AttiaNet architecture demonstrates up

to 2:7� faster performance at 100 Hz and 5� faster at 500 Hz

compared to ResNet1D when performing test set inference on a

GPU. The gap in inference times widens further on the CPU,

with AttiaNet being 41� faster at 100 Hz and 76� faster at 500

Hz relative to the ResNet1D model.
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TABLE 3 A tabular synopsis outlining the training duration per epoch, inference times for test set, disk and VRAM consumption, as well as the
computational expenses incurred by ResNet1D across various sampling rates.

Sampling
Rate (Hz)

Training
time (s)

Inference
GPU (s)

Inference
CPU (s)

Parameter
Count

Disk
Utilization

(MB)

Forward/
Backward Pass
Memory (MB)

Estimate
VRAM Usage
w/Input (MB)

Multiplications-
additions (G)

100 51 0.27 11.17 6,940,065 27.76 1,210.32 1,242.80 143.97

200 109 0.49 23.34 6,960,545 27.84 2,420.64 2,457.92 287.94

300 175 0.71 36.65 6,981,025 27.92 3,630.96 3,673.04 431.91

400 195 1.03 48.72 7,001,505 28.01 4,841.28 4,888.16 575.88

500 245 1.28 62.38 7,021,985 28.09 6,051.60 6,103.28 719.85

TABLE 2 A tabular summary of training time per epoch, inference times for test set, disk and VRAM utilization, and computational cost of AttiaNet across
different sampling rates.

Sampling
Rate (Hz)

Training
time (s)

Inference
GPU (s)

Inference
CPU (s)

Parameter
Count

Disk
Utilization

(MB)

Forward/
Backward Pass
Memory (MB)

Estimate
VRAM Usage
w/Input (MB)

Multiplications-
additions (G)

100 1.71 0.10 0.27 593,505 2.37 63.01 70.11 0.35

200 2.97 0.11 0.40 595,041 2.38 113.15 124.97 0.66

300 2.84 0.13 0.51 596,577 2.39 163.28 179.83 0.96

400 3.17 0.18 0.64 598,113 2.39 213.42 234.69 1.26

500 4.10 0.25 0.82 599,649 2.40 263.55 289.55 1.57
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We plot the MSE curves of the best-performing AttiaNet@500

Hz and ResNet1D@300 Hz architectures to investigate the

differences in the learning ability between the two different

neural network architectures. Additionally, we examine the

chronological age distribution of the train set for the first fold of

the tenfold cross-validation process to deduce meaningful

insights from the test set inference. Specifically, Figure 4A

highlights that the ResNet1D architecture achieves sub-500 train

and validation MSE as early as the second epoch, indicating its

higher capacity and ability to learn rapidly due to the large

parameter count. In contrast, the AttiaNet architecture requires

up to five epochs to attain a comparable MSE for the training

and validation sets. Notably, the MSE curves for AttiaNet exhibit

a smoother trajectory than those of ResNet1D. This smoother

behavior can be attributed to the smaller parameter count of

AttiaNet, which mitigates the inclination to overfit the training

data, thereby facilitating a more stable training process. Analysis

of Figure 4B reveals that the training set distribution is centered

around 60 years, with most subjects between 40 and 80 years in

the PTB-XL dataset. The train set distribution is left-skewed

because of the presence of a few subjects in the range of 20 and

40 years. Corresponding to the train set, we observe that the

chronological age distribution of the test set for the first fold is

59:7+ 16:79 years, suggesting that the train and test share

similar distributions. AttiaNet@500 Hz results in MAE of

7:80+ 6:53 years, with the ECG age distribution of

59:79+ 13:61 years. Similarly, ResNet1D@300 Hz results in an

MAE of 7:88+ 6:91, with the ECG age distribution of

61:14+ 14:57 years. We can deduce that the mean of the

chronological age and ECG age distributions overlap better for

the AttiaNet inference relative to the ResNet1D. Nevertheless,

ResNet1D architecture results in a broader distribution (i.e.,

standard deviation closer to the chronological age) than the

distribution generated by AttiaNet. The overall lower variability
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of the ECG age distribution compared to the chronological age

distribution is due to the unbalanced nature of the train set for

the subjects between 20 and 40 years, biasing the models to

predict ECG ages closer to the center of the distribution.

Interestingly, the MAE errors achieved by the models on the

PTB-XL dataset are better compared to the ResNet1D on CODE-

15% (53), ELSA-Brasil (54), and SaMi-Trop (55), which yielded

MAE values of 8:38+ 7:00, 8:44+ 6:19, and 10:04+ 7:76 (45).

Moreover, the MAE values are also similar to those reported by

Attia et al. (37) for the Mayo Clinic ECG dataset (6:9+ 5:6)

with the AttiaNet model. Altogether, the superior performance of

the AttiaNet model over the ResNet1D architecture, while

providing benefits in terms of computational complexity, disk

and memory utilization, power consumption, and inference time,

highlights the potential of neural networks for ECG age

estimation on low-power mobile devices deployable on old

clinical machines to smartwatches.
Impact of signal duration

Figure 3B displays the line plots corresponding to the train and

test MSE for the AttiaNet and ResNet1D model for durations

ranging from 2 to 10 s. For the AttiaNet architecture, we observe a

significant increase in the MSE (6.5% decrease) as the signal length

decreases from 10 to 8 s. The MSE plateaus as the signal length

decreases to 6 s and then increases linearly with further reduction

in signal duration to 4 (4.1% decrease) and 2 (6.8% decrease)

seconds. Altogether, the test MSE increases significantly from

102.09 to 121.96 (19.6% increase) as the signal length decreases

from 10 to 2 s, indicating that signal duration is determining

parameter for the AttiaNet architecture. Interestingly, the test set

performance of the ResNet1D architecture remains unchanged with

the initial changes in the signal duration. The test MSE for this
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https://doi.org/10.3389/fcvm.2024.1424585
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

(A) Trends in the losses across the first twenty epochs of AttiaNet@500 Hz and ResNet1D@300 Hz for the first cross-validation fold. (B) Density plot of
Ages in the training set for the first cross-validation fold.
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architecture hovers around 110 as the signal duration decreases from

10 to 6 s. As the signal duration decreases to 4 s, the test MSE

increases to 115.43 (4.7% increase) and continues to plateau for the

2 s signal length, indicating that 6 s signal length is the elbow

threshold for the large neural networks for ECG age estimation.

Overall, the ResNet1D architecture experiences a 4.7% increase in

the test set MSE relative to 19.6% of the AttiaNet architecture,

indicating that high parameter count and sophisticated network

modules can assist networks in estimating ECG with minimal

degradation (i.e., increased robustness) in performance with

shorter-length ECG signals. These observations pertaining to the

performance of the AttiaNet and ResNet1D architectures are in

line with the law of robustness proved by Bubeck et al. (56), which

states that the over-parametrization (e.g., high parameter count of

ResNet1D) is necessary for smooth interpolation of the data and

effective generalization. Moreover, we note that the test set MSE

nearly overlaps for both the architectures for the intermediate

signal durations (i.e., 4–8 s), emphasizing the potential of

lightweight neural networks for ECG age estimation given sufficient

temporal information.

The computational costs, disk and VRAM utilization, and

inference times presented in Tables 2 and 3 hold relevance both

for specific sampling rates (i.e., 100-500 HZ) and for different

signal lengths (i.e., 2–10 s). ECG signals with a duration of 2 to

10 s, sampled at 500 Hz, encompass data points ranging from

1,024 to 5,120, which is equivalent to the 10-s signal with

sampling rates varying in the range 100–500 Hz. For the

AttiaNet architecture, 10-s ECG signal results in the lowest test

MSE, implying that the model requires the storage of high-

fidelity (i.e., 500 Hz) full-length (i.e., 10-s) ECG signal for precise

ECG age estimation but provides computational savings, faster
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inference time, and lower VRAM utilization. Thus, AttiaNet

could be deployed on mobile devices, clinical computers, and

ECG machines with low computational capacity in developing

countries, refugee camps, and war-prone regions. In contrast,

ResNet1D architecture performs best with a 6-s ECG signal,

thereby providing disk space savings in storing the ECG signals

(i.e., 3,072 data points instead of 5,120) but having several times

higher computational costs, VRAM utilization, and inference

times. Consequently, ResNet1D can only be deployed on

powerful computers with high computational capacity and

dedicated GPUs while allowing minimal disk utilization.

As an alternative approach, we hypothesize that upsampling

the shorter ECG signals to encompass an equivalent number of

data points as in a 10-s signal at a sampling rate of 500 Hz can

compensate for the lack of temporal information. In order to test

this proposition, we trained the AttiaNet and ResNet1D

architectures with shorter signals (i.e., duration ranging from 2 to

8 s) upsampled to 5,120 data points. Figure 5 highlights the

performance of AttiaNet and ResNet1D architectures at different

signal durations at native and upsampled sampling rates. We

observe that upsampling the shorter signal improves the train

MSE for both architectures, indicating that higher signal density

improves the memorization on the train set. For the AttiaNet

architecture, the test MSE line with upsampled signal closely

follows the one with a 500 Hz sampling rate, with slight

deviations at 6 and 8 s signal lengths, suggesting a lack of

improvement in generalizability. Interestingly, we observe a slight

degradation in model performance with the ResNet1D

architecture at shorter signal durations due to the information

bottleneck created at the output neuron from larger feature maps

generated from signals with 5,120 data points at the final
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FIGURE 5

Comparison of train and test set performance for different durations of native and upsampled ECG signals for AttiaNet (A) and ResNet1D (B)
architectures.
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convolution layer. At signal lengths of 4 s, ResNet1D achieves a

much better train MSE minima, resulting in a slight

improvement in test MSE over the signal sampled at 500 Hz.

However, this phenomenon is an anomaly and is not observed in

other signal durations, leading to the conclusion that upsampling

short-duration signals does not improve the generalizability of

the ECG age estimation networks.
Impact of data augmentation

In this empirical study, we analyze the impact of different ECG

signal augmentation schemes on the neural network’s performance

for the ECG age estimation task. An effective augmentation scheme

can allow neural networks to reduce the extent of overfitting and

improve the generalizability of the unseen data. Figure 6 shows

the variations in train and test MSE for the AttiaNet and

ResNets1D architecture for two sampling rates across different

simple augmentation schemes. Analysis of the increasing train

MSE for both architectures suggests that augmentation schemes

make the training routine challenging for the network by

increasing variability in the batches at random. Specifically, the

combination of flip and reverse augmentations significantly

increases the dataset complexity, resulting in a higher train MSE

relative to the baseline. Figure 6A indicates that the test set

generalizability for the AttiaNet architecture does not improve

with the flip or reverse augmentation application. Interestingly,

the combination of flip and reverse results in an increase in
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MSE. Given that the network learns to identify anomalies

throughout the signal, reversing the temporal information does

not create a new pattern from the signal. Similarly, flipping the

signal can be handled by adjusting the signs of the individual

kernel weights. Nevertheless, the complexity of training increases

due to the arbitrary application of the augmentation on the

batches. Figure 6B reveals that the test MSE of ResNet1D follows

a similar trend as the AttiaNet at 500 Hz. In this case, we note

that flip, flip&reverse augmentations appear to improve the

performance of the ResNet1D at 100 Hz. This phenomenon can

be explained due to heavy overfitting of the ResNet1D at 100 Hz,

which decreases with the increased complexity of the dataset with

flip & reverse augmentation. Altogether, based on the proposed

metrics and testing data sets, simple augmentation schemes like

flipping and reversing signals do not seem to improve the accuracy

capability of the network to estimate ECG age
Impact of signal corruption

In the subsequent study, we analyze the effect of systematic and

random signal corruption of some leads due to faults in the ECG

machines or loose placement of electrodes. Figure 7A shows the

performance of AttiaNet architecture under different signal

corruption schemes. The training error of the network increases

significantly at 100 HZ relative to 500 Hz because of the lower

information density. Specifically, the feature corruption at 100 Hz

leads to higher information loss because the remaining signal has
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FIGURE 7

(A) Impact of different signal corruption schemes on the performance of the AttiaNet architecture at 100 and 500 Hz (B) Feasibility of random crop
augmentation to overcome the corruption in ECG signals.

FIGURE 6

Impact of flip, reverse, and flip&reverse augmentation schemes on the performance of the AttiaNet (A) and ResNet1D architectures (B) at 100 and
500 Hz.

Ansari et al. 10.3389/fcvm.2024.1424585

Frontiers in Cardiovascular Medicine 13 frontiersin.org

https://doi.org/10.3389/fcvm.2024.1424585
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Ansari et al. 10.3389/fcvm.2024.1424585
a lower signal density. At 100 Hz, the test set MSE also increases to

121.59 (8.4% increase) with the QRS corruption and similar values

with PR and QT corruptions. Interestingly, the degradation in the

performance is least with the corruption of the signal at random

locations, indicating that systematic loss of ECG morphological

features impacts the network performance severely relative to

arbitrary information loss. Surprisingly, at 500 Hz, most signal

corruption schemes result in similar or improved performance in

terms of the MSE. This observation can be explained by the

higher signal density in the remaining portion of the signal that

the network can utilize to estimate the age. Furthermore,

arbitrary corruption of leads decreases the dependence of the

network on specific leads. Consequently, signal corruption at

higher sampling rates plays the role of an implicit dropout

scheme at the data level, forcing the network to extract relevant

information from all signal segments.

Finally, we implement a random crop augmentation scheme to

improve the network’s performance for the ECG age estimation

while using shorter-length signals. We restrict our experiments to

AttiaNet due to the computationally heavy and time-consuming

nature of ResNet1D architecture. Figure 7B show the

performance of the AttiaNet architecture at 500 Hz, which is

trained with random crops of the fixed window length ECG

signal. Analyzing the results of the uncorrupted signal (i.e.,

complete signal) reveals that random crop enhances the

performance across different window lengths (i.e., ranging from

two to eight seconds). Maximum performance improvement is

observed for 8-s random crops with an MSE of 93.01 (8.8%

improvement), followed by the shorter window lengths. This

increased performance of AttiaNet with random crops is because

the network is fed with a slightly different portion of the original

10-s signal at every epoch, thereby forcing the network to extract

relevant information depending on the portion of the signal,

resulting in improved generalizability. Even the network trained

with a 2-s random crop outperforms (99.22 MSE, 2.8%

improvement) the best results of AttiaNet trained with the 10-s

signal. These results indicate that random crop enables the

network to provide improved performance with shorter signals (5

times disk space saving with 2-s signals) and reduced

computational cost during the inference stage. Figure 7B also

validates that the performance uplift provided by the random

crop is invariant to the systematic and random corruptions in

the ECG signal. Overall, the random crop is a robust ECG

augmentation scheme that improves performance with complete

and corrupted ECG signals.
Impact of transfer learning

In this empirical study, we explore the applicability of existing

networks trained on a specific ethnic population for accurately

estimating the age of ECG signals from a different ethnic group.

Additionally, we investigate the effectiveness of transfer learning

and finetuning techniques in enabling neural networks to

generalize across ethnic groups, particularly in scenarios of

limited data availability. To conduct the experiments, we utilize
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the ResNet1D@400 Hz architecture since pre-trained weights for

the AttiaNet architecture on the Mayo Clinic dataset are not

accessible. Evaluation of ResNet1D@400 Hz across the ten test

folds with pre-trained weights results in the test MSE of 154.2,

which is significantly higher than the 104.6 (47.4% increase)

achieved from scratch training on the PTB-XL dataset. These

findings suggest that using a pre-trained network based on the

Brazilian population may not yield precise ECG age estimation

for individuals belonging to a German ethnic group.

Figure 8 depicts the variation in the train and test MSE of the

ResNet1D architecture at 400 Hz during scratch training

(Figure 8A) and fine tuning (Figure 8B) with different sizes of

training sets to simulate scenarios where data availability is

limited. We observe that finetuning with 50% of the whole train

set size (i.e., 8,000 instances) results in the test set MSE of 111.04

(6% increase over scratch training with the entire train set). To

emphasize the advantages of finetuning, we retrain the

ResNet1D@400 architecture by successively reducing the training

set size by a factor of two. Interestingly, the test MSE increases

to 115.1 at the train set size 1,000 and plateaus at 118 for small

train set sizes of 125–250. Specifically, we decrease the train set

size from 16,000 to 125 (128� decrease), and the test MSE

increases from 104.6 to 118 (12.8% increase), highlighting the

significance of fine tuning for the ECG age estimation task. As a

direct implication of these results, neural networks trained on

large ECG datasets (e.g., CODE cohort) can be fine tuned to

estimate ECG age for the populations of developing countries,

refugee camps with different ethnic groups, and war-prone

regions, where large ECG datasets may not be available due to

lack of digital transformation, infrastructure, and access to

computing. In contrast, training the ResNet1D@400 Hz

architecture from scratch with smaller training sets substantially

increases the train and test MSE. For instance, decreasing the

train set size from 16,000 to 8,000 leads to a test MSE increase

from 104.6 to 132.13 (a 26.3% increase), further rising to 151.33

at 4,000 instances. As the train set size continues to decrease, the

test MSE shows an approximate increase of 35 points.

Consequently, there is a notable disparity in the test set MSE

between fine tuning and scratch training, particularly for train set

sizes below 2,000 instances. Figure 8 also illustrates a sharp

increase in the train MSE at the train set size of 250 instances.

The random selection of difficult ECG instances (i.e., containing

high baseline wander and electrical equipment noise) instances

out of the entire train set could cause this anomaly. Nevertheless,

higher train set MSE does not influence the test MSE trend for

scratch training and finetuning scenarios.

One of the primary concerns surrounding neural network-

based methodologies is their environmental impact, particularly

due to the substantial electrical power consumption during

prolonged training periods (57, 58). In this context, we suggest

that transfer learning and fine tuning offer can be additional

factors to mitigate the training times and power consumption of

large neural networks without significant performance

degradation. Table 4 presents the training times per epoch and

for ten-fold cross-validation, along with the net energy

consumption for finetuning and scratch training scenarios across
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TABLE 4 Tabulation of training times per epoch and across 10-folds along with GPU energy utilization for the finetuning and scratch training scenarios.

Train
Set Size

Finetune
Epoch Time (s)

Finetune Total
Time (min)

Fine Tune Power
Consumption (Wh)

Scratch Training
Epoch Time (s)

Scratch Training
Total Time (min)

Scratch Training Power
Consumption (Wh)

8,000 8.90 296.50 345.92 43.42 1,447.27 1,688.48

4,000 4.72 157.27 183.48 21.86 728.73 850.19

2,000 2.52 83.83 97.81 12.30 409.93 478.26

1,000 1.49 49.80 58.10 7.56 251.83 293.81

500 0.76 25.30 29.52 3.44 114.63 133.74

250 0.28 9.43 11.01 1.46 48.50 56.58

125 0.19 6.47 7.54 0.68 22.67 26.44

FIGURE 8

Comparison of train and test set performance for different train set sizes for the ResNet1D@400Hz with finetuning (A) and scratch training (B).
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various train set sizes. We can deduce that scratch training takes

3:5� the time for the smaller train sets (e.g., 125 instances) and

up to 5� the time for the large train sets (e.g., 1,000–8,000

instances) relative to finetuning. The significant discrepancy

between the two training regimes arises because finetuning

updates the weights of the final residual block and the fully

connected layer, thereby training less than half the total

parameters of the ResNet1D architecture (i.e., 3.22 M). Due to

the finetuning regime’s shorter per epoch training times, a ten-

fold cross-validation experiment for train set sizes of 1,000 or

less can be completed in less than 50 min. Correspondingly, the

scratch training regime can take over 4 h to train on 1,000 ECG

instances. As a result, shorter finetuning times enable deep

learning practitioners to retrain the model frequently,

incorporating newly available ECG instances into the existing

training set to account for any biases in the network. Another
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implication of the longer training times in the scratch training

regime is significantly higher energy consumption. Specifically, a

tenfold cross-validation experiment with 8,000 instances takes

nearly a day to complete and consumes 1,688.48 Wh of energy.

Recent studies have shown that energy consumption per

household in the rural areas of developing countries like India is

around 1,000 Wh per day (59), highlighting the power-hungry

nature of deep learning methodologies. In comparison, the fine

tuning regime for a dataset size of 8,000 consumes 345.92 Wh of

energy (4:9� lesser energy consumption). As a crucial outcome

of this experiment, we can infer that fine tuning large neural

networks is an environmentally sustainable approach that can

provide similar performance to the scratch training regime while

utilizing smaller train set sizes and having shorter training times,

allowing the usage of large networks for ECG age estimation in

developing countries and war-prone regions with energy scarcity.
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Summary and impact of key outcomes

Determination of ECG acquisition parameters for acceptable

ECG age estimation substantially impacts future research

methodologies and practical utilization of ECG age in clinics. The

outcome of the first experiment suggests that higher sampling

rates ranging from 300 Hz to 500 Hz result in significantly better

estimation of ECG age in terms of MSE for both neural networks.

However, over-parametrized neural networks (e.g., ResNet1D)

with high capacity can rapidly learn to estimate ECG age but may

not result in the lowest MSE. Thus suggesting that lightweight

networks (e.g., AttiaNet) can effectively estimate ECG age while

providing computational and power savings (by up to 60�),

highlighting the feasibility of ECG age estimation on ECG

machines and personal smartwatches. The second investigation

indicates that reducing signal duration can degrade neural network

performance for ECG age estimation. Nevertheless, high-capacity

(i.e., large number of parameters) neural networks (e.g.,

ResNet1D) are more robust to fluctuations in performance due to

changes in ECG signal length. Interestingly, artificially upsampling

shorter ECG signals improves the network’s performance on the

train set without improving test set generalizability. Altogether,

these experiments emphasize the significance of ECG acquisition

parameters for ECG age estimation while providing the trade-off

between computational cost and network performance when

working with different acquisition parameters. Consequently,

researchers can utilize ECG signals with a duration between 6 and

10 s captured at sampling rates between 300 and 500 Hz to

develop models for ECG age, depending on their computational

budget. In clinical practice, physicians can utilize existing ECG

records with the above-mentioned acquisition parameters to

accurately generate ECG age estimates with lightweight networks

on low-computation mobile devices.

Transfer learning/fine tuning and ECG augmentation schemes

can significantly improve the performance of neural networks for

ECG age estimation. The third study validates that pre-trained

neural networks for ECG age estimation of a different racial

demographic may result in higher error (i.e., MSE) relative to

scratch training due to the genetic underpinning of ECG and

variations in clinical parameters. Nevertheless, finetuning pre-

trained networks with substantially smaller train sets (i.e., several

folds smaller) results in ECG estimation MSE within 10% of the

scratch training. The finding suggests that ECG age can be made

available in developing countries, war-prone regions, and refugee

camps, where large-scale ECG datasets are not available due to

the lack of digital infrastructure and financial resources.

Furthermore, finetuning is environmentally sustainable for large

neural networks, resulting in approximately five times less power

consumption. Consequently, researchers should train their future

novel architectures on large-scale datasets and share the weights

with the open-source community so that the networks can be

finetuned for different ethnicities while promoting sustainability.

The fourth study shows that ECG augmentation schemes such as

flipping and reversing do not improve network MSE for ECG

age estimation. Additionally, systematic and random signal

corruption can degrade the performance of networks at lower
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sampling rates while serving as data dropout schemes at higher

sampling rates. Nevertheless, random cropping is a robust

augmentation scheme that boosts networks’ ECG age estimation

performance with shorter and corrupted ECG signals.

Even though the empirical study is thorough and

comprehensive, it has some inherent limitations. The range of

sampling rates evaluated in this study is between 100 and 500

Hz for the 10-s ECG signal. Evaluation of neural networks with

higher sampling rates (e.g., 1,000 Hz) and longer signal

duration (i.e., 20–30 s) would have provided additional insights

to medical practitioners and enabled them to work with

highest-end ECG configurations. Furthermore, the

generalization study has been conducted for the Brazilian and

German populations. Additional investigation is needed for

generalization to African and South Asian populations. These

limitations arise due to the lack of availability of ECG datasets

for Asian and African populations with high sampling rates and

long signal duration.

This empirical study focused on the impact of ECG acquisition

parameters on the performance of neural networks for ECG age

estimation. Specific thresholds for the acquisition parameters may

vary from ECG age estimation to CVD diagnosis tasks because

cardiac abnormalities reflect in individual waves of the ECG

waveform. In future, we plan to extend this study to evaluate the

impact of ECG acquisition on different CVDs, including

arrhythmia and myocardial infarction. Additionally, we plan to

modify the AttiaNet architecture to maximize its efficiency in

terms of VRAM and disk utilization to deploy it on wearable

devices such as Fitbits and smartwatches. Subsequently, we will

evaluate the clinical utility of ECG age by utilizing the variations

in ECG age extracted from routine ECG signals for hypertrophic

cardiomyopathy in young athletes.
Conclusion

In this paper, we conduct comprehensive experiments on

cutting-edge neural network architectures for ECG age estimation

to understand the significance of data acquisition parameters,

data augmentation, and transfer learning. The study reveals that

the performance (in terms of MSE, MAE) of the tested neural

networks for ECG age estimation degrades with sampling rates

below 200 Hz. This would suggest that a 300–500 Hz signal

sampling frequency is necessary for accurate estimation.

Expectedly, the performance of the tested networks degrades

with the decrease in temporal information, especially with signals

less than four seconds. Nevertheless, large neural networks are

more robust to decrease in ECG signal duration. The study to

analyze the performance of pre-trained and finetuned models

revealed that transfer learning enables similar performance as

scratch training with a fraction of the dataset size while being

sustainable and environmentally friendly in terms of power

consumption. Finally, we suggest the random crop data

augmentation scheme that provides a 9% improvement in error

relative to the best-performing model without ECG augmentation

while using shorter duration signals.
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Glossary: Technical terms and their explanations.
One-dimensional CNNs
Frontiers in Cardiovascular Me
Neural networks that use one-dimensional convolutional layers to process sequential data for feature extraction
and analysis.
Convolutional Layer
 A neural network layer that applies convolution operations to input data, detecting patterns such as amplitude
changes in signals.
Convolutional Kernels
 Filters used in convolutional layers to scan input data for specific patterns, allowing for shared weights and
efficient feature extraction.
Kernel Size
 The size of the filter used in convolution operations, affecting the receptive field and the type of patterns
detected.
Temporal Convolution
 Convolution operations applied along the time dimension of sequential data to capture temporal patterns.

Spatial Convolution
 Convolution operations applied to spatially arranged data to integrate information across different channels.

Residual Block
 A neural network building block that includes skip connections to maintain information flow and mitigate

vanishing gradients.

Skip Connection
 A technique in residual networks where input is directly passed to subsequent layers, helping to preserve

information and improve training.

Channel Dimension
 The dimension along which multiple feature maps are stacked in a neural network, representing different

aspects of the input signal.

Max-pooling
 A pooling operation that selects the maximum value in a window, reducing the dimensionality of feature maps

while preserving significant features.

ReLU Activation
 A non-linear activation function (Rectified Linear Unit) that introduces non-linearity into the network,

allowing it to model complex relationships.

Batch Normalization
 A technique to normalize the inputs of each layer, improving training stability and generalization.

Dropout
 A regularization technique where randomly selected neurons are ignored during training to prevent overfitting.

Multi-layer Perceptron
 A type of neural network consisting of multiple fully connected layers used for final processing in

classification/regression tasks.

Sampling Rate
 The frequency at which data is sampled from a continuous signal, such as an ECG signal, impacting

information density and signal quality.

Signal Duration
 The length of the ECG signal, affecting the temporal information available for analysis and the computational

resources required.

Data Augmentation
 Techniques used to artificially expand the size of a dataset by creating modified versions of existing data

instances, aiding in model training and generalization.

Transfer Learning
 A machine learning technique where a model trained on one task is fine-tuned or adapted for use on a different

but related task, often improving performance.
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