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Placental function plays a crucial role in fetal development, as it serves as the
primary interface for delivery of nutrients and oxygen from the mother to fetus.
Magnetic resonance imaging (MRI) has significantly improved our ability to
visualize and understand the placenta’s complex structure and function. This
review provides an up-to-date examination of the most common and novel
placental MRI techniques. It will also discuss the clinical applications of MRI in
diagnosing and monitoring placental insufficiency, as well as its implications for
fetal growth restriction (FGR) and congenital heart disease (CHD). Ongoing
research using multi-parametric MRI techniques aims to develop novel
biomarkers and uncover the relationships between placental parameters and
pre-onset diseased states, ultimately contributing to better maternal and fetal
health outcomes, which is essential to better guide clinical judgement.
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Introduction

The placenta is a transient, yet complex organ, involved in the proper growth and

development of the fetus. The attachment of the uterine vessels to the basal plate of the

placenta, controls the maternal-placental exchange of oxygen and nutrients (1). Similarly,

the attachment of the umbilical vessels to the chorionic plate are responsible for placental-

fetal transmission (1). Collectively, these vascular beds function through the chorionic villus,

the functional unit of the placenta, which mediates the interaction between the uterine and

umbilical vessels. Within the placenta, the uterine artery supplies maternal blood to the

intervillous space, which surrounds the chorionic villus, and facilitates the transfer of oxygen

and nutrients. The physiological relationship between structure and function is evident

within placental anatomy, which fundamentally supports the maternal-fetal interchange.

Placental interactions between the maternal and fetal vasculature are essential in the

efficient exchange of nutrients and gases to support fetal growth and development. The
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initial formation of the chorionic villi, representing the functional

unit of the placenta, begins 13 days post-conception and is

complete around 24–26 weeks, where mature intermediate villi

(MIV) differentiate into terminal villi specialized in nutrient and

gas exchange (2, 3). The placental vasculature closely parallels

villi development, with the initial presence of fetoplacental

capillaries at three weeks post-conception, followed by gradual

capillary growth throughout the transition phase from immature

intermediate villi (IIV) to MIV to terminal villi (3, 4). In

particular, non-branching angiogenesis is a crucial process during

the late-second to early-third trimester, occurring within the

terminal villi, that minimizes the diffusion distance between

maternal and fetal blood and further facilitates the growing needs

of the fetus for oxygen and nutrients (3).

Placental insufficiency occurs when there is a deviation from the

normal processes of villous and vasculature development, leading to

impaired transfer of nutrients and oxygen to the fetus. These

physiological changes associated with placental insufficiency can

lead to fetal chronic hypoxemia and/or hypoglycemic as well as

FGR and CHD (5–8). Alongside placental insufficiency, issues

involving dysfunctional implantation, such as placenta accreta

spectrum and previa, or variant morpholgies, such as circumvallate

placenta, may pose a risk to proper fetal development (9–11). The

dependence of the fetus on maternal supply of nutrients and

oxygen places a high demand for optimal placental function and

effectively necessitates a lack of compromised blood flow. The

placenta lacks neural innervation, which places a high reliance on

hemodynamic forces and downstream vaso-regulatory mediator

products, such as nitric oxide (NO), in facilitating proper

development (8, 12). As such, variable hemodynamic forces caused

by faulty fetoplacental vasculature formation may hinder necessary

regulatory mechanisms to prevent FGR and CHD, among other

developmental abnormalities (5, 8, 13). Figure 1 illustrates

theoretical changes in placental hemodynamics that could occur in

response to different maternal, placental, and fetal conditions,

potentially leading to chronic fetal hypoxemia. These alterations can

be detected using advanced magnetic resonance imaging (MRI)

techniques, providing insights into the physiological adaptations

and pathological processes affecting placental function. Saini et al.,

demonstrated the ability of MRI to measure blood flow and oxygen

levels in the uterus and umbilical vessels, enabling the calculation of

oxygen delivery to the pregnant uterus, placenta, and fetus (14)

(Figure 2). Further study explored the feasibility of using MRI to

assess maternal-fetal oxygen transport and consumption in

conditions with altered uterine artery blood flow due to maternal

position (15) or pharmacologic treatment (16). Relation to maternal

positioning during healthy late-stage pregnancies has been applied

to understanding the impact of maternal position or pharmacologic

treatment to increase uterine artery blood flow on placental oxygen

consumption (15–18). MRI offers a non-invasive way to gather

detailed information about placental function and fetal well-being,

which could aid in monitoring pregnancies and identifying

potential complications (15).

Given the significance of fetoplacental vasculature development in

the proper functioning and maintenance of the fetal environment, an

update on the most current advances within the field of placental
Frontiers in Cardiovascular Medicine 02
imaging is necessary. In this review, we will summarize the progress

of various MRI technologies in assessing fetoplacental vascular

composition and function, including levels of trans-placental

perfusion and diffusion, as well as their abilities to measure

oxygenation within the fetal blood (Table 1). This will be coupled

with an analysis of the clinical implications of applicable MRI

technologies on pregnancy complications associated with placental

dysfunction such as FGR and CHD, involving the benefits and

limitations of their use, as well as future directions.
Progression of placenta MRI

MRI technology has come a long way since its inception in

1984, allowing a clear understanding of placental physiology.

Placental imaging has presented unique challenges since its

inception, often associated with the variability of placenta

location, size, shape and vascular composition. Further, the need

to maintain fetal safety limits the progression of the field.

However, over the past four decades, researchers have developed

increasingly complex MRI techniques (Figure 3), such as

diffusion kurtosis imaging (DKI), which can measure non-

normal water diffusivity within placental vasculature (31, 32).

This parallels our growing understanding of the role that MRI

may play in a better understanding of placental physiology and

the impact of disease states on its structure and function.
Current utility of MRI in the human placenta

Placenta structural and morphometric
assessments

Although ultrasound is commonly used in pregnancy to

measure placental and fetal growth and blood flow velocity in

major vessels, it may offer a decreased ability for functional

assessment, and limited viewing capabilities. The use of MRI offers

an advantage in the antenatal study of the macrostructural and

morphometric properties of the placenta (33). In particular, a

broader viewing frame, along with greater contrast of soft tissue,

and decreased operator-dependency provides benefits compared to

ultrasound (33–35). Despite a slightly blurred boundary between

the placenta and myometrium, the ability to clearly distinguish

between the placenta and the amniotic fluid is significant and

allows for precise measurements of placental shape and size at any

gestational age (36, 37). The clinical relevance of placental

morphometric properties is underscored—numerous studies have

found correlations between placental weight and volume and

postnatal properties such as birthweight, as well as health in later

life (38–43). Furthermore, studies have indicated significant

associations between properties such as placental weight, volume

and surface area with placental insufficiency, fetal growth

restriction (FGR) and Congenital Heart Disease (CHD) (44–47).

The use of T2-weighted imaging (T2WI) in MRI offers

advantages for placental imaging compared to other techniques

such as T1-weighted imaging (T1WI) (36). With T2WI, the

normal placenta appears homogenous, particularly during the
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https://doi.org/10.3389/fcvm.2024.1426593
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Proposed placental hemodynamics in normals and examples of pre-, intra-, and post-placental causes of impaired oxygen transport. Reference values
from animal and human literature included where available with unknown values indicated as “?”. Q, flow; SaO2, oxygen saturation; Hb, hemoglobin
concentration; UtA, uterine arteries; UtV, uterine veins; UA, umbilical arteries; UV, umbilical vein.
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FIGURE 2

Placental hemodynamics, oxygen transport, and consumption in healthy normal human and sheep pregnant subjects in late gestation, Re-produced
from Saini et al. (14) with permission from John Wiley and Sons. Q, blood flow; DO2, oxygen delivery; SO2, oxygen saturation; VO2, oxygen
consumption; UtA, uterine artery; UtV, uterine vein; OV, ovarian vein; UA, umbilical artery; UV, umbilical vein; Hgb, [hemoglobin]; m, maternal; f, fetal.
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second trimester, providing a more effective baseline when

compared to the heterogenous appearance with T1WI (36, 37,

48, 49). The transition to a more heterogenous appearance on

T2WI, especially as the third trimester approaches, may indicate

placental maturation—specifically, better-defined cotyledons with

a more lobular appearance (48, 49). However, these observations

should be integrated with additional structural and functional

data to ensure a comprehensive understanding. Methods have

been devised that combine 2D MRI images from axial, sagittal

and coronal planes to construct a super-resolution 3D view of

the placenta, enhancing segmentation and visualization

capabilities (37, 50, 51). Super-resolution reconstruction methods

aimed at improving the imaging of structural and morphometric

properties hold significant potential to improve the diagnostic

and analytic capabilities of placental MRI (37). Further,

particular 3D-MRI models are capable of providing 3D views of

the placenta, without the need for fusing 2D stacks (52). Usage

of 3D-MRI models may decrease processing times, and improve

image quality, due to decreased dependence on operator

segmentation expertise.

Vascular structure and function
The success of many quantitative MRI techniques in placental

imaging relies on the use of efficient vascular localizers to properly

visualize the fetal, placental, and maternal vasculature (53). Time-

of-flight (TOF) magnetic resonance angiography (MRA) represents

a conventional, non-contrasting MRA approach that facilitates the

ability to visualize vasculature in 3D (53). Ultrasound is a

commonly used modality in clinical practice for imaging the fetal

and placental vasculature due to its non-invasive nature, safety,

and relatively low cost. However, ultrasound has limitations,

particularly when visualizing deeper structures or those obscured

by overlying tissues, bones, or gas. TOF-MRA offers an

alternative approach that can overcome these limitations by
Frontiers in Cardiovascular Medicine 04
acting as a supplemental measure to ultrasound results (54, 55).

In the past, a study by Neelavalli et al. indicated the success of

TOF-MRA in visualizing the fetal, placental and maternal

vasculature when using 3.0 T MRI during the third trimester

(53). While this study showed success in observing the

vasculature of the fetus and the placenta, it was limited due to its

testing parameters. For instance, the clinical reality of fetal

imaging at that time relied on access to 1.5 T MRIs during

earlier gestational periods. This was addressed by Qu et al., who

conducted a study involving 2D TOF-MRA at 1.5 T and 3.0 T

while also including an experimental group to determine the

impact of gestational age. Regardless of 1.5 T or 3.0 T usage, the

umbilical arteries were observed in all cases, and chorionic

arteries were observed in most cases. Further, the repeated use of

3.0 T on three patients within the second and third trimesters

revealed consistent images of the radial and spiral arteries,

indicating feasible usage within the second trimester (55). This

study led the way to the view that 1.5 and 3.0 T MRI can be

used in fetal and placental imaging.

The limitations of TOF-MRA involve a bias towards higher-

speed blood flow, which limits the resolution of less rapid blood

vessels, as well as a clinical need for faster imaging times, which

assists in combatting excessive fetal motion (53, 55). Future

research should focus on improved resolution of lower-speed

blood vessels using TOF-MRA techniques to address vascular

localization concerns with modern usage.

Phase contrast (PC) MRA is a non-contrasting sequence that

offers capabilities for the quantification and localization of blood

velocity (37, 56). PC-MRA offers similar limitations as TOF-

MRA, including long acquisition times; however, its 3D usage

provides advantages over TOF-MRA, particularly related to

enhanced detection of collateral flow or slower flow (57). PC-

MRA is typically only used in cases where vascular structure and

flow are essential, such as within the detection of stenosis (22). A
frontiersin.org
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TABLE 1 MRI methods used in human placenta imaging.

MRI
method

What it measures Sequence Morphometry Blood
flow

Oxygenation
(O2)

Contrast
required

FGR CHD References

T2WI Tissue Structure and
pathology

Long time (LT), gradient
recall echo (GRE) with
low flip angle

Yes No No No T2* imaging scores were
significantly lower in FGR
placenta

Greater variance within placental
lobular size in CHD patients

Chavhan et al. (19);
Steinweg et al. (20);
Wen et al. (21)

2D TOF
MRA

Vasculature Structure Conventional 2D/3D
GRE

Minimal Yes No No – – Kuo et al. (22)

PC MRA Vascular Structure + Flow Balanced motion
sensing bipolar
gradients

Yes Yes No No – – Kuo et al. (22)

DCE-MRI Vasculature Structure +
Perfusion

T1-weigted gradient
echo

No Yes No Yes – – Siauve et al. (23)

DWI +
ADC

Diffusion +
Microstructure

DWI with 2 b-values No Yes No No Increased gestational age-
induced decrease in ADC of
FGR patients

– Siauve et al. (23)
Kuhnke et al. (24)

DWI +
IVIM

Perfusion + Diffusion +
Microstructure

DWI with 3 + b values No Yes No No D and D* increased in late
onset FGR
f is decreased In late-onset
FGR

– (Siauve et al. (23);
Kuhnke et al. (24);
Andescavage et al. (25)

ASL Perfusion Flow sensitive
alternating inversion
recovery (FAIR)

No Yes No No – VsASL indicates decreased global
placental perfusion in second half og
gestation within CHD patients
Increased intra-placental perfusion
variation compared to healthy controls

(Siauve et al. (23); Zun
et al. (26)

DTI Microstructure +
Diffusion (unseparated)

Spin Echo—Echo Planar
Imaging (SE-EPI)

No No No No – Nana et al. (27)

DKI Microstructure+ Diffusion
(unseparated: non-
gaussian distribution)

SE-EPI No No No No Positive diffusion kurtosis
values associated with normal
placenta—deviations may
indicate FGR

– Zhu et al. (28)

BOLD Oxygenation T2* Relaxation times
OR
SE/gradient echo (GE)

No No Yes No Decreased placentaly
oxygenation following
maternal hyperoxic exposure
in FGR patients

Higher placental oxygenation within
single ventricle and aortic obstruction
CHD patients, compared to healthy
and other CHD patients

(Forster et al. (29)

SWI Oxygenation LE, fully flow
compensated GRE

No No Yes Yes—does not use
extrinsic contrast
agent

– Barnes et al. (30)

NMR Metabolic activity Chemical shift imaging
(CSI)

No No No No Increased placemtal glycine
levels
Altered placental uric acid
cycle activity

– Siauve et al. (23)
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FIGURE 3

Timeline indicating the first noted usage of various MRI methods within placental studies, highlighting the extensive growth of placental MRI over the
past decades.
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study by Nii et al., which used 2D PC-MRA, emphasized its clinical

utility by indicating a change in uterine blood in pregnant women,

following administration of tadalafil, a phosphodiesterase-5

inhibitor, for treatment of FGR (58).

Placental perfusion
Dynamic contrast-enhanced (DCE) MRI is a valuable

technique for imaging the placental vasculature, offering both

visualization and quantitative analysis of microcirculatory

parameters, through fast-imaging sequences that coincide with

repeated administration of a contrasting agent (59). However, the

use of gadolinium as a contrast agent in DCE-MRI during

pregnancy has been associated with risks to the fetus due to its

secretion into the amniotic fluid (60, 61). Some nonhuman

studies have indicated low gadolinium concentrations within

amniotic fluid following administration; however, human trials

are necessary to confirm safe usage (62, 63). To address this

issue, recent research has focused on developing alternate

contrasting agents that are safer for use during pregnancy. One

such alternative is a manganese-based contrast agent, Mn-

PyC3A, which has been tested in non-human primates and

found to be comparable in efficacy to gadolinium-based contrast

agents (GBCAs) (64). Mn-PyC3A offers the advantage of dual

excretion through both renal and hepatobiliary systems, reducing

the risk of accumulation in the body (64). Further studies are

needed to validate the long-term safety and sensitivity of Mn-

PyC3A within various tissues and MRI techniques. An

alternative, ferumoxytol, has been used safely in pregnant women

for iron-deficient anemia and shows promise in recent studies
Frontiers in Cardiovascular Medicine 06
using DCE-MRI with rhesus macaques (65–67). Prior studies

have indicated that ferumoxytol has a safe administration profile

through its lack of effect on placental and fetal growth and

histopathology (68–70). DCE-MRI contributes significantly to

assessing placental perfusion with studies demonstrating its

ability to quantify maternal-placental blood flow in non-human

primates and detect perfusion abnormalities in growth-restricted

fetuses (71–73). A linear relationship between DCE-MRI

perfusion metrics and gestational age suggests that this technique

could be used to monitor proper fetal growth and identify

developmental issues early (71). Recent research also highlights

the potential of DCE-MRI for detailed spatiotemporal depiction

of the placental lobes, offering new clinical perspectives for the

early detection of abnormalities (74). However, the use of

gadolinium as a contrast agent during pregnancy poses risks,

promoting the exploration of safer alternatives like ferumoxytol

for future applications in prenatal diagnostics.

Arterial Spin Labelling (ASL) represents a non-invasive MRI

alternative to assess placental perfusion by comparing signal

intensity within the placenta to blood travelling to the placenta

(23). Common techniques within advanced ASL include spatial-

selective labelling, which tags the blood based on location, and

velocity-selective labelling, which tags the blood based on its

velocity. Traditional ASLs, like pulse ASL (pASL) and continuous

ASL (cASL), face limitations in accurate placental perfusion

measurement due to inefficient labelling and signal loss (75).

Pseudo-continuous (pcASL) and velocity-sensitive (vsASL) ASLs

are advanced techniques that address some of these limitations,

with pcASL offering improved signal-to-noise ratio (SNR) while
frontiersin.org
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relying on spatial-selective labelling (75–77). A study by Liu et al.

used pcASL to demonstrate a relative decrease in placental lobule

perfusion in high-risk pregnancies, indicating its clinical utility to

identify placental dysfunction (78–80). Moreover, vsASL differs

from the other ASLs through its replacement of spatial-selective

labelling with velocity-selective labelling, which consequently

prevents the measurement of arterial transit times (ATT) (80–

83). This modification, alongside a decreased sensitivity to ATT,

has allowed for a higher SNR in vsASL compared to pcASL (75,

84). Despite this, pcASL remains the clinical standard due to the

novel nature of vsASL (75). The VESPA ASL technique

combines pcASL and vsASL to optimize perfusion analysis while

still measuring ATTs, offering a comprehensive approach to

assessing placental health (83).

Placental microstructure
Diffusion-weighted imaging (DWI) is a non-invasive MRI

technique that offers insight into placental microstructure and

function by detecting the molecular motion of water protons

(85). This method is particularly useful for identifying tissues

with compromised membrane integrity in necrosis with placental

failure (86). Consequently, DWI has clinical relevance in the

early detection of changes related to various placental disorders,

including placental insufficiency, FGR and CHD (25, 87–89).

Studies have utilized DWI to analyze placental health, with the

apparent diffusion constant (ADC) and the intravoxel incoherent

motion (IVIM) being key quantitative models for interpreting

DWI data. The ADC reflects the overall mobility of water

molecules within a tissue, while IVIM provides more detailed

information about the microcirculation within the placenta. The

ADC is a generalized measure of placental diffusion that cannot

differentiate between true diffusion (D) and pseudo-diffusion

(D*). Higher ADC values indicate less restriction for water

movement and may suggest the presence of fluid-filled spaces,

while lower ADC values indicate higher restrictions of water

movement, typically in areas of high cellular density (90). ADC

values have an inverse relationship with gestational age due to

the normal maturation of the placenta during fetal growth

(32, 50, 85). In growth-restricted fetuses, the gestational age

decrease in ADC is larger and occurs earlier in gestation, offering

an approach to distinguish between restricted and normal

placental development (17, 50, 91–94). The Dmean and D*minimum

values derived from IVIM are also negatively correlated with

gestational age (GA), which parallels the development of a

fibrotic or calcified placental vasculature, and constitutes

decreased diffusion and perfusion (32). The measurement of

perfusion fraction (f) has revealed novel insight into placental

dysfunction, with an inverse relationship between f and placenta

dysfunction, which emphasizes the importance of perfusion

within a healthy placenta (95, 96). Proper perfusion within the

healthy placenta facilitates the transfer of oxygen and nutrients

that are responsible for supporting normal fetal growth. This

relationship allows for more effective identification of at risk of

pregnancies, potentially enabling earlier intervention and

improving outcomes. Anisotropic IVIM models account for the

orientation of microvascular tissue and assume differences in
Frontiers in Cardiovascular Medicine 07
results based on this (97). These models are indicated as a better

fit for placental DWI and explain the diffusive properties more

effectively than ADC modelling (97, 98). However, a limitation

of the IVIM approach is increased total acquisition time, which

can negatively impact patient compliance and may lead to

motion artifacts (99).

DKI and the hybrid IVIM-DKI provide an enhanced view of

placental health during pregnancy (32). These methods extend

beyond traditional Diffusion Tensor Imaging (DTI) by

accounting for the non-Gaussian distribution of water molecules

within the placenta, offering a more detailed analysis of

microstructural changes and tissue heterogeneity (100–102).

However, recent validations have shown that DTI-based motion

correction can effectively address misalignments in DWI caused

by the movement of the fetus and mother, leading to more

accurate quantification of placenta microstructures (103). Despite

this clinical utility, DTI has limited biological specificity of

various placental microstructural features (101). Within DKI, DK

values are positively associated with gestational age, which

indicates the potential of DKI in distinguishing cases of restricted

fetal growth through low DK values (32).
Placenta oxygenation
Assessing placental oxygenation is a crucial aspect of monitoring

placental and fetal development during pregnancy. The dynamic

changes in oxygen within fetal and maternal placental vasculature

across the three trimesters support the growth and development of

the placenta and the fetus. In the first trimester, lower partial

pressure of oxygen (PO2) around 20mmHg are physiologically

normal and contribute to trophoblast proliferation (104, 105). As

pregnancy progresses to the second trimester, there is an increase

in PO2 to approximately 60 mmHg, which aids in trophoblast

invasion and ensures proper placental development (104, 105). In

the third trimester, PO2 begins to decrease and fluctuate, reaching

an average of ∼40 mmHg. This decline correlates with the

increasing oxygen demands of the growing fetus (104, 105). The

importance of maintaining appropriate oxygenation is underscored

by its strong association with conditions such as placental

insufficiency, FGR, and CHD (106–109).

T1 and T2 mapping are common techniques associated with

analysis of placental oxygenation and are utilized in a variety of

signal sequences. T1 and T2 mapping is sensitive to oxygen

saturation (SO2) levels, as well as hematocrit, which has led to its

role in the evaluation of these measures (110). T1 and T2

relaxation times offer insight to placental function, and

consequently may supplement current practices for determining

placental function and corresponding fetal outcomes (95, 111).

For instance, a study by Schabel et al., found a strong association

between placental T2* and pregnancy outcomes within cases of

placental insufficiency (111). Additional studies have indicated a

predictive ability of T1 within cases of small for gestational age

(SGA), which indicates its clinical potential (95). Further, the use

of T1 and T2 in combination, allowed for significant distinctions

between healthy- and FGR-pregnancies, compared to the isolated

use of either (112).
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Blood Oxygen Level Dependant (BOLD)-MRI is a

sophisticated diagnostic tool that measures placenta oxygenation

by detecting T2* relaxation time changes. This technique exploits

the fact that deoxyhemoglobin, a component of red blood cells,

has paramagnetic properties that affect the MRI signal intensity

(113–115). Luo et al. used BOLD MRI to indirectly assess

regional placental oxygen delivery, modelling the oxygenation

response and generating time-to-plateau (TTP) maps (114). They

found distinct TTP patterns in placentas with pathology vs.

healthy ones, suggesting BOLD MRI could non-invasively detect

placental dysfunction, complementing histopathological diagnosis

(Figure 4). The R2* (1/T2*) parameter derived from BOLD-MRI

scans is particularly important because it reflects the amount of

deoxyhemoglobin present and indirectly measures placenta

oxygenation: higher R2* values indicate lower oxygen levels.

Several studies have demonstrated that BOLD-MRI can quickly

and directly observe changes in placental oxygenation in response

to increased maternal oxygenation, whether achieved through

supplemental oxygen or maternal breathing manipulation

(107, 116). The rapid peak in ΔR2* values following oxygen

administration underscores the sensitivity of BOLD-MRI in

capturing real-time alterations in placenta function (107, 116).

Furthermore, Saini et al. show that the maternal position during

the BOLD-MRI scan influences placental oxygenation. These
FIGURE 4

From left to right: BOLD images (A), time to peak (TTP) maps (B), histogr
compared to one case with abnormal placental pathology (bottom). Yellow
were short and placental histology was normal. For pathological cases, TTP
in (G)]. Arrows in (H) point to the vascular villi, and the star identifies choran
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findings indicate that the supine position may impair

oxygenation compared to the left lateral position (15), which

supports standard clinical recommendations for the left lateral

tilt position, aimed at optimizing blood flow between the mother

and fetus (117). Additionally, Turk et al. point out the necessity

of accounting for Braxton Hicks contractions within the

interpretation of signal intensity due to their association with

decreased global R2* levels within the placenta (118).

Another significant development in this field is the assessment

of Placental Vascular Reactivity (PlVR), a novel and non-invasive

index measured by BOLD-MRI that gauges the adaptability of

the placental vasculature to changes in maternal oxygen levels.

PlVR is primarily influenced by fluctuations in maternal CO2

levels, revealing a unidirectional relationship between mother and

fetus regarding vascular responses (119). As an indicator of

placental vascular integrity, PlVR quantification holds promise

for clinical application due to its straightforward validation and

use in a clinical setting (119). Collectively, this evidence portrays

the significant clinical potential of BOLD-MRI in revolutionizing

the real-time analyses of placental function and development.

Susceptibility Weighted Imaging (SWI) offers contrast

capabilities by qualitatively interpreting the distortions in

magnetic fields (86, 120). SWI is particularly sensitive to

deoxygenated blood, which aids in distinguishing arteries from
am of TTP distribution (C) and histology (10X) (D). One control (top) is
dashes in (A, E) outline the placenta. For healthy subjects, TTP values
values were longer and less uniform [blue regions in (F) and blue box
giosis, re-produced from Luo et al. (114) used under CC BY 4.0.
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veins, making it valuable for oxygen saturation studies (121).

Building on this, Quantitative Susceptibility Mapping (QSM)

extends the capabilities of SWI by mapping the distribution of

magnetic materials within tissues (120, 122), using both

magnitude and phase data to achieve higher sensitivity to blood

oxygenation compared to BOLD-MRI (123, 124). QSM has been

used clinically to study the brain but has also shown potential in

placenta research, where it has revealed positive correlations

between spatial variation in oxygenation and gestational age.

Effective use of QSM includes measuring baseline susceptibility,

with amniotic fluid serving this role in placenta studies (122, 125).

The overlap of maternal and fetal blood within placental scans

presents difficulties in functional analysis (93). Diffusion-Relaxation

Combined Imaging for Detailed Placental Evaluation (DECIDE) is

a novel multiparametric MRI technology that combines T2

relaxometry and DWI to compartmentalize the placenta into

regions of maternal blood flow, fetal blood flow and placental tissue

to address this issue (126). The clinical value of DECIDE has been

validated in sheep studies and used to test efficacy of potential FGR

therapies (16, 18, 50, 93). A study by Darby et al. used DECIDE to

analyze the effects of tadalafil, on placental perfusion and found no

change in SO2 of fetal blood in the placenta but an increase in

maternal blood volume in the placenta, further supporting the

clinical feasibility of DECIDE. DECIDE provides functional

biomarkers capable of analyzing the SO2 of fetal blood in the

placenta (FO2), which is directly approximated by T2 relaxation

times (126, 127). Moreover, DECIDE detected decreased FO2 in the

placentas of FGR patients and has indicated an inverse relationship

with FGR severity (18, 91). Overall, DECIDE FO2 offers significant

potential in differentiating FGR from small but normoxemic

fetuses, which offers precise predictions of fetal growth up to three

weeks in advance and offers significant potential for early diagnosis

within FGR patients (93).

Placenta metabolism
The study of placental metabolomics represents an emerging

field of research that has the potential to enhance our

understanding of biomarkers and pathogenesis related to placenta

disease (128). This is a burgeoning area with potential for

deepening our comprehension of conditions such as FGR and

CHD (129–131). Nuclear Magnetic Resonance (NMR) is a key

analytical tool in this domain, enabling the real-time and in vivo

examination of placental metabolites (128). Within the scope of

imaging technologies, NMR may also be referred to as MR

spectroscopy (MRS) (94). Proton MRS (H-MRS), a common

metabolomic technique, has been instrumental in detecting

disturbances in metabolite concentrations and biochemical

pathway activities within the placenta (129, 132). Deuterium MRS

(D-MRS), a non-invasive alternative to H-NMR, holds promise for

clinical applications due to deuterium’s inertness in metabolism

and non-radioactive nature (133, 134). Studies using D-MRS have

identified increased lactate in preeclamptic placentas, suggesting

heightened glycolysis and hypoxic stress (134). High-resolution

magic angle spinning (HR-MAS) MRS has emerged as an ex vivo

method capable of measuring tricarboxylic acid (TCA) cycle

placental metabolic analysis. Using this method, the HR-MAS
Frontiers in Cardiovascular Medicine 09
MRS could identify and quantify various TCA cycle intermediates

in placentas from mothers with hypercortisolemia (135, 136).

Building on HR-MAS MRS, Comprehensive Multiphase (CMP)

MRS enhances the differentiation of various phases within

complex tissues like the placenta, offering detailed characterization

that can improve the detection of abnormalities (137, 138).

Clinical applicability of CMP MRS was demonstrated through the

identification of altered amino acid concentrations in preterm

birth placentas, underscoring its value in elucidating metabolic

changes associated with placental pathologies (138, 139).
Clinical implications in FGR and CHD

FGR occurs in ∼10% of pregnancies and is associated with

poor outcomes including an increased risk of stillbirth,

premature birth and admission to the neonatal intensive care

unit. Furthermore, there is an association between poor growth

in utero and the risk of non-communicable chronic disease in

adulthood (140–142). Although FGR has maternal, placental and

fetal causes, each generally results in reduced substrate (oxygen

and/or nutrients) delivery to the fetus such that the fetus does

not reach its genetic growth potential and has a birth weight less

than the 10th centile, although Delphi consensus reports suggest

the 3rd centile is most clinically relevant (143). The fetus mounts

a hemodynamic and endocrine response to reduced substrates

that results in changes in the structural and functional

development of most organ systems (6, 144). These responses are

the basis of fetal programming of increased risk of hypertension,

coronary artery disease, diabetes, and obesity in adulthood.

Strikingly, nearly 50% of all FGR fetuses go undetected until

after birth (106), despite improvements in obstetric imaging and

management (145). Distinguishing SGA from FGR can be

difficult (146). Thus, clinical decisions about when to deliver the

FGR baby may not be optimal (145). To avoid stillbirth, for

example, many FGR/SGA babies are delivered preterm and may

face poor outcomes associated with immature organs (147).

Thus, early detection of placental dysfunction to allow proper

clinical care is essential (148–150). Despite the lack of a gold-

standard definition for FGR diagnosis, improved early detection

and fetal monitoring are within the scope of modern MRI

techniques (151). Even when FGR is identified, suboptimal

monitoring protocols hinder the precise determination of the most

advantageous timing for intervention (106, 148). Innovations within

MRI techniques have facilitated their use for assessing placental

macro- and microstructure, as well as placental oxygenation and

metabolism (14, 23, 25, 32, 53, 59, 71, 85, 94, 115, 120, 129,

132, 152). Studies on placental morphometric characteristics and

vascular structure have indicated significant relationships involving

decreased placental volume (44). This is coupled with studies

showing increased D and D* levels, with decreased f signals in

late-onset FGR patients (25). These novel biomarkers of FGR may

assist in guiding clinical judgements regarding proper care

practices. Further, studies using BOLD-MRI have identified

decreased placental oxygenation in the placentas of fetuses with

FGR following periods of maternal hyperoxygenation (106, 107).
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This underscores the clinical relevance of oxygenation within more

effective FGR care. Moreover, studies involving H-NMR have

indicated elevated glycine levels and altered urea cycle activity

within FGR patients, highlighting the prevalence of metabolic

shifts (129). The future of MRI within FGR patients will likely

involve multi-parametric and multi-compartment MRI techniques

to allow for more optimal diagnostic and monitoring abilities. For

instance, a study by Aughwane et al. used DECIDE, to not only

indicate decreased placental oxygenation within FGR patients but

also account for differences across varying gestational ages to

produce more accurate parameters (91). Collectively, the use of

various MRI technologies has provided more specific parameters

and physiological biomarkers that can significantly advance the

detection and monitoring of FGR, which may decrease the

prevalence of stillbirths and faulty postnatal development within

these patients.

CHD has been increasing in incidence over the last two decades

(153, 154), and its diagnosis and management has been improved

through MRI analysis (155–159), and the assessment of placental

function. This variation in case incidence could reflect changes in

diagnostic protocols for CHD or advancements in medical

diagnostic capabilities; however, it highlights the need for improving

clinical diagnostic and monitoring technologies. The development

of the fetal heart is closely related to the development of the

placenta, which emphasizes the importance of placental imaging (5,

160, 161). Consequently, CHD diagnosis and management may be

more optimally approached through MRI analysis of placental

structure and oxygenation (45, 47, 89, 108, 109). A study by

Steinweg et al. used a T2*-based MRI to find that fetuses with

CHD displayed greater variance within placental lobular size

compared to healthy controls (20). Similarly, placental volume

exhibits a positive relation with fetal birth weight; however, within

CHD, placental volume displays a steeper positive relation with

birth weight, which may indicate a compensation effect in the

placenta (162). These structural observations may offer enhanced

phenotypical indications of CHD, which may support diagnostic

and monitoring efforts. Further, a study by You et al. used BOLD-

MRI to demonstrate a relatively higher increase in placental

oxygenation within single ventricle (SV) and aortic obstruction

CHD compared to healthy controls and other CHD patients (116).

In particular, this finding offers potential therapy for improving

placental oxygenation within SV and aortic obstruction CHD and

highlights the need to differentiate between various types of CHD.

Various types of CHD exist, each with unique compensatory

mechanisms that add to the clinical complexity of managing these

diseases (163). MRI usage within CHD appears limited due to the

lack of studies examining placental metabolism as a physiological

biomarker, but its clinical implementation offers benefits and would

function effectively as a supplement to current clinical protocols

based on its ability to provide an understanding of placental function.
Challenges and future directions

The challenges associated with placental MRI largely stem

from patient-based limitations, particularly those related to
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excessive fetal and maternal motion (48, 164). This motion can

lead to signal acquisition issues and result in image degradation

(165, 166). Typical examples of this non-rigid motion involve

placental deformation, maternal respiration patterns,

uncontrolled uterine contractions and fetal body and breathing

movements (34, 118). Techniques like Deformable slice-to-

volume registration (DSVR) have been developed to correct

misaligned or degraded images. However, it presents significant

limitations involving improper handling of severe motion-

induced degradations and automatic rejection of outliers, which

may exclude useful information (167). To address these

concerns, researchers are exploring the use of artificial

intelligence (AI) for automatic segmentation of the placenta

(168, 169), which could reduce the time-consuming and

complex nature of manual segmentation practices (169).

Another issue is the presence of tissue interfaces within the

placental environment, which can further degrade signals and

images. The transition to 3 T MRI has made this a growing

concern, as it increases image distortion compared to 1.5 T

MRIs. Concerns including extreme acoustic effects and prolonged

exposure to 3 T signals have been cited as potential safety

hazards; however, some of these have been addressed (170, 171).

Previously, 3 T was believed to be harmful to fetal development,

but recent studies have found it safe for use within the fetal

environment without demonstrating an excessive specific

absorption rate (170).

To promote standardization in placental MRIs, implementing a

validated scoring system should be a goal, as this could improve

inter-observer reproducibility. Studies have shown that using

MRI scoring systems can increase predictive values in

determining future outcomes, offering strong clinical potential

for their use in placental MRIs (172, 173).
Conclusion

Evolving placental MRI technology now enables earlier

detection and management of fetal conditions, featuring

improved imaging clarity, minimized motion interference, and

an array of diagnostic biomarkers. These advances aim to

predict pre-dysfunction disease onset, enhancing therapeutic

efficacy across gestational stages. Future directions focus on

refining protocols and discovering new biomarkers to integrate

placental MRI as a standard in clinical practice for optimal

perinatal health.
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