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Preclinical evaluation of
reversible pulsed electrical
field: electrophysiological
and histological assessment
of myocardium
Zongwang Zhai1,2, Yuchen Ling3, Yanjiang Wang1, Liang Shi1 and
Xingpeng Liu1*
1Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,
2Department of Cardiology, Peking University Shougang Hospital, Beijing, China, 3Department of
Research and Development, Shanghai HT Co. Ltd., Shanghai, China
Background: Pulsed field ablation, as a non-thermal ablation modality, has
received increasing attention. The aim of this study is to explore whether a
reversible pulsed electric field (RPEF) can temporarily inhibit electrical
conduction and provide a novel method for precise ablation of arrhythmia.
Methods: RPEF energy was delivered from an ablation catheter to the atrium of
six dogs, followed by a series of electrogram and histology assessments.
Results: RPEF ablation of ordinary myocardium resulted in an average reduction of
68.3% (range, 53.7%–83.8%) in electrogram amplitude, while 5 min later, the
amplitude in eight electrograms returned to 77.9% (range, 72.4%–87.3%) of
baseline. Similarly, the amplitude of the sinoatrial node electrograms reduced by
an average of 73.0% (range, 60.2%–84.4%) after RPEF ablation, but recovered to
84.9% (range, 80.3%–88.5%) of baseline by 5 min. No necrotic change was
detected in histopathology. Transient third-degree atrioventricular block occurred
following the ablation of the maximum His potential sites with RPEF, the
duration of which was voltage dependent. The histopathological results showed
necrosis of the myocardium at the ablation sites but no injury to His bundle cells.
Conclusions: RPEF can be applied to transiently block electrical conduction in
myocardial tissues contributing to precise ablation.
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1 Introduction

Pulsed field ablation (PFA), is a non-thermal ablation modality, which leverages a

continuous microsecond-level high-voltage electric field to induce irreversible

electroporation (IRE), thereby disrupting cell membrane stability and ultimately leading

to cell death (1). Of note, PFA has been preclinically and clinically confirmed to have

certain tissue specificity, for ablating myocardium with little effect on some adjacent

non-cardiac tissues (e.g., the esophagus and phrenic nerve) (2–8). PFA has attracted

great attention because of its potential safety and has been used in some clinical trials

to treat atrial fibrillation (AF) (9–14).

Different from the irreversible electroporation of PFA, a low intensity pulsed electric

field (PEF) can reversibly electroporate cells (1, 15, 16). Attenuated pulses can affect the
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transient permeability of the cell membrane without impacting

dielectric breakdown of the cell membrane and cell death, which

contributes to introducing various biomaterials (such as

impermeable drugs and genetic materials) into cells (17–21).

Deliberately applying such sublethal electric pulses to the

myocardium can induce temporary changes in the electrical

properties of the myocardium without causing permanent injury

to the myocardium.

Accordingly, we hypothesized that reversible PEF (RPEF) can

temporarily change the electrical properties of local myocardium

and transiently suppress electrical conduction, then it can be

changed to irreversible PEF ablation for accurate ablation—once

critical isthmus sites of arrhythmia are confirmed. To verify this

hypothesis, we studied the effect of RPEF on canine atrial tissue

and we also probed into its impacts on sinoatrial node (SA) and

His bundle.
2 Materials and methods

The animal experiments were approved by the Animal

Experiment and Experimental Animal Welfare Committee of

Capital Medical University (Ethics number: AEEI-2023-325).

The experiments involved six male Labradors (30–40 kg), and

included equipment from APT Medical [Shenzhen, China

(Figure 1)], encompassing the following: Cardiac Pulsed Field

Generator, Contact Force Sensing PFA Catheter, Radiofrequency

Ablation Generator, Radiofrequency Catheter, Cardiac 3D

Navigation System, and so forth. The non-saline perfusion

pressure-sensing pulse ablation catheter was of 7.5 F size, with four

equally spaced electrodes at the tip, D-2 discharge, unidirectional
FIGURE 1

APT Cardiac Pulsed Field Ablation System.
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180° bending, and equipped with a magnetic sensor. The tip was

equipped with a pressure sensor (fiber-optic sensing mode). The

main application scenarios were point-by-point, linear ablation.
2.1 Preparation before experiment

After an overnight fast, Labradors were injected intravenously

with Zoletil® 50 (Virbac, Carros, France; Tiletamine

hydrochloride and Zolazepam hydrochloride at 1:1 ratio, 0.05–0.1

ml/kg) and were further injected intramuscularly with atropine

(0.05 mg/kg). After intubation and the use of artificial ventilators,

propofol was injected intravenously at a dose of 1 ml/min. Access

to bilateral femoral veins was established.
2.2 Experimental procedure

2.2.1 Preclinical experiment 1 (atrial myocardium)
Intracavitary echocardiography (10F SOUNDSTAR 3D

Diagnostic Ultrasound Catheter, Biosense Webster, Irvine, CA,

USA) was used only to guide the atrial septal puncture. Post a

single atrial septal puncture, an adjustable curved sheath tube

was inserted into the left atrium (LA) under the guidance of

fluoroscopy. Intravenous administration of heparin maintained

an active coagulation time of 300–350 s. The pressure at the tip

of the pulse ablation catheter was maintained at 10–15 g, and the

experiment was performed by an experienced electrophysiologist.

Under the guidance of electroanatomic mapping, the right and

left atria of six Labradors were ablated by RPEF at select sites.

After each ablation, the tip of the catheter was held in place in a
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stationary manner, and bipolar electrograms were continually

recorded. The electrogram was measured continuously from the

beginning of the RPEF ablation to 5 min after ablation.

Electrograms before and after ablation were selected for

amplitude analysis. Pacing threshold at 2 ms pulse width was

evaluated at the same sites.

RPEF was applied between two discrete radiofrequency

ablations (RFA lesions were formed 30 W, 30 s by radiofrequency

catheter ablation) for identification of RPEF ablation sites at

autopsy (Figure 2). The dogs were euthanized with intravenous

injection of potassium chloride at a dose of 1–2 mEq/kg under

basal anesthesia after 24 h. Then the hearts were extracted and

stained with triphenyl tetrazolium chloride, following which all

chosen sites were carefully examined and the selected tissue

specimens underwent histopathological assessment. After

formalin fixation, the tissues were processed and stained with

hematoxylin and eosin in addition to Masson trichrome.
2.2.2 Preclinical experiment 2 (His bundle)
Under the guidance of electroanatomic mapping, the pulsed

ablation catheter was sent into the right atrium (RA) to establish

the right atrium model. All His bundle potentials were marked

and the maximum His potential was labeled. The maximum His

potential was applied with RPEF ablation which was of micro-

second pulsed width, with biphasic wave, in bipolar fashion, and

one dog was ablated with one voltage to regulate the pulse

electric field intensity (to avoid cumulative effect interference)

(Figure 3). The recovery time of complete atrioventricular block,

atrial–His (AH) interval and His–ventricular (HV) interval

before ablation, and AH interval and HV interval immediately

after atrioventricular block recovery were recorded.

The His bundle region was removed by anatomical localization

(as described in the following) and underwent histological analysis.

Discrete continuous sections were processed, and stained with

hematoxylin and eosin as well as Masson trichrome.
FIGURE 2

A single reversible PFA was placed between two discrete RFA lesions for ide
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2.2.3 Preclinical experiment 3 (sinoatrial node)
The earliest excitingpoint of right atria, the sinusnode,wasmarked

under the guidance of the three-dimensional electroanatomicmapping

system, and later ablated with RPEF (Figure 4), and bipolar

electrograms were continuously recorded. The function of the sinus

node was assessed before and after RPEF.

After euthanasia, tissue blocks of 1 cm × 2 cm were taken from

the sinus node area (as described in the following). The tissue was

sliced continuously along the long axis and then stained with

hematoxylin and eosin, and Masson trichrome.
2.3 Statistical analysis

Continuous variables are expressed as mean ± standard

deviation or the median of the quartile interval, and categorical

variables are described by counts and percentages. Two-group

comparison was performed using the paired t-test. A value of

P < 0.05 was considered statistically significant. SPSS 26.0 (IBM,

New York, USA) software was used for statistical analysis.
3 Results

3.1 Preclinical experiment 1 (atrial
myocardium)

In the six dogs, eight RPEF ablation sites were detected in the

posterior wall of LA (n = 4), the free wall of RA (n = 2), the RA

septum (n = 1), and the right atrial appendage (RAA) root (n = 1).

The baseline of electrogram amplitude was 8.1 ± 2.6 mV (range,

6.4–10.7 mV), and after ablation with RPEF, the electrogram

amplitude decreased to 2.4 ± 1.5 mV (range, 1.2–3.9 mV), with a

mean reduction of 68.3% (range, 53.7%–83.8%). As shown in

Figure 5, the amplitude gradually recovered to 77.9% of baseline

(range, 72.4%–87.3%) 5 min after RPEF ablation on eight
ntification of the RPEF lesion.
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FIGURE 3

After the right atrium modeling, all His potential locations (yellow ball) were marked, and the maximum His potential location (red ball) was ablated.

FIGURE 4

The earliest point of right atrial activation, the sinus node, was marked under the guidance of three-dimensional electrical anatomical mapping, and
then was ablated with RPEF.
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electrograms. In Figure 6, we analyzed the electrogram amplitude per

minute within 5 min after ablation at four RPEF sites and found that

the total electrogram amplitude gradually recovered after a sharp
Frontiers in Cardiovascular Medicine 04
decline. The electrical anatomical mapping did not reveal any

bipolar low voltage (<0.1 mV) region at the RPEF ablation site.

The pacing threshold was 1.1 ± 0.2 mA (range, 1.0–1.2 mA) before
frontiersin.org
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FIGURE 5

Sharply reduced electrogram (red arrow) was observed on the PEF pressure catheter after RPEF ablation. The amplitude of the electrogram decreased
immediately and gradually recovered over time.
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ablation, 3.7 ± 2.1 mA (range, 2.0–5.8 mA) immediately after

ablation, and returned to 2.3 ± 1.3 mA (range, 1.3–3.0 mA) 5 min

after ablation.

The pathological examination of the tissue between the two

radiofrequency lesions (Figure 7) displayed mild to moderate

degenerative changes between the two radiofrequency ablation lesions.
3.2 Preclinical experiment 2 (His bundle)

In the six canines, RPEFs at different voltage intensities ablated

the maximum His potential locations. The baselines of AH interval

and HV interval were 55.7 ± 3.9 ms (range, 52.3–59.3 ms)

and 35.0 ± 1.4 ms (range, 33.8–36.3 ms), respectively. After

RPEF ablation and the immediate recovery of third-degree

atrioventricular blocks, AH interval was 65.7 ± 5.6 ms (range,

59.0–70.3 ms) and HV interval was 36.0 ± 2.8 ms (range, 33.8–

38.0 ms). Statistics showed that the AH interval was prolonged

before and after the atrioventricular blocks (P < 0.05), while the

HV interval remained unchanged (P > 0.05). All six dogs

presented transient third-degree atrioventricular blocks after

ablation, which subsequently recovered. Under the condition that

other parameters were constant, the greater the ablation voltage

of RPEF was, the longer the recovery time it resulted in,

reflecting the voltage-dependent characteristic.
Frontiers in Cardiovascular Medicine 05
The dogs were euthanized after interventional operation, and

the position of the superior vena cava (SVC) was determined.

The right atrium was incised along the superior vena cava. There

is a triangular area called Koch triangle along the inner margin

of the ostium of the coronary sinus (CSO), the margin of

the tricuspid valve (TV), and the Todaro tendon, and the

atrioventricular node area was approximately 1 cm upward along

the ostium of the coronary sinus. Above the Koch triangle, the

thinnest and transparent region was visible, through which the

His bundle passed. The His bundle was cut out by means of

local anatomy (Figures 3, 8A). Histopathological results revealed

necrosis of ordinary cardiomyocytes at the ablation site, and His

bundle cells were generally normal without obvious injuries.
3.3 Preclinical experiment 3
(sinoatrial node)

The electrogram amplitude at baseline was 5.8 ± 1.0 mV

(range, 4.8–6.5 mV), and RPEF caused a decrement in the

electrogram amplitude to 1.5 ± 0.7 mV (range, 1.0–2.0 mV),

with a mean reduction of 73.0% (range, 60.2%–84.4%), which

gradually recovered to 4.9 ± 0.7 mV (range, 4.2–5.4 mV) and

returned to 84.9% (range, 80.3%–88.5%) within 5 min

(Figure 9). Sinus node recovery time (SNRT) before ablation
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1426920
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 7

Histopathological results showed normal mild to moderate degenerative changes between two RFA lesions.

FIGURE 6

The total electrogram amplitude decrease was observed immediately after RPEF in the atrial myocardium of Labradors (n= 4 RPEF ablations). A sharp
drop was determined in the amplitude of the electrogram followed by a gradual recovery (the horizontal axis represents time in minutes; the vertical
axis shows the percentage of overall ECG amplitude recovery).
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was 1,410.5 ± 28.6 ms (range, 1,388.3–1,445.5 ms) and became

1,377.8 ± 31.6 ms (range, 1,349.3–1,400.0 ms) after ablation for

5 min (P > 0.05). The corrected sinus node recovery time

(CSNRT) before ablation was 635.7 ± 20.2 ms (range, 618.3–

654.0 ms) and became 633.2 ± 16.7 ms (range, 623.8–644.0 ms)

after ablation for 5 min (P > 0.05).

The positions of the SVC and RAA were determined. The

junction of the root of SVC and RAA was the sinus node

(Figures 4, 10A), where tissues of 1 cm × 2 cm were obtained.

Then the tissues were sliced continuously along the long axis.
Frontiers in Cardiovascular Medicine 06
The histopathological results unveiled that the structure of SA

node cells was generally normal with no obvious injury.
4 Discussion

4.1 Reversible effect of pulsed electric field

When RPEF energy was delivered to canine atrial tissue, the

biphasic electrogram amplitude dramatically diminished by
frontiersin.org
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FIGURE 8

(A) Gross anatomical location of the His bundle and histopathology. HE staining showed local myocardial necrosis (B), and Masson staining exhibited
normal cell structure of His bundle (C). AVN (red oval area), atrioventricular node; LBB, left bundle branch; RBB, right bundle branch; CSO, coronary
sinus ostium; TV, tricuspid valve; MB, moderator band; HIS, His bundle.

FIGURE 9

After RPEF ablation of the SA node, the amplitude of pulsed ablation
catheter electrogram decreased immediately and recovered
gradually over time.

Zhai et al. 10.3389/fcvm.2024.1426920
approximately 70%, followed by a gradual recovery to about 80% of

baseline within 5 min. The results of the pathological analysis

showed that the ablation site was nearly normal myocardium
Frontiers in Cardiovascular Medicine 07
without lesion. Before arrhythmia ablation, partially reversible

pulses can be delivered to potential targets to help identify

critical isthmus sites. It manifests that RPEF can act on

potentially important sites to terminate tachycardia, and thus

contributes to identifying critical isthmus sites prior to ablation.

Nowadays invasive electrophysiological mapping is widely

performed in tachycardia patients. Mapping techniques such as

excitation and entrainment are often used to map arrhythmia

loops and identify critical isthmus sites for catheter ablation.

However, these techniques fail to provide the precise location of

ablation. In general, the putative target can only be determined

based on whether the ablation lesion terminates the tachycardia.

A lack of localization specificity results in the radiofrequency

energy to possibly ablate cardiac tissue unrelated to arrhythmia.
4.2 Histiocytic selectivity of PEF

It has been documented that the electroporation thresholds of

PEF differ greatly among different cell types (Table 1) (22–28),

and PEF is particularly suitable for cardiac ablation since

cardiomyocytes have the lowest electroporation threshold of all

tissues (29). The difference in sensitivity between cardiomyocytes

and other non-target tissues may reduce the risk of collateral
frontiersin.org
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FIGURE 10

(A) The junction of the roots of SVC and the RAA was the sinoatrial node. (B) Histopathological results showed that the sinusoidal node cells were
smaller and denser than the surrounding ordinary cardiomyocytes, presenting an irregular oval shape, disorderly arrangement, clumpy distribution
and no clear boundary with ordinary cardiomyocytes.

TABLE 1 IRE thresholds for various cell types.

Tissue IRE threshold (V/cm) References
Nerve 3,800 Li et al. (22)

VSMC 1,750 Maor et al. (23)

RBC 1,600 Bao et al. (24)

Liver 700 Sano et al. (25)

Kidney 600 Neal et al. (26)

Pancreas 500 Arena et al. (27)

Myocardium 400 Kaminska et al. (28)

VSMC, vascular smooth muscle cell; RBC, red blood cell.
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damage to the esophageal and phrenic nerves, while other thermal

ablation methods, such as radiofrequency and cryoballoon ablation,

may damage the esophageal and phrenic nerves. The exact

mechanism that makes cardiomyocytes more sensitive to lower

PEFs is not fully understood, but may be related to cell size,

orientation, membrane properties, and sensitivity to non-specific

cation entry (30). Acute kidney injury due to hemoglobinuria after

pulsed electric field ablation has also been studied. More than

70 applications seem to have better sensitivity and specificity

to predict hemolysis (31–34). However, a maximum of four

applications per dog were performed and the PEF intensity was

reversible, considering the low likelihood of causing

hemoglobinuria and acute kidney injury associated with hemolysis.

Experimental studies regarding the impact of PEF on animals

have indicated that there are marked differences in the effects of

PEF on different cardiomyocyte types under the same pulse

parameters. A monophasic pulse wave with a voltage of 1,000–1,

500 V was used to ablate the bilateral ventricular septum, which

was the initial distribution of His, left and right bundle branches.

It was found that 63% of experimental animals developed

transient third-degree atrioventricular blocks, with a dose-

dependent duration and severity, 38% had right bundle branch

block, and histopathological results confirmed that Purkinje’s
Frontiers in Cardiovascular Medicine 08
nucleus and ultrastructure remained intact (35). In addition, a

study on the isolated Langendorff model of canine heart has

confirmed that the ablation mode was set with monophasic wave,

750∼2,500 V voltage, 90 μs pulse width, and 10 increments in

voltage to release PEF, which could achieve irreversible damage

to Purkinje’s potential. The voltage required for the left bundle

branch potential block was 2,000 V, whereas 2,500 V voltage only

caused a few seconds of His bundle potential block (36). In our

experiment, the maximum His potential was ablated with PEFs

at different voltages. Transient third-degree atrioventricular

blocks occurred in all dogs with biphasic wave, voltage of 600–

1,800 V, the duration of which was significantly dose dependent.

The structure of His bundle cells remained intact, while local

ordinary cardiocytes were necrotic.
4.3 PEF ablation of para-His arrhythmia

When PEF was applied to the maximum potential of His

bundle within a range of voltages, acute His injury and transient

complete atrioventricular blocks appeared, and the higher the

voltage, the longer the recovery time. The results of the

pathological analysis showed that ordinary cardiomyocytes were

necrotic at the ablation site, while the cells of His bundle were

almost normal. Before ablation of para-His tachyarrhythmia,

delivering PEF with safe voltages to the critical sites of para-His

tachyarrhythmia can help determine the risk of a potential

atrioventricular block, suggesting that PEF at safe voltages

applied to important anatomic sites can facilitate the

identification of potential risk of atrioventricular blocks prior to

ablation. When patients with para-His arrhythmia receive

invasive electrophysiological mapping, they are often treated

simultaneously with titration ablation therapy. When

electrophysiological examination confirms that there is obvious
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bundle potential or the ablation therapy is ineffective at the right

heart target site, a femoral artery puncture is required to

retrograde into adjacent sites, such as the non-coronary cusp and

right coronary cusp for targets mapping, then the ablation

catheter is sent to the corresponding target site for ablation.

Some patients need combined ablation for the femoral artery

access of the left heart and femoral vein access of the right heart.

However, these ablation therapies can only be performed

anatomically as far away from the His bundle as possible.

In general, the risk of ablation can only be observed by the

presence of atrioventricular blocks. The absence of advance

prediction on ablation risk results from the energy that may

injure His bundle and thus cause the conduction block.
4.4 Sinus node modification

Our study verified that PEF ablation with a certain voltage

could cause reversible injury to the electrical conduction of the

SA node, and the histopathological results showed that the SA

node cell structure was normal without obvious injury.

Accordingly, when the sinus node is ablated close to the

target heart rate in sinus node modification, RPEF ablation can

be chosen to prevent excessive ablation and avoid severe SA

node dysfunction. SVC isolation can be achieved with a

segmental ablation approach at the level of the SVC–RA

junction in paroxysmal AF patients with non-pulmonary

vein (PV) triggers arising from SVC (37). The sinoatrial node

was ablated only once per dog and the pulse electric field

intensity was reversible, so the possibility of SVC isolation was

slim. In addition, studies have shown that PEF can be

performed without damaging the phrenic nerve or causing

vascular stenosis (38–41). Consequently, phrenic nerve

injury and superior vena cava syndrome can be avoided

when PEF is chosen as the energy modality in the sinus

node modification.
4.5 Limitations

Nevertheless, there is still room for improvement in this study.

This study only evaluated the effect of RPEF on myocardial tissue

in healthy dogs, and only obtained preliminary exploratory

findings. The energy intensity that can be applied to preclinical

and clinical arrhythmias still needs further exploration.

In addition, the sample size of this study is small, and further

studies are needed to verify the completely reversible energy

intensity. The limited observation periods (<5 min) after RPEF

precluded an understanding of the time duration needed for

complete recovery of electrogram amplitude, pacing thresholds,

and AH interval. Furthermore, because PFA can be altered with

even minor changes to delivery parameters, these results cannot

be regarded to be applicable to other PFA systems. Other

preclinical and clinical studies reported data regarding PFA

systems using different parameter compositions and catheter

electrode designs are needed.
Frontiers in Cardiovascular Medicine 09
5 Conclusion

This study demonstrated that PEF could be transmitted in a

reversible manner in vivo, and its transient effects on cell

excitability contributed to elucidating the physiological mechanism

of the tachycardia circuit. We also studied acute SA node injury

and acute His injury, providing new strategies for SA node

modification and para-His arrhythmia ablation. Collectively, RPEF

provides a novel route to accurately ablate arrhythmias.
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