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Background: Human CD16+ monocytes (hCD16+ Ms) have proangiogenic
properties. We assessed the feasibility, safety and efficacy of hCD16+ Ms in a
porcine model of myocardial infarction (MI).
Methods and results: A total of 27 female Large White pigs underwent MI with
reperfusion and cardiac magnetic resonance (CMR). Five days later, animals
received intramyocardial injections of hCD16+ Ms in saline (n= 13) or saline
only (n= 14). hCD16+ Ms were selected from leucocyte cones. Feasibility/
safety endpoints included injury at injected sites, malignant arrhythmias,
cancer, haematoma, left ventricular (LV) dilatation, troponin release and
downstream organ injury. Co-primary efficacy outcome included LV scar and
ejection fraction (LVEF) at 30-day post-injections by CMR. Immunohistochemistry
included neo-angiogenesis, fibrosis, markers of myofibroblast and inflammation.
Four animals were excluded before injections due to untreatable malignant
arrhythmias or lung injury. Median cell number and viability were 48.75 million
and 87%, respectively. No feasibility/safety concerns were associated with the use
of hCD16+ Ms. The LV scar dropped by 14.5gr (from 25.45±8.24 to 10.8 ± 3.4
gr; −55%) and 6.4gr (from 18.83± 5.06 to 12.4± 3.9gr; −30%) in the hCD16+ Ms
and control groups, respectively (p=0.015). The 30-day LVEF did not differ
between groups, but a prespecified sub-analysis within the hCD16+ Ms group
showed that LVEF was 2.8% higher and LV scar 1.9gr lower in the subgroup
receiving a higher cell dose. Higher tissue levels of neo-angiogenesis,
myofibroblast and IL-6 and lower levels of TGF-β were observed in the hCD16+

Ms group.
Conclusions: The use of hCD16+ Ms in acute MI is feasible, safe and associated
with reduced LV scar size, increased tissue levels of neo-angiogenesis,
myofibroblasts and IL-6 and reduced pro-fibrotic TGF-β at 30-day post-
injections. A higher cell dose might increase the LVEF effect while reducing
scar size, but this warrants validation in future studies.
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Introduction

The management of >26 million global patients developing

chronic heart failure (CHF) after myocardial infarction (MI)

(1, 2) remains a major global challenge for healthcare providers.

This condition remains largely irreversible making new

therapeutic approaches desperately needed (3). MI leads to a

marked early loss of cardiomyocytes, while an additional number

of vulnerable cardiomyocytes is lost in the border zone (BZ) of

the infarct over several days/weeks after the acute event due to

persisting ischemia (3, 4). Therapeutic approaches able to prevent

this early or subacute loss of cardiomyocytes might mitigate the

risk of developing CHF.

Endothelial progenitors, mesenchymal stem cells, bone

marrow-derived mononuclear cells and cardiac stem cells have

been trialled in patients over the last 15 years (4). These cell

therapies have often shown promising results in small rodents

(5) but have invariably failed to show meaningful clinical effects

when translated into large animals or patients (6) due to poorly

relevant models, ill-defined cell populations, lack of scaling up,

suboptimal methods of cell delivery and/or exclusive targeting of

cardio-myogenesis with less focus on neo-angiogenesis and

immunomodulation (5, 6).

The immune response post-MI can be divided into early

proinflammatory phase and late inflammatory resolution or

reparative phase, involving components of both the innate and

adaptive immune systems (7). Harnessing of the immune

responses has been associated with enhanced cardiac repair (8). In

addition, cardiac healing has been associated with the type and

extent of immune responses to tissue injury (8–11), leading to

better recovery after preclinical MI or better clinical prognosis in

patients (8, 12, 13). The myocardial immune response following

MI involves the recruitment of consecutive waves of circulating

monocytes (13–15), which, in response to the microenvironment,

can differentiate into macrophages, dendritic cells and/or other cell

types (16). Hence, monocytes and derived cells may contribute to

tissue healing/repair following MI by impacting inflammation,

phagocytosis, proteolysis, angiogenesis, left ventricular (LV)

scarring and remodelling (17–19). We have shown that subsets of

human circulating monocytes expressing CD16 (hCD16+ Ms) have

proangiogenic activity when delivered into ischemic tissues (20),

that circulating levels are 10-fold higher in patients with critical

limb ischemia compared to healthy donors and that resolution of

ischemia is associated with normalization of circulating levels (20).

Others have also suggested that CD16+ Ms may trigger neo-

angiogenesis (21). These findings indicate that increasing tissue

levels of hCD16+ Ms might have a therapeutic effect.

Mechanistically, CD16+ monocytes are known to express high

levels of CX3CR1 and low levels of chemokine receptors in the

infarcted myocardium, where they become the predominant

monocyte subtype 3–5 days post-MI (22). They have been

associated with myocardial reparative potential by releasing anti-

inflammatory cytokines and growth factors to stimulate cell

proliferation, angiogenesis and ECM production (23, 24).

This preclinical trial aimed to ascertain the feasibility, safety

and preliminary reparative efficacy of direct intramyocardial
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hCD16+ Ms delivery in a porcine model of closed chest MI with

reperfusion under immunosuppression.
Materials and methods

An extended version of Materials and methods is shown in the

Supplementary File. The data underlying this article are available

in the article and its online Supplementary Material. Full raw

data, statistical methods and trial materials can be made available

on request.
Ethics

Human CD16+ monocytes (hCD16+ Ms) were selected from

leucocyte cones produced as a by-product of the apheresis process

of blood donated to the National Health Service Blood and

Transplant (NHSBT). Ethical approval was obtained from the

South East London Research Ethics Committee approval (Ref.

10/H0804/67). Donors gave generic consent for research use as

part of the donation process and are not identifiable. The tests

undertaken on the human tissue conformed to the principles

outlined in the Declaration of Helsinki. The in vivo animal-

regulated procedures were conducted in line with UK Home

Office regulations (Animal Act 1986) at the MHRA-compliant

Translational Biomedical Research Centre (TBRC) (Bristol, UK).

The procedures were conform to the guidelines from Directive

2010/63/EU and were undertaken under project licenses (7008975

and PP4585512) granted by the Home Office after formal review

and approval by the University of Bristol Animal Welfare and

Ethics Review Body (AWERB). The report of research data from

animal experiments is in keeping with the ARRIVE (Animals in

Research: Reporting In Vivo Experiments) guidelines (25).
Human Cd16+ Ms selection

The hCD16+ Ms product was manufactured via immunomagnetic

selection under GMP-compliant conditions at King’s College London

(KCL), according to a strict SOP (Supplementary Figure S1). Final

product characterization included cell count, purity and viability.

The final product was suspended in N/Saline to achieve a final

volume of 3 ml, packed in cold bags, stored overnight and couriered

early next morning from KCL to TBRC Bristol for immediate

injection. At TBRC, prepacked saline with or without cells was

handled at clinical standards and drawn in opaque syringes just

before being handled to the surgeon for blind injection for direct

intramyocardial injections under direct vision (within 24 h from

product manufacturing).
Porcine MI procedure and delivery of
hCD16+ Ms

Female Large White swine were used (weight, 55–60 kg).

The MI procedure was as previously reported (26) (Figure 1;
frontiersin.org
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FIGURE 1

Schematic of porcine trial overtime: MI, myocardial infarction; LAD, left anterior descending artery; CMR, cardiac magnetic resonance; hCD16+ MS,
hCD16+ monocytes; LVEF, left ventricular ejection fraction.
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Supplementary File). Briefly, aspirin 300 mg was administered

daily with food from 5 days before MI and until termination.

On the MI day, under general anaesthesia (GA), full monitoring

and IV heparinization to achieve an activated clotting time

(ACT) >300 s, animals were subjected to percutaneous balloon

MI procedure of the antero-apical LV territory under

fluoroscopic guidance. Amiodarone infusion (300 mg over

90 min) was started before coronary occlusion to prevent

ventricular fibrillation (VF). Additional amiodarone bolus

(150 mg) and DC cardioversion were used if necessary to treat

VF during ischemia. Animals were recovered, and vital

parameters were monitored for 45–60 min before return to the

maintenance area. Daily clinical grade immunosuppression was

started 3 days after MI and included cyclosporine 15 mg/kg/day

+methylprednisolone 2 mg/kg/day till termination. In vivo

characterization of MI scar size and LV function occurred 5 days

after MI under GA via baseline cardiac magnetic resonance

(CMR) imaging. Next, animals were randomized according to a

predefined sequence to receive blindly either hCD16+ Ms

suspended in saline (hCD16+ Ms group) or saline alone (control

group) via 10 microinjections (0.3 ml each) targeting LV scar

and border zone of the infarcted myocardial territory via mini-

thoracotomy according to a predefined LV 17-segment model

(Supplementary Figure S1). The rationale of waiting 5 days

before injecting cells/placebo after MI was based on hCD16+ Ms

being reported as the predominant subtype at 3–5 days post-MI

(22) as well as obtaining CMR imaging with less tissue oedema,

enhancing cell survival by avoiding delivery too close to the MI

ischemic event (27) and enhancing the feasibility of future

translational in humans where mini-thoracotomy and direct

injections are regarded not safe if undertaken too early after MI.

On completion, animals were recovered as per routine [(27);
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Supplementary File]. Thirty days after injections, animals

underwent a final GA, repeat CMR followed by termination and

tissue sampling.
CMR image acquisition and analysis

A 3 T scanner with a 32-element phased-array cardiac coil was

used (Siemens Prisma, Germany). CMR protocol included cine

sequences in long and short axis, pre-contrast T2-STIR and T2

mapping, pre-contrast (native) and post-contrast T1 mapping

and extracellular volume (ECV) measurements and early and late

gadolinium enhancement (26). Image acquisition was performed

by a blind expert radiographer. CMR data interpretation/

reporting was performed by two blinded senior radiology

investigators using dedicated software (Argus, Siemens AG,

Erlangen, Germany).
Outcome measures

Feasibility and safety
Feasibility outcome measures related to the hCD16+ Ms

product manufacturing in London included obtaining a median

cell count >40 million, cell viability >80% and intramyocardial

delivery within 24 h at TBRC Bristol. Porcine MI procedural

feasibility included obtaining an average LV scar size >10gr at

CMR, safe intramyocardial delivery of hCD16+ Ms /placebo and

100% survival to the predefined endpoint of all injected animals.

Safety outcome measures included serial vital observations,

animal well-being and weight gain overtime, full blood count,

myocardial injury (serial troponin release) and circulating and
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tissue-based markers of inflammation (interleukin-6-IL-6).

In addition, they included CMR and macroscopy safety indices

[LV intramural growth/cancer, excessive LV scarring, infection/

abscess, adverse LV remodelling/heart failure—LV end-diastolic

diameter (LVEDD) and intramural haematoma/thrombosis].

LV scar and LVEDD were reported as continuous variables while

LV intramural growth/cancer, abscess or haematoma/thrombosis

were reported as either present or absent. Heart rhythm

and malignant ventricular arrhythmias were studied via

serial electrocardiogram.
In vivo efficacy measures
Co-primary CMR measures included LV global scar size and LV

ejection fraction at 30 days after injections vs. 5 days after MI before

injections. Additional CMR outcome measures included

microvascular obstruction (MVO) and global LV volumes.
Blood and tissue outcome measures
Blood-based outcomes included serial full blood count,

myocardial injury (troponin) and inflammation (IL-6) at baseline

(before MI and before the start of immunosuppression), 5 days

post-MI (30 min before injections and 1 h after) and 30 days

after injections. Histology-based outcomes included histochemical

staining and/or mRNA expression for neo-angiogenesis, fibrosis,

myofibroblasts, cardiomyocyte function and inflammation (n = 8

in each group). Following culling, the infarcted left anterior

descending (LAD) territory was collected for each heart along

with samples of non-infarcted myocardium from the circumflex

artery (CX) territory. Samples for analysis were categorized as

scar (S), border zone (BZ) or transition zone (TZ) (Figure 2A)

from the LAD territory or as healthy (H) from the CX territory

(Figure 2C). Some aliquots were immediately tissue snap frozen

in liquid nitrogen and stored at −80°C while others were fixed in

10% formalin before paraffin embedding. Serial sections were cut

at 5 µm thickness. Haematoxylin and eosin (H&E) staining of a
FIGURE 2

(A) Schematic showing the left anterior descending (LAD) artery territory d
border zone and transition zone, respectively; representative H&E stained t
and healthy from circumplex (Cx) artery territory (C). Scale bars are 200 μm
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section of each heart was used to classify regions into S, BZ (the

region extending 2 mm around the infarcted area) and TZ (tissue

>2 mm away from the edge of S on the tissue section)

(Figure 2B). Each within-infarct territory (S, BZ or TZ) was

compared alone or cumulatively vs. H territories within the same

heart and across groups.
Macroscopy, myocardial histology staining
and mRNA expression

This is fully shown in the Supplementary File. After

termination, a blind macroscopy of the whole heart was carried

out to re-assess the presence/absence of LV intramural growth/

cancer, infection/abscess and/or intramural haematoma/

thrombosis; the presence of any of these abnormalities would be

investigated by ad-hoc histology. All myocardial samples were

stained for markers of neo-angiogenesis (anti-CD31/PECAM-1;

platelet endothelial cell adhesion molecule), fibrosis (picrosirius

red for collagen), myofibroblasts (anti-vimentin and anti-CD90

(Thy1) and functional cardiomyocytes (anti-desmin). Expanded

staining methods and the antibodies used can be found in the

Supplementary File. All stained tissue sections were imaged with

a Precipoint O8 Slidescanner using a 20× objective, with the

exception of CD31 stained tissue that was imaged at higher

magnification (40×). To quantify neo-angiogenesis, anti-CD31

(a marker of endothelial cells) was assessed across an average of

five images per heart region. Manual counting of capillaries

(CD31+ staining with one associated nuclei) and arterioles

(CD31+ with two or more nuclei; Supplementary Figure S1) was

undertaken, and data were reported as number of vessels/mm2

tissue. The remaining histological analysis was performed on data

from three myocardial regions per area, and the percentage of

staining per tissue area was determined using colour

deconvolution in Fiji ImageJ (Java 1.8.0 64-bit). For mRNA

expression 384-well quantitative PCR was used for markers of
ivided for histology and mRNA expression: S, BZ and TZ represent scar,
issue sections show the defined zones within the infracted territory (B)
.
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myocardial fibrosis (TGF-β, CTGF, MMP2, Col1a1, Col1a2,

Col3a1), myofibroblasts (CD90, ACTA2, POSTN), cardiomyocyte

function (GLUT1, GLUT4) and inflammation (TNFα, IL-1B,

IL-6). All mRNA levels were normalized to the housekeeping

genes GUSB, PPIA and GAPDH. Further methods and primer

sequences are shown in the Supplementary File. Expression was

calculated using the 2^–ddCt method.
TABLE 1 Baseline characteristics.

Variable hCD16 +Ms
(n = 11)

Control
(n = 12)

p-value

Baseline weight (kg) 63.1 ± .2.7 63.2 ± 3.1. 0.92

Duration coronary occlusion
(min)

60 60 na

Treated Vt/Vf during MI 6 (54.5%) 5 (41.7%) 0.84

Successful CPR during Mi 0 (0%) 1 (8.3%) 1.00

Successful DC cardioversion
during Mi

3 (27.3%) 5 (41.7%) 0.78

Treated Vt/Vf during injections 0 (0%) 1 (8.3%) 1.00

DC cardioversion during
injections

(0%) 1 (8.3%) 1.00
Statistical analysis and sample size

Non-parametric analysis was performed by blind statisticians.

Numerical clinical and in vivo imaging variables are presented as

medians and confidence intervals or as mean and standard

deviation. The categorical variables are reported as count and

percentages. Normality was assessed using the Shapiro–Wilk test.

LVEF, scar size and LV volumes measured before cell/placebo

injections and at 30 days were compared with the baseline data

using a Kruskall–Wallis test. Two-group comparison analysis was

performed by Student t-test or Mann–Whitney test if data were

not normally distributed. Comparison analysis between

categorical variables was performed by chi-square test or Fisher

exact test as appropriate. A p-value of <0.05 was considered

statistically significant. One-way ANOVA was used for the initial

assessment with Gabriel’s test to find differences between pairs of

means. Correlations between LVEF and scar size and cell

viability and cell count split by medians were calculated as

predefined sub-analyses by regression analysis within the

hCD16+ Ms group. Statistical analyses were performed in IBM

SPSS (IBM Corp. Released 2015) and R version 4.1.2 [R Core

Team (2021). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna,

Austria. URL https://www.R-project.org/]. For mRNA

comparison, expression in each region (S, BZ, TZ) within the

infarcted LAD territory was compared as fold-change vs.

expression in healthy CX regions of each heart. Additional

analysis was performed comparing averaged/combined expression

across S, BZ and TZ of infarcted LAD territory vs. healthy CX

territory. For histology and mRNA comparisons, two-way

ANOVA was used to test across hCD16+ Ms vs. control groups

and regions, while a post hoc Tukey HSD test was carried out to

observe differences between individual regions. CMR and

macroscopy-based evaluation of predefined safety measures were

classified either as present or absent.

Hypotension/bradycardia
During recovery

0 (0%) 0 (0%) na

Median hCD16 +Ms number
(million)

–

Median hCD16 +Ms viability (%) 87 – –

Key baseline CMR outcomes
LV scar before injections (gr) 25.4 ± 8.2 18.8 ± 51 0.03

LVEF before injections (%) 45.5 ± 6.3 44.3 ± 55 0.61

LVEDV before injections (ml) 1701 ± 28.3 1554 ± 211 0.18

Median MVO (gr) 3.00 (2.00, 7.00) 1.00 (0.00, 2.50) 0.06

VT/VF, ventricular tachycardia/ventricular fibrillation; MI, myocardial infarction; CPR,

cardiopulmonary resuscitation; DC, direct current; CMR, cardiac magnetic resonance; LV,

left ventricle; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic

volume; MVO, microvascular obstruction.
Sample size and power calculation

Measuring in vivo imaging and clinical outcomes longitudinally

via CMR imaging at baseline, just before cell/placebo injections

and 4 weeks later in the same animal increases the relative

efficiency of the study by more than 80%, assuming a

correlation of 0.7 between baseline and final measurements.

All calculations are based on cell-specific trials with a

1:1 randomization schedule, using ANCOVA analyses. The

co-primary outcomes included LV scar size and LVEF.
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Power analysis: LV scar size, power at 2p = 0.05 with 11 animals

in each arm to identify a 5.6 gr (FWHM method) difference

between groups; LVEF, assumed standard deviation of 7.2%

between measurements before cell/placebo injection and 30-day

post-injection: 11 animals in each group required to have 80%

power at 2p = 0.05. Hence, to allow for excess experimental

failure, we included a total sample size of 27. For histology and

mRNA comparisons, eight hearts were selected randomly and

assessed in each group.
Results

Twenty-seven female Large White pigs (mean weight, 63.15,

SD 2.93) were subjected to MI. Three animals suffered

untreatable ventricular fibrillation (VF) during acute ischemia

while one animal suffered lung injury during mini-thoracotomy

time point before injections. These four animals were excluded

in line with the study protocol. Hence, a total of 23/27 animals

were recruited in the trial and underwent injections according

to a predefined randomization sequence (n = 11 in the hCD16+

Ms group and n = 12 in the control group). Baseline

characteristics including CMR outcome measures are shown in

Table 1 and Supplementary Table S1. By chance, the MI scar

was larger in the hCD16+ Ms group despite randomization

(CMR scar size before injections was 25.4 ± 8.24gr vs. 18.8 ±

5.1gr in the hCD16+ Ms and control groups respectively;

p = 0.03; Table 1; Figure 3A). LVEF pre-injections were 45.5 ±

6.3% and 44.3 ± 5.5% in the hCD16+ Ms and control groups,

respectively (p = 0.61). LV end-diastolic volume (LVEDV) and
frontiersin.org
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microvascular obstruction (MVO) were slightly larger in the

hCD16+ Ms group (Table 1).

Feasibility and safety outcome. Human CD16+ Ms were

successfully extracted from leucocyte cones according to the

technology shown in Supplementary Figure S2. The antigenic

profile was confirmed via flow cytometry. Median monocyte

number was 48.75 million, while average cell viability was 87%.

Feasibility/safety measures related to coronary occlusion, VT/VF

during MI or during injections and vital parameters are reported

in Table 1. All 23 recruited animals survived the MI and

injection procedures and reached the final 30-day post-injection

time point in good health, with no evidence of infection or other

clinically unacceptable complications such as malignant VT/VF

associated with the treatment delivered. The overall median

weight at 30-day post-injections was 82 kg. The average weight

gain was 16.5 kg in keeping with normal expectations and animal

well-being, with no difference between groups. Serial full blood

counts showed no differences between groups over time

(Supplementary Table S2). CMR safety measures at 30-day post-

injections showed no evidence of intramural growth/cancer,

haematoma, excessive scarring, thrombosis, infection/abscess or

adverse LV remodelling associated with the use of hCD16+ Ms

(Supplementary Table S1). This was confirmed by safety

macroscopy evaluation of the whole heart after culling with all
FIGURE 3

(A) LV scar size before infections and 30 days after injections in the control
group at 30-day time point vs. before infections time point; (C,D) representa
late gadolinium enhancement in white representing scar size and distribu
injections (D). Scale bars are 1cm.
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these key outcome measures being classified as absent before

proceeding to heart sectioning for histology.
Efficacy outcome measures

Co-primary CMR outcomes
LV scar size
LV scar size decreased in both groups vs. baseline to 10.8 ± 3.4gr

and 12.4 ± 3.9gr in the hCD16+ Ms and control groups,

respectively (p = 0.69) (Figure 3A; Supplementary Table S1).

However, compared to before injections, LV scar size dropped by

14.5gr at the 30-day time point in the hCD16+ Ms group (from

25.4 ± 8.2 to 10.8 ± 3.4gr; 55%) vs. 6.4gr in the control group

(from 18.8 ± 5.1 to 12.4 ± 3.9gr; 30%) (p = 0.015; Table 1;

Figure 3B). Despite this baseline difference, LV scar size at

30-day post-injections was 1.6gr smaller in the hCD16+ Ms vs.

control (10.8 ± 3.4gr vs. 12.4 ± 3.9gr, respectively) (Figure 3A).

Representative CMR LV scar scans from a hCD16+ Ms

experiment before injections and 30-day after injections

are shown in Figure 3C-D. LVEF: At 30-day post-injections,

LVEF was 40.7 ± 1.6% and 41.9 ± 1.6% in the hCD16+ Ms

group and control group, respectively (p = 0.58) (see

Supplementary Table S1).
and hCD16+Ms groups: (B) percentage reduction in LV scar size in each
tive experiment from the hCD16+ Ms group showing CMR left ventricular
tion in the infarcted territory before injections (C) and at 30 days after
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Effect of hCd16+ Ms count and viability on LV scar
size and LVEF

The h-CD16 +Ms group was split by medians (cell viability

≥87%: n = 5 vs. <87%: n = 6; cell count ≥48.75 million: n = 5 vs.

<48.75 million: n = 6). The predefined sub-analysis showed that

the use of a higher hCD16 +Ms dose was associated with 2.8%

higher LVEF and 1.9 gr smaller LV scar compared to the lower

cell dose (Supplementary Table S3).
Secondary CMR outcome measures

Secondary CMRoutcomemeasures are reported in Supplementary

Table S1. At 30-day post-injections, LVEDV was 185 ml (161, 190) vs.

162 ml (148, 175) in the hCD16+ Ms and control groups, respectively

(p = 0.18). MVO was 0.18 ± 0.4gr vs. 0.0 ± 0gr in the hCD16+ Ms and

control groups, respectively (p = 0.15).

Histological outcome
Safety macroscopy examinations of the hearts 30 days after

injections excluded the occurrence of intramural growth/cancer,

haematoma, excessive scarring, thrombosis or adverse LV

remodelling associated with the use of hCD16 +Ms. In addition,

histological evaluations of the liver, lung and spleen at the same

time point were all normal (data not shown). Representative

images of myocardial tissue stained for key markers are shown in

Figure 4. Higher magnification images for each region are shown

in Supplementary Figure S2. The primary antibodies used are

shown in Supplementary Table S4.
FIGURE 4

Representative myocardial staining. Representative overview images
of left anterior descending (LAD) artery territory encompassing scar,
border zone and transition zone, and healthy circumflex (Cx) artery
territory, stained with haematoxylin and eosin (H&E), antibodies to
CD90, vimentin and desmin (proteins = brown) and picrosirius red
(PSR; collagen= red). Scale bars are 2 mm.
Neo-angiogenesis

Results for anti-CD31 staining for separate S, BZ and TZ

and H regions between groups are shown in Table 2 and

Figure 5. The use of hCD16+ Ms increased the number of

capillaries in S, BZ, TZ and H regions and of arterioles in S

and TZ regions vs. controls (all p < 0.05). The number of

capillaries and arterioles varied across regions, groups and

time-points (all p < 0.001). Neo-angiogenesis analysed as

cumulative LAD infarct region (S + BZ + TZ) and healthy CX

region vs. control group showed a similar effect of hCD16+

Ms (see Supplementary Table S5).

Expression of mRNAs for TGF-β, CTGF(CCN2), MMP2, Col

1a1, Col 1a2and Col 3a1 across S, BZ, TZ and H regions is shown

in Figure 6A. Primer sequences used are shown in Supplementary

Table S6. The use of hCD16+ Ms reduced the levels of pro-fibrotic

factor TGF-β in the TZ region (p < 0.01; Figure 6A) and the whole

infarct (S + BZ + TZ) (Supplementary Figure S4A). No other

differences related to hCD16+ Ms were noted.

Staining for collagen, a contributing factor to myocardial

fibrosis, across S, BZ, TZ and H regions is shown in Table 3,

Figure 4 and Supplementary Figure S3. Collagen levels were

higher in region S and gradually reduced moving away from S

through BZ, TZ and H regions. There was an effect related to

hCD16 +Ms.
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Fibroblasts and myofibroblasts

The presence of fibroblasts and myofibroblasts across S, BZ, TZ

and H regions and groups was assessed by staining for anti-CD90

and anti-vimentin, respectively (Table 3; Figure 4; Supplementary

Figure S3) and by mRNA expression of CD90, ACTA2 and

POSTN (Figure 6B). The use of hCD16+ Ms was associated with

increased staining for fibroblasts and myofibroblasts between

groups and across S, BZ and TZ regions (both p < 0.05).

Evaluations of mRNA expression markers did not show

differences between groups.
Cardiomyocyte function

The level of cardiomyocyte function across S, BZ, TZ and H

regions and groups was assessed by staining for desmin (Table 3,
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TABLE 2 Neo-angiogenesis for separate S, BZ and TZ and H between groups.

No. of vessels/mm2

Tissue region Capillaries Arterioles Capillaries + Arterioles
Control Scar 91.7 ± 25.4$$ 38.0 ± 7.5$$ 129.6 ± 31.7$$

Border zone 122.1 ± 35.9$$ 12.7 ± 2.2$$ 134.8 ± 37.6$$

Transition zone 80.5 ± 22.7$$ 8.8 ± 2.9$$ 89.4 ± 23.3$$

Healthy 200.6 ± 50.9$$ 20.2 ± 4.7$$ 220.8 ± 53.2$$

hCD16 +Ms Scar 220.4 ± 77.7*,$$ 43.7 ± 7.4*,$$ 264.0 ± 74.4*,$$

Border zone 150.6 ± 51.9*,$$ 14.0 ± 2.8$$ 164.6 ± 52.7*,$$

Transition zone 164.0 ± 53.1*,$$ 17.0 ± 3.2*,$$ 181.0 ± 55.7*,$$

Healthy 318.8 ± 99.4*,$$ 21.2 ± 3.8$$ 340.0 ± 100.0*,$$

Number of capillaries and arterioles per mm2 of left anterior descending (LAD) territory and circumflex (CX) artery healthy regions in control vs hCD16+Ms treated tissue (n=8 pigs per group).

*p < 0.05: effect of hCD16 +Ms treatment vs controls.
$$p < 0.001: effect of region (both by univariate analysis of variance).

FIGURE 5

Cd31 staining to highlight capillaries and arterioles. Representative image of heart tissue stained with antibody to CD31 to highlight capillaries
(arrowheads) and arterioles (arrows) manually counted in the tissue. Scale bar = 100 μm.
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Figure 4; Supplementary Figure S3) and by mRNA expression

GLUT-1 and GLUT-4 (Figure 6D). Desmin was absent in S

regions but was quite intense in BZ regions in both groups, with

no difference associated with the use of hCD16+ Ms. mRNA

expression of GLUT-1 and GLUT-4 increased gradually from

S to H regions with no difference associated with the use of

hCD16+ Ms.
Tissue inflammation

Tissue inflammation across S, BZ, TZ and H regions and

groups was assessed by mRNA expression TNF-α, IL-1B and

IL-6 (Figure 6C). Tissue levels of IL-6 appeared to be higher in
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the hCD16+ Ms group although this was not quite significant

(p = 0.06). No other differences were noted.
Discussion

This preclinical trial has tested the feasibility, safety and

efficacy of intramyocardial modulation with hCD16+ Ms

delivered via intramyocardial injections early after acute MI.

A rigorous approach was used including clinical grade

manufacturing of hCD16+ Ms, randomization and blinding,

longitudinal in vivo imaging at clinical standards via 3 T

CMR, clinical grade immunosuppression and adhesions to

ARRIVE guidance (25).
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FIGURE 6

mRNA expression of genes at 30-day post-injections. mRNA expression of genes associated with fibrosis (A), myofibroblast function (B), inflammation
(C) and heart function (D) in infarcted regions. Data are shown as fold-change from healthy Cx territory regions. *Significant effect of treatment.
$Significant effect of region. Bars over charts indicate significant differences between groups and regions. S, BZ, TZ and H indicate scar, border
zone, transition zone and healthy heart regions, respectively.
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Feasibility and safety of hCD16 + Ms therapy were confirmed

with 100% survival of all recruited and injected animals to the

predefined endpoint, with normal vital parameters and

serial blood cell counts, no infections, normal nutrition and

well-being over time. Indeed, the average weight gain of

16.5 kg at the final time point was within expected reference
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intervals with no difference between groups. Additional safety

outcome measures, based on in vivo CMR and final

histopathology, excluded the presence of LV intramural

growth/cancer, haematoma, excessive scarring, thrombosis,

infection/abscess or adverse LV remodelling associated with

the use of hCD16+ Ms.
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TABLE 3 Protein expression by staining.

Stain expression per tissue area (%)

Tissue region CD90*,$$,# Vimentin*,$$ Desmin$$ Collagen$$

Control Scar 11.7 ± 3.1 21.2 ± 3.0 1.4 ± 0.3 39.3 ± 9.6

Border zone 1.0 ± 0.3 2.9 ± 0.6 75.3 ± 3.9 6.7 ± 2.4

Transition zone 0.8 ± 0.5 2.5 ± 0.7 70.8 ± 3.1 5.8 ± 2.3

Healthy 0.6 ± 0.1 2.1 ± 0.4 62.0 ± 4.9 4.1 ± 1.1

hCD16 +Ms Scar 31.1 ± 9.1 41.7 ± 11.2 3.1 ± 1.4 49.6 ± 5.6

Border zone 2.8 ± 1.3 6.2 ± 1.6 69.4 ± 8.4 8.4 ± 2.4

Transition zone 3.5 ± 1.9 5.9 ± 1.8 63.8 ± 10.1 7.0 ± 2.2

Healthy 1.0 ± 0.4 2.1 ± 0.4 64.5 ± 7.2 6.7 ± 2.3

Protein expression in Control vs. hCD16 +Ms hearts (n= 8 per group) as percentage of tissue area, in predefined regions of the infarcted heart.

*p < 0.05: effect of treatment by univariate analysis of variance.
$$p < 0.001: effect of region by univariate analysis of variance.
#p < 0.05: interaction between region and treatment by univariate analysis of variance.
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The use of clinical grade immunosuppression was agreed on

balance at the study design stage to prevent rejection/death of

human monocytes given the xenotransplantation approach,

although we appreciated that this approach might taper down

the reparative capacity of the injected monocytes. Others have

used immunosuppression when testing other human cells in

large animals (28) reporting at times evidence of beneficial

effects. The immunosuppression regimen used in this study was

selected against another clinically approved regimen in a pilot

study completed in the same MI model before starting this trial.

This pilot study confirmed that the immunosuppression regimen

used in this trial was more effective in tapering down the porcine

myocardial tissue immune response without triggering infection

(data not shown but available). It might be argued that the use

of immunosuppression might have limited the effectiveness of

the human monocytes used in this porcine trial, and therefore

that using these cells on pure autologous clinical grounds, e.g.,

autologous hCD16+ Ms being used in MI patients, could lead to

larger effect sizes. While these speculations make sense clinically,

they could be probed further only in a future human study.

The use of hCD16+ Ms derived from leucocyte cones via

clinical grade manufacturing provided consistent cell count,

purity and viability. Of note, a higher cell dose could be easily

obtained simply by expanding the leucocyte cone base, with the

potential to enhance future clinical application of myocardial

immunomodulation within 24–48 h from acute MI. The use of

this monocyte subtype was prompted by our previous

preliminary work suggesting proangiogenic activity, 10-fold

higher circulating levels in critical limb ischemia patients vs.

controls and resolution of limb ischemia with normalization of

circulating levels (20). With regard to mechanistic pathways

involved, others have also suggested that CD16+ Ms are

associated with neo-angiogenesis (21) and that monocytes (and

macrophages) play pivotal roles in cardiac healing after MI

(9, 29, 30), possibly by regulating the cardiomyocytes to non-

cardiomyocytes interface through their phagocytic and paracrine

activities (9). Monocyte phagocytic activity is of interest in acute

MI as it appears to help the removal of post-MI debris and to

modulate the resolution of neutrophil recruitment toward

healing, connective tissue remodelling and fibrosis (9, 29–31).
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It has also been reported that CD16+ monocytes express high

levels of CX3CR1 and low levels of chemokine receptors in the

infarcted myocardium, where their presence peak at about 3–5

days post-MI becoming the predominant monocyte subtype (22).

In addition, they can modulate both inflammatory and reparative

phases in the infarcted myocardium by releasing anti-

inflammatory cytokines and growth factors to stimulate cell

proliferation, angiogenesis and ECM production (23, 24).

Furthermore, they may produce specialized pro-resolving lipid

mediators that may facilitate the recruitment of additional

monocytes, tissue repair and return to homeostasis (32).

The use of hCD16 +Ms was associated with a 55% reduction in

LV scar size compared to the pre-injection time point vs. 30%

reduction observed in the control group (p = 0.015). This marked

beneficial effect on LV scar was achieved despite by chance the

MI scar size at CMR was larger in the hCD16 +Ms group at the

baseline pre-injections time point vs. control group (p = 0.03)

along with larger LV volume and more MVO. However, the use

of hCD16+ Ms at the observed dose of 48.7M did not show a

difference in LVEF at 30-day post-injections. Of note, the trial

was powered on the assumption of detecting a 7.2% difference in

LVEF, which in retrospect might have been an optimistic

assumption. No prospective consideration was given to cell dose

during sample size calculation, a part of a prespecified sub-

analysis within the hCD16+ Ms group aimed at probing

associations between cell dose (and cell viability) and LVEF and

LV scar size. This sub-analysis showed 2.8% higher LVEF

coupled with 1.9gr less LV scar in the subgroup of animals

receiving ≥48.75 million (n = 5) vs. those receiving <48.75

million (n = 6). This secondary finding might be not trivial and

may warrant an expanded preclinical trial focusing on higher cell

doses. It might be argued that not all the hCD16+ Ms injected

might have been retained. However, we used a well-established

method of direct intramyocardial injections via a small left

thoracotomy which is clinically feasible, has been used in the

past in humans and animals (33–35) and has shown to achieve a

higher amount of cell retention compared to intracoronary

injection or IV infusion routes (36).

We also note that the decline in LVEF observed 5 days post-MI

and before injections across the groups was in the moderate range
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(LVEF dropped only approx. 45%) as opposed to a more severe LV

function impairment (LVEF <35%). According to others, a starting

degree of LV moderate impairment (around 45% makes it more

difficult to achieve 5%–8% gains in LVEF in absolute terms when

testing new therapies) (27, 37).

The use of hCD16 +Ms was associated with higher neo-

angiogenesis, including both capillaries and arterioles, in the

infarcted myocardial territory. This finding is novel for the MI

clinical setting as similar results have been observed previously in

the context of limb ischemia (20) and other non-cardiac

conditions (21). The increase of both capillaries and arterioles

could explain the observed reduced LV scar size. Arterioles tend

to regulate tissue blood flow while neo-capillaries increase blood

flow in myocardial ischemic areas at risk; hence, this higher neo-

angiogenesis might have contributed to saving cardiomyocytes at

risk in our model. This finding in pig might be relevant to future

human studies as we have recently reported that myocardial

microcirculation in pig is structurally and functionally similar to

myocardial microvasculature in humans (38).

The reduced expression of pro-fibrotic factor TGF-β in the

hCD16 +Ms group might have contributed to the reduction in

LV scar size seen in the hCD16 +Ms group. Concomitantly, the

larger amount of tissue anti-vimentin in the hCD16 +Ms group

indicates beneficial healing/function with higher levels of

myofibroblasts, in keeping with the notion that myofibroblasts

may effectively repair/remodel the interstitium following MI

(39–41). The use of hCD16+ Ms was also associated with a trend

of higher IL-6 tissue levels vs. controls at 30-day post-injections

(p = 0.06). Accordingly, loss of IL-6 has been associated by

others with ventricular dysfunction, fibrosis, reduced capillary

density and worse myocardial reparative features (42). However,

others have identified detrimental effects associated with

increased IL-6 myocardial levels early after MI (8).

It might be argued that the sample size of our porcine trial

was too small. However, the sample size was in line with the

predefined calculation reported in Methods. Of note, the used

sample size is in keeping with previous meta-analyses from 52

large-animal studies indicating that, in order to obtain a power

of at least 80% in a two-sided two-sample t-test with an alpha

of 0.05, 11 animals are needed in each group to detect a

clinically meaningful difference in LV ejection fraction (43). In

addition, it exceeded the sample size of most of the 82 studies

in a total of 1,415 large animals reported in a very large

systematic review (28). A limitation of this study might be that

the immunosuppression regimen, commenced on Day 3 post-

MI, could have impacted the early myocardial healing with

possible confounding. However, similar immunosuppression

was undertaken in both groups, hence any effect observed in

the hCD16+ Ms group should be genuine. Another limitation of

this study might be that the predefined endpoint of 30 days

after injections represented a relatively too short follow-up time

period. A longer period of follow-up might have helped assess

the long-term impact of the proposed intramyocardial

immunomodulation of key outcome measures including LV

pathological remodelling, which tends to occur over a longer

time period in patients with ischemic heart failure.
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In conclusion, this preclinical trial suggests that the use of

hCD16+ Ms to treat acute MI is feasible and safe and it is

associated with reduced LV scar size, increased tissue levels of

neo-angiogenesis and myofibroblasts and reduced pro-fibrotic

TGF-β at 30 days despite immunosuppression. While no effect

was observed on LVEF, a predefined sub-analysis within the

hCD16 +Ms group showed a trend for better effect size on LVEF

and scar when a higher cell dose was used. More studies are

warranted to probe the efficacy of the proposed treatment.
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