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Identification of transcription
factor-lipid droplet-related gene
biomarkers for the prognosis
of post-acute myocardial
infarction-induced heart failure
Jianqiao Zhao, Can Guo, Mengyuan Cheng, Jie Li, Yangyang Liu,
Huahua Wang and Jianping Shen*

Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
Introduction: Patients with acute myocardial infarction (AMI) are at high risk of
progressing to heart failure (HF). Recent research has shown that lipid droplet-
related genes (LDRGs) play a crucial role in myocardial metabolism following
MI, thereby influencing the progression to HF.
Methods: Weighted gene co-expression network analysis (WGCNA) and
differential expression gene analysis were used to screen a transcriptome dataset
of whole blood cells from AMI patients with (AMI HF, n= 16) and without
progression (AMI no-HF, n= 16). Functional enrichment analysis were performed
to observe the involved function. Machine learning methods were used to
screen the genes related to prognosis. Transcriptional factors (TF) were predicted
by using relevant databases. ROC curves were drawn to evaluate the TF-LDRG
pair in predicting HF in the validation dataset (n= 16) and the clinical trial (n= 13).
Results: The 235 identified genes were primarily involved in pathways related to
fatty acid and energy metabolism. 22 genes were screened out that they were
strongly associated with prognosis. 35 corresponding transcription factors
were predicted. The TF-LDRG pair, ABHD5-ARID3a, was demonstrated good
predictive accuracy.
Discussion: Our findings suggest that ABHD5-ARID3a have significant potential
as predictive biomarkers for heart failure post-AMI which also provides a
foundation for further exploration into the molecular mechanisms underlying
the progression from AMI to HF.

KEYWORDS

lipid droplet-related genes, myocardial infarction, heart failure, transcription factor,
peripheral blood, ARID3a, ABHD5

1 Introduction

With advances in coronary artery interventions and the standardization of early

reperfusion strategies, an increasing number of patients with a myocardial infarction

survive after acute coronary artery occlusion and reperfusion. However, acute ischemia

and reperfusion can cause myocardial injury and ventricular remodeling, and ultimately

lead to heart failure (HF), which seriously affects the long-term prognosis of patients (1).

The incidence of heart failure in the Chinese population within 7 days after a myocardial

infarction is 19.3%, and the incidence of heart failure within 30 days–6.7 years after a

myocardial infarction is 13.1%–37.5% (2). To improve the treatment and management of
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heart failure after an acute myocardial infarction (AMI), the most

important step is the rapid and accurate diagnosis of HF after MI.

Currently, the diagnosis of HF is mainly based on serum

biomarkers such as brain natriuretic peptide (BNP), NT-proBNP,

C-reactive protein (CRP), and soluble ST2 (sST2) (3, 4). However,

these biomarkers have many limitations because they lack

specificity, as they can be elevated in many non-HF conditions,

and they also lack predictive utility for HF, potentially resulting in

a lack of early interventions for the complication (5). Biomarkers

are characterized by their low cost, minimal risk, and rapid

detection, and have the potential to provide valuable insight into

the complex development of HF after an AMI. Early testing of

serum biomarker gene expression holds promise for accurately

detecting and monitoring HF after an AMI (6).

Lipid droplets (LD) are the lipid storage organelles in

mammalian cells, providing a means for cells to store energy in

the form of lipids (7). The surface of lipid droplets is covered with

numerous proteins, known as lipid droplet-associated proteins,

which can regulate lipid metabolism, thereby potentially

influencing cell fate determination. For example, the perilipin

(PLIN) family of proteins can regulate lipid hydrolysis and interact

with mitochondria to modulate fatty acid β-oxidation to support

energy supply (8). The hypoxia-inducible lipid droplet-associated

(HILPDA) protein can be activated to increase intracellular lipids

in response to stress overload (9). Lipid droplet-attached proteins,

such as UCP1, have been reported to promote thermogenesis in

HF (10). Cell death-inducing DFFA-like effector (CIDE) proteins,

which are considered to be involved in LD–LD fusion, were

observed to correlate with the severity of HF (11). The lipid

droplet-related genes (LDRGs), which code these proteins, may

serve as potential candidate genes for cardiac abnormalities. After

an AMI, the myocardium switches from energy utilization via fatty

acid β-oxidation to glycolysis. Even after blood flow is restored,

intracellular calcium overload and increased oxidative stress

exacerbate cell damage, while lipid metabolism remains impaired

within the mitochondria (12). This leads to reduced energy

production, which is a critical factor in the development of HF

after an AMI.

To bridge this gap, we obtained peripheral blood sample data

from individuals who had experienced an AMI with or without

subsequent HF from the Gene Expression Omnibus (GEO)

database. We used machine-learning methods to screen the

LDRGs for potential biomarkers for HF after an MI. We also

predicted the regulatory relationships of these genes and

investigated the transcription factors (TFs) that regulate these

genes (13). TFs are crucial factors that influence the expression of

LDRGs and jointly exploring TFs and LDRGs can enhance the

accuracy of prognostic predictions. The combined gene expression

of TFs and LDRGs was rigorously evaluated and validated for the

accurate prediction of the occurrence of HF after an AMI through

a publicly available online dataset and samples collected from

actual clinical practice. Our study focused on lipid droplet-related

genes and identified potential biomarkers for HF after an AMI

and their regulatory networks. This research may aid in the rapid

identification of HF complications after an AMI in clinical

settings, allowing for informed clinical decision-making.
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2 Materials and methods

2.1 Data collection

In our study, we obtained two datasets, GSE11947 and

GSE59867, from the GEO database. The GSE11947 dataset

consists of 32 peripheral blood samples from individuals who

had experienced an acute myocardial infarction 12 h earlier.

These samples were divided into two groups based on whether

or not they developed heart failure at 1 month: the non-heart

failure group (n = 16) and the heart failure group (n = 16). This

dataset contains gene expression data for up to approximately

25,000 genes on an oligonucleotide microarray.

In the GSE59867 dataset, the peripheral blood gene expression

data on day 1 after the onset of a myocardial infarction was

obtained. The occurrence of heart failure was assessed at the

1-month mark, with eight cases developing heart failure and

eight cases not developing heart failure.
2.2 Screening LDRGs using
machine learning

Four standard machine-learning algorithm models [support

vector machine (SVM), naive Bayes, classification and regression

tree (CART), and random forest] (14) were trained based on the

GSE11947 dataset using the caret package. The training process

included three iterations of 10-fold validation to obtain the optimal

parameter values. The model with the highest accuracy among these

algorithms was selected as the final model. Disease-relevant genes

were then further filtered from the dataset using this final model.
2.3 Differential expression analysis in
HF compared with non-HF after a
myocardial infarction

In the GSE11947 dataset, gene IDs were converted to symbol

format and mRNA expression levels were log2 transformed. The

differential expression analysis between the non-HF and HF groups

was performed using the “limma” package (15). A cut-off threshold

of 1.2 was applied and statistically significant differences were

identified based on adjusted p-values below 0.05. The results were

plotted using a volcano plot to visually show the changes in expression.
2.4 Single-sample gene set enrichment
analysis

Single-sample gene set enrichment analysis (ssGSEA) is an

extension of gene set enrichment analysis used for quantifying

biological processes. This method represents the concrete level of

gene set enrichment in the biological process within a given

dataset (16). In our study, we conducted ssGSEA using the

“GSVA” package to investigate the association between LDRGs

and post-AMI HF. The LDRGs included the genes mentioned in
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the previous study (17). An enrichment score was calculated for each

sample. The significance of the difference between the scores of the

non-HF and HF groups was determined using the t-test method.
2.5 Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is a

technique used for investigating gene co-expression patterns in a

given dataset. In this study, we filtered genes based on their

variance, using the GSE11947 dataset, and created a co-

expression network with the selected genes. We established soft

thresholding to achieve a scale-free topology, which determined

the connectivity and relationship strength between the genes. The

study employed a topological overlap matrix (TOM) to detect

gene modules, which are groups of genes exhibiting a high

degree of correlated expression patterns.

Furthermore, our study utilized module eigengenes (MEs),

which are representative values for each module. We selected

modules that demonstrated noticeable differences in association

with the clinical manifestation of HF.
2.6 Functional and pathway
enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis of the overlaps between

the differentially expressed genes and the modules selected by

the WGCNA was performed using the Metascape website

(https://metascape.org/). Statistical significance was determined

for enriched GO terms and pathways based on a threshold of

p-value <0.05.
2.7 Construction of a transcription factor
and lipid droplet-related gene network

Transcription factor prediction for lipid droplet-related genes

was performed using several databases including ChIP-X

enrichment analysis (ChEA), Encyclopedia of DNA elements

(ENCODE), human transcription factor target database

(hTFtarget), transcription factor database (TRANSFAC), and

transcriptional regulatory relationships unraveled by sentence-

based text mining (TRRUST) (18–21). Protein–protein

interaction (PPI) analysis between the transcription factors and

lipid droplet-related genes was also performed using the search

tool for the retrieval of interacting genes (STRING) database to

unravel potential regulatory relationships.

The overlapping set of predicted transcription factors and

differentially expressed genes was obtained and used to construct

a heat map illustrating the expression correlation between these

genes and lipid droplet-related genes. Statistical significance

was determined using a threshold of p <0.05 to indicate

significant differences.
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2.8 Evaluation and validation of the
TF-LDRG predictive markers

A receiving operator characteristic (ROC) curve was

constructed based on the gene expression data from the

GSE11947 dataset to evaluate the specificity and sensitivity of

different transcription factor-lipid droplet-related genes (TF-LDRGs)

in predicting heart failure. The ROC curve was constructed using

the pROC package. The occurrence of heart failure was the label

and the gene expression data was the predictor. The gene

expression value from each sample was used as the cut-off value.

The true positive and false positive rates were calculated based

on each cut-off value for all samples. The ROC curve was then

plotted. For constructing the ROC curve of the gene pairs,

logistic fitting was performed to generate predictions within the

expression of the pairs of genes, followed by ROC curve plotting.

The area under the ROC curve (AUC) was calculated to

determine the reliability of the prediction. In addition, the

predictive performance of the combination for assessing heart

failure was validated using ROC curves generated from the 1st-

day gene expression data in the GSE55978 dataset.
2.9 Clinical samples

Clinical samples were obtained from patients undergoing

emergency coronary angiography and percutaneous coronary

intervention (PCI) using peripheral blood collection within the

catheterization laboratory from December 2023 to March 2024 in

the Jiangsu Province Hospital of Integration of Chinese and

Western Medicine. This study was approved by the Ethics

Committee of the Jiangsu Province Hospital of Integrated

Traditional Chinese and Western Medicine (2023-LWKYZ-077).

The diagnostic criteria for ST-segment elevation myocardial

infarction (STEMI) are as follows: age between 18 and 75, chest

pain, ST-segment elevation, and cardiac biomarkers levels above

the normal threshold.

Eligible patients were selected for peripheral blood collection to

examine the expression of the identified TF-LDRGs. Patients who

returned for a follow-up visit between 2 and 6 weeks after their PCI

were clinically diagnosed as either with or without heart failure and

were accordingly categorized into either the AMI_HF group or

AMI_noHF group.
2.10 Peripheral blood mRNA
expression analysis

The procedure involves initially centrifuging 1 ml of whole

blood at 3,000 rpm for 5 min to remove the supernatant. Red

blood cell lysis buffer was then added, followed by vertexing and

10-min incubation. After another centrifugation and supernatant

removal, RNA extraction buffer was introduced along with

chloroform, and then mixed through inversion. The mixture was

chilled at 4°C and centrifuged at 12,000 rpm. The resulting

supernatant (400 µl) was transferred to a new tube, mixed with

isopropanol, and centrifuged again under similar conditions.
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Finally, the supernatant was discarded, and the RNA pellet was

resolubilized in 20 µl of nuclease-free water.

RNA was reverse-transcribed into cDNA following the

instructions of a commercial reverse transcription kit. Primers,

quantitative polymerase chain reaction (qPCR) mix, and

nuclease-free water were then added to the cDNA. This was

followed by denaturation, annealing, and extension to complete

the real-time quantitative PCR.
2.11 Statistical analysis

All analyses were performed using R software (4.3.1) Spearman’s

correlation analysis was utilized to test correlation coefficients. A

p-value <0.05 combined with a false discovery rate <0.05 was

considered a significant difference in all findings of the study. For

the baseline data of the patients, Fisher’s test was used for the

count data, and the t-test was used for the quantitative data. In

the clinical samples, we used the t-test for the analysis of the

difference in the expression of a single gene between the two groups.
3 Results

3.1 Gene functional enrichment between
non-HF and HF patients

The expression matrix obtained from GSE11947 consists of 16

non-HF and 16 HF patients, yielding a total of 749 differentially

expressed genes. Among these genes, 467 genes were upregulated

and 282 genes were downregulated in the heart failure group

compared to the non-heart failure group. These differentially

expressed genes were visualized using volcano plots (Figure 1).
FIGURE 1

Differential gene expression analysis of peripheral blood samples in
patients with and without heart failure after a myocardial infarction.
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In addition, WGCNA was used to construct a gene co-expression

network using the aforementioned dataset, and modules that

correlated with the clinical features of heart failure were identified

based on statistical differences. The similarity matrix was

transformed into an adjacency matrix using a soft-threshold power

of 9 (Figures 2A,B). Subsequently, the “Indianred” module showed

a correlation coefficient of 0.4 with the clinical phenotype,

indicating a significant statistical difference (Figure 2C).

We selected 749 differentially expressed genes and intersected

them with 1,600 genes from the “Indianred” module, resulting in a

final list of 235 genes (Figure 2D). The top 20 genes are listed in

order based on the absolute value of their fold change in Table 1.

Comprehensive functional enrichment analyses, including GO and

KEGG, were performed to elucidate the biological processes,

pathways, molecular functions, and cellular components associated

with the list of differentially expressed genes. Enrichment analysis

revealed that the lipid-associated metabolic process was closely

associated with the occurrence of HF including lipid droplets

(PLIN2, ACSL4, RAB7A, RAB3GAP1, RAB18, SCCPDH,

HSD17B11, and RAB10 were enriched) in the cellular component,

PPAR signaling (PLIN2, ACSL1, ACSL4, ILK, and ELOVL5 were

enriched) in the pathway component, and transcriptional factor

binding (CDKN2A, DDX3X, NR3C1, GTF2I, HIF1A, HMGB2,

NAB1, PRKDC, PSMD10, RAD21, TAF7, HIRA, UBE2I,

YWHAZ, SUZ12, and MED30 were enriched) in the molecular

function component (Figure 3).
3.2 Screening of LDRGs by machine
learning for prognostic biomarkers

To further confirm whether the tendency to develop heart failure

after an MI was strongly associated with LDRGs, we performed

ssGSEA scoring of lipid droplet-related genes in the 32 samples

from GSE11947. The result showed that the scores in the group

that developed heart failure were significantly higher than those in

the group that did not develop heart failure (Figure 4).

Using the SVM, naive Bayes, CART, and random forest

algorithms, we performed trained machine-learning models using

the GSE11947 samples. After unifying the results, we identified

22 genes that were screened by at least two different machine-

learning methods (Figure 5), namely, ABHD5, ACAT1, AGPAT2,

APOA4, AUP1, CAV2, CIDEB, CIDEC, DGAT1, G0S2, LPIN1,

MGLL, PCYT1A, PEMT, PLD1, SNAP23, UBE2G2, VAPA, VCP,

VMP1, CAV1, and APOB.
3.3 Construction of the TF-LDRG
relationship network

To assess the predictive ability of the selected LDRGs for heart

failure after an AMI, we analyzed the expression of LDRGs in the

non-heart failure and heart failure groups in the GSE11947 dataset

and constructed ROC curves for each LDRG. The AUC indicates

the specificity and sensitivity of the LDRG for predicting heart

failure. By constructing ROC curves, each LDRG was assessed for
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FIGURE 2

WGCNA analysis of the GSE11947 gene expression matrix. (A) Scale-free network model. (B) Dendrogram constructed based on the correlation of
gene expressions. (C) Heatmap of the correlation between modules and prognostic traits (Deeper colors indicate higher correlation, with red
representing a positive correlation and blue representing a negative correlation). (D) Venn diagram of genes in the “Indianred” module and
differentially expressed genes.

TABLE 1 The top 20 genes differentially expressed genes displayed based on fold change.

Gene Log2FC p-value Gene Log2FC p-value
VNN1 1.1488302 0.006351231 ACSL1 0.726556966 0.009636247

FLJ00290 −0.972567424 0.000368514 FACL2 0.726556966 0.009636247

PRKAR1A 0.964077515 0.000253927 RPS15 −0.723145345 0.041105412

SDCBP 0.939692912 0.00792319 FLJ36198 −0.722898397 0.009611904

SAMSN1 0.814208618 0.00191884 ZNF281 0.71855188 0.001850635

IFRD1 0.792488037 0.005234391 LOC90355 0.697261841 0.001967843

PSAP 0.789749715 0.001283008 STAG2 0.69271875 0.01945684

CGI-49 0.773432617 0.000772282 ACSL4 0.685246501 0.002850867

PRKDC 0.769715576 0.001105356 BTBD1 0.680257568 0.004046035

RIPK3 −0.726584269 0.005466932 GUK1 −0.669402303 0.012787984

Zhao et al. 10.3389/fcvm.2024.1429387
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FIGURE 3

Go and KEGG enrichment analyses for both the differentially expressed genes and the genes in the “Indianred” module.

FIGURE 4

ssGSEA enrichment scores for the lipid droplet-associated genes
across the samples in GSE11947 (n= 16, each group).
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its prediction of the occurrence of heart failure. It was found that

only the G0S2 gene had an AUC (AUC = 0.8555) greater than

0.8. The AUC values for the other genes are shown in Figure 6.

Transcription factors help us to understand the regulatory

mechanisms controlling LDRG expression, which can provide

insights into their roles and potentially predict the prognosis in

AMI-induced HF. A search for 22 lipid droplet-related genes was

conducted in the ChEA, ENCODE, hTFtarget, TRANSFAC, and
Frontiers in Cardiovascular Medicine 06
TRRUST databases, which resulted in 409 relevant transcription

factors being identified (Figure 7A). In these databases, a cohort

of 35 TFs was predicted that showed differential expression

between the non-HF and HF groups (Figure 7B). The STRING

database was then used to generate an illustrative visualization of

the associations between the TFs and LDRGs in the PPI network

(Figure 7C). A correlation heatmap was created to highlight the

expression relationships between the TFs and LDRGs (Figure 7D).
3.4 Evaluation of TF-LDRG prognostic
biomarkers in predicting HF after a
myocardial infarction

To evaluate the predictive ability of the TF-LDRGs for HF

post-AMI, the combined expression of TFs and LDRGs in the

non-HF and HF samples from the GSE11947 dataset were

analyzed and ROC curves were constructed. The AUC,

demonstrating the specificity and sensitivity of the system, tested

the validity of the test. The ability of a single LDRG to predict

the occurrence of HF was evaluated by constructing the ROC

curves. The AUC was calculated for each of them and only G0S2

(AUC = 0.8555) had an AUC greater than 0.8. Therefore, we

could potentially apply the TF-LDRG system to increase the

efficacy of HF prediction. The expression correlation between

the TFs and LDRGs was abs(R) >0.7 and p <0.01. The

prognostic value of different combinations of TF-LDRGs,

namely, ABHD5-ARID3a (AUC = 0.8203), ABHD5-ZNF281

(AUC = 0.8086), SNAP23-CHD1 (AUC = 0.8086), SNAP23-ELF1

(AUC = 0.8203), and SNAP23-PRKDC (0.8125), had AUCs
frontiersin.org
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FIGURE 5

Venn diagram of the LDRGs identified by the CART, random forest, support vector machine, and naive Bayes machine-learning algorithms. G0S2, G0/
G1 switch 2; VAPA, VAMP-associated protein A; UBE2G2, ubiquitin conjugating enzyme E2 G2; SNAP23, synaptosome-associated protein 23; LPIN1,
lipin 1; APOB, apolipoprotein B; OSBPL2, oxysterol-binding protein-like 2; NAPA, NSF attachment protein alpha; BSCL2, Berardinelli-Seip congenital
lipodystrophy 2; CAV1, caveolin 1; PNPLA2, patatin-like phospholipase domain-containing 2; CES1, carboxylesterase 1; ADPN, adiponectin; DGAT2,
diacylglycerol O-acyltransferase 2; VAMP4, vesicle-associated membrane protein 4; AUP1, ancient ubiquitous protein 1; AGPAT2, 1-acylglycerol-3-
phosphate O-acyltransferase 2; ABHD5, abhydrolase domain-containing 5; ACAT1, acetyl-CoA acetyltransferase 1; CAV2, caveolin 2; PEMT,
phosphatidylethanolamine N-methyltransferase; APOA4, apolipoprotein A-IV; CIDEC, cell death-inducing DFFA-like effector C; DGAT1,
diacylglycerol O-acyltransferase 1; PLD1, phospholipase D1; CIDEB, cell death-inducing DFFA-like effector B; VMP1, vacuole membrane protein 1;
VCP, valosin-containing protein; MGLL, monoglyceride lipase; PCYT1A, phosphate cytidylyltransferase 1, choline, alpha.
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greater than 0.80, indicating good performance in predicting HF

status after a myocardial infarction and a better performance

than that of a single LDRG (Figure 8).
3.5 Validation of the TF-LDRG prognostic
biomarkers in predicting HF after a
myocardial infarction

To verify the results from the GSE11947 dataset, these TF-LDRG

expression combinations were validated using GSE55897. ROC curves

were constructed to evaluate the selected TF-LDRG combinations.

The results showed that the combination of ABHD5-ARID3a

(AUC= 0.8125), ABHD-ZNF281 (AUC= 0.9531), SNAP23-CHD1

(AUC= 0.875), SNAP23-ELF1 (AUC= 0.8281), and SNAP23-

PRKDC (0.8281) had AUCs greater than 0.80 (Figure 9).

Subsequent validation was conducted using the peripheral

blood obtained from clinical specimens, with detailed patient

information available in Table 2. The results showed that the
Frontiers in Cardiovascular Medicine 07
relative cycle threshold (CT) value of ABHD5 was significantly

lower in the AMI_HF group than in the AMI_noHF group

(Figure 10A). A similar tendency was also found in terms of

ARID3a in the peripheral blood samples (Figure 10B). The AUC

result for ABHD5-ARID3a in predicting heart failure was 0.95,

which showed good performance (Figure 10C). The two-

dimensional vectors between the groups indicated a pronounced

disparity in the expression levels of the gene pair ABHD5-

ARID3a (Figure 10D). Specifically, it was observed that in the

peripheral blood of patients who developed heart failure

following a myocardial infarction, there was an elevation in the

relative CT values, manifesting as an increased expression in

ABHD5-ARID3a.
4 Discussion

Myocardial infarction causes great damage to the myocardium,

leading to cardiac dysfunction and even heart failure (22).
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FIGURE 6

The ROC curves of 22 LDRGs for heart failure classification in the GSE11947 microarray data.
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Strategies to protect cardiomyocytes and prevent progression to

heart failure have become a concern in the medical field.

Therefore, accurately predicting the probability of patients

progressing to HF after an MI is crucial in reducing the overall

incidence of HF.

The widespread adoption of high-throughput transcriptomic

technologies and the reduction in their associated costs have

expanded the feasibility of large-scale investigations into the gene

expression levels in tissues. This advancement also offers the

possibility of predicting HF in patients with an AMI by

analyzing the gene expression profiles in their peripheral blood,

leading to the identification of individuals at high risk of

developing HF and early interventions to reduce the risk of

progression to HF. In this study, we collected the clinical samples

from the GSE11947 dataset, which includes the whole blood cell

gene expression profiles of patients within 12 h after the onset of

an AMI. The patients were divided into two groups based on

whether they progressed to HF within 1 month. Using the

“limma” package, differentially expressed genes were selected.

Subsequently, the WGCNA method was employed to identify

modules correlated with prognostic phenotypes, and the genes
Frontiers in Cardiovascular Medicine 08
within this module, which intersected with the differentially

expressed genes, were found to be enriched in fatty acid

metabolism and lipid droplet-associated proteins. Various

machine-learning models were then utilized to filter out 22 key

lipid droplet-related genes, and databases were used to predict

the upstream TFs of these 22 genes. We identified five co-

expressed TF-LDRG pairs that appeared to have promising

prognostic predictive value in the testing dataset and, of these,

ABHD5-ARID3a was subsequently validated to have good

performance in predicting HF in the clinical trial (Figure 11).

After an AMI, myocyte energy metabolism is disrupted,

with a shift in energy use from fatty acid oxidation to

glycolysis under ischemic and hypoxic conditions (23). Even after

revascularization, mitochondrial dysfunction persists due to

calcium overload and a surge of oxygen radicals, leading to

impaired nutrient metabolism (24). In this study, functional

enrichment analysis was performed on the HF-related module

(the “Indianred” module identified by WGCNA) and

differentially expressed genes, which were enriched in the

metabolism-related molecular components and physiological

processes such as PPAR signaling, PI3K signaling, ATP
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FIGURE 7

The transcription factor and lipid droplet-related gene expression network construct. (A) The overall PPI network with 22 transcriptional factors and
409 lipid droplet-related genes. Triangles represent LDRGs. TFs are represented by circles. The lines connecting TFs and LDRGs indicate an LDRG that
is predicted to be regulated by a TF. (B) Venn diagram of the predicted transcription factors and differentially expressed genes. (C) PPI network of the
transcription factors and lipid droplet-related genes. (D) Correlation heatmap for 35 transcription factors and 22 lipid droplet genes.
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FIGURE 8

The ROC curve of the TF-LDRG classification effect in the GSE11947 microarray dataset.
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FIGURE 9

The ROC curve of the TF-LDRG classification effect in the GSE55897 microarray dataset for validation.

TABLE 2 Baseline demographic and clinical characteristics of the non-HF
and HF patients from Jiangsu Province Hospital of Integration of Chinese
and Western Medicine.

Characteristic Non-HF patients
(n= 8)

HF patients
(n= 5)

p-
value

Sex (male) 6 (75%) 3 (60%) >0.999

Age (years) 58.0 ± 11.6 65.8 ± 10.6 0.286

Smoking 5 (62.5%) 0 (0%) 0.075

Hypertension 2 (25%) 3 (60%) 0.293

Diabetes 1 (12.5%) 2 (40%) 0.511

Dyslipidemia 3 (37.5%) 0 (0%) 0.231

Previous MI 0 (0%) 1 (20%) 0.385

Data were presented as mean value ± standard deviation or percentage of patients.

Zhao et al. 10.3389/fcvm.2024.1429387
generation, and lipid droplet metabolism, revealing that these core

genes are closely related to lipid homeostasis and metabolic

reprogramming (25, 26). Starting with lipid droplet-related genes

closely related to lipid metabolism, and utilizing techniques such

as machine learning, an attempt was made to find TF-LDRG

combinations with good prognostic predictive effects, providing a

new direction for exploring biomarkers for early identification of

AMI patients at high risk for HF progression.

Recent studies have demonstrated that the elevation in

inflammatory levels following an MI can accelerate the

progression of metabolic dysfunction-associated steatohepatitis

(MASH) (27). This evidence suggests that a myocardial infarction

not only causes damage to the heart but also acts as a systemic

disease affecting multiple organs throughout the body. The

metabolites, myocardial enzymes, and inflammatory responses that

follow cardiac injury influence the metabolism of peripheral blood
Frontiers in Cardiovascular Medicine 11
cells, including lipid and energy metabolism (28). In the presence

of oxidative stress, monocytes inhibit the function of HMG-CoA

reductase (HMGCR) and Rac1 prenylation, which subsequently

reduces the uptake, transport, and utilization of lipids by the cells

(29). Conversely, alterations in lipid metabolism in peripheral

blood cells have the potential to impact cardiac function

prognosis. For example, alterations in monocyte lipid metabolism

directly impact the function of vascular endothelial cells in the

heart, influencing vascular tone, inflammatory responses, and

thrombosis, all of which are crucial for cardiac function (30). The

impact of PLIN2 on local atherosclerotic lipid load and

inflammation may also contribute to the exacerbation of the no-

reflow phenomenon following a primary PCI in STEMI patients

(31). However, the current evidence linking lipid metabolism in

peripheral blood cells to heart failure remains insufficient. This

study aimed to provide a direction for further exploration of the

intrinsic relationship between the two by conducting data analysis

and preliminary validation.

The genes we screened out have been implicated in previous

studies as potentially relevant to the development of HF. HF is

often accompanied by cell injury, death, and phenotypic changes.

AT-rich interactive domain-containing protein 3a (ARID3a) is

involved in DNA binding and gene expression regulation and is

particularly associated with chromatin remodeling, gene

transcription activation, and immune regulation (32). ARID3a

regulates cell proliferation, differentiation, and repair (33). Cardiac

fibrosis after a myocardial infarction is mainly associated with

cardiac fibroblasts, and their differentiation is the key pathological

process closely related to the progression of HF. A study showed
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FIGURE 10

Validation of the TF-LDRG prognostic biomarkers in predicting HF in clinical samples. (A,B) The relative CT values of ABHD5 and ARID3a compared to
GAPDH in peripheral blood samples in the non-heart failure and heart failure groups. (C) The ROC curve of ABHD5-ARID3a gene expression in the
peripheral blood samples for predicting heart failure. (D) Two-dimensional scatter plots of the relative CT values of the TF-LDRG gene pairs compared
to GAPDH in the non-heart failure and heart failure groups.
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that reduced levels of ARID3a forced fibroblast-to-myofibroblast

differentiation of TGF-β-induced human cardiac fibroblasts

(HCFs). Therefore, ARID3a may be a novel therapeutic target for

cardiac fibrosis and post-MI HF (34). α/β-hydrolase domain-

containing protein (ABHD)5 is a member of the ABHD protein

family. It plays a critical role in lipid metabolism. ABHD5

interacts with perilipins on lipid droplets, thereby regulating

lipolysis, the breakdown of fats into fatty acids and glycerol, which

is essential for energy production and lipid homeostasis in cells
Frontiers in Cardiovascular Medicine 12
(35). It has been verified that cardiac-specific ABHD5 deficiency

activates endoplasmic reticulum stress to promote heart failure in

mice (36). It has also been reported that ABHD5 proteolyzes

HDAC4 to maintain cardiometabolic homeostasis during pressure

overload and lipotoxicity-induced heart failure (37). Based on our

results and previous reports, ABHD5-ARID3a could be a potential

“watchdog” for HF post-AMI. The specific mechanisms by which

these genes contribute to the progression of heart failure require

further investigation.
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FIGURE 11

The flow diagram of the whole study.
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Nonetheless, there are several limitations to this study. First,

the sample size is modest, with the GSE11947 and GSE59867

datasets including a total of only 48 valid clinical samples, which

is insufficient for training machine-learning models and leads to

instability in the results. Second, microarray data are less

sensitive than RNA-seq for detecting low-abundance transcripts,

making it difficult to differentiate subtypes and identify gene

variants (38). In these datasets, key data such as ejection fraction

(EF) values or NT-proBNP levels were not available when the

blood samples were taken 12 h after an AMI. Furthermore, if

some HF patients had already reduced ejection fraction at

admission, it could affect the accuracy of the screened genes as

biomarkers for predicting HF after an AMI. Finally, our patient

sample size was also small. We plan to continue to increase the

number of patients in future studies to verify the efficacy of the

screened TF-LDRG combinations in predicting heart failure.
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