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Feng Liu3,4*
1Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological
Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular
Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,
2Department of Organ Transplantation, Department of Urology, Renmin Hospital of Wuhan University,
Wuhan, China, 3Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical
University, Luzhou, China, 4Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou,
Southwest Medical University, Luzhou, China
Objectives: The discovery of pluripotent stem cell-derived cardiomyocytes
(PSC-CMs) has not only deepened our understanding of the pathogenesis and
progression of heart disease, but also advanced the development of
engineered cardiac tissues, cardiac regenerative therapy, drug discovery and
the cardiotoxicity assessment of drugs. This study aims to visualize the
developmental trajectory of PSC-CM research over the past 18 years to
identify the emerging research frontiers and challenges.
Methods: The literature on PSC-CMs from 2007 to 2024 was retrieved from the
Web of Science and PubMed databases. Bibliometrix, VOSviewer and CiteSpace
software were used for statistical analysis and visualization of scientific literature.
Previous clinical trials were summarized using data from the ClinicalTrials.gov
database.
Results: A total of 29,660 authors from 81 countries and regions published
6,406 papers on PSC-CMs over the past 18 years. The annual output of PSC-
CM research experienced a general upward trend from 2007 to 2021, reaching
its peak in 2021, followed by a notable decline in 2022 and 2023. The United
States has emerged as the most influential nation in this field, with Stanford
University being the most prolific institution and Joseph C. Wu standing out as
the most productive and highly cited scholar. Circulation Research,
Circulation, and Nature have been identified as the most co-cited journals.
Organ-on-a-chip, 3D bio-printing, cardiac microtissue, extracellular vesicle,
inflammation, energy metabolism, atrial fibrillation, personalized medicine etc.,
with a longer burst period, and maturation of PSC-CMs, with the highest burst
strength of 27.19, are the major research focuses for rigorous investigation in
recent years. Cardiac organoid is emerging as a promising key research
frontier. While the clinical trials of stem-cell-mediated treatment for heart
diseases shows promise, significant challenges remain. Further research is
imperative to optimize protocols, enhance cell delivery methods, and establish
standardized practices to improve clinical outcomes.
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Conclusions: In conclusion, several major research hotspots, including
engineered cardiac tissue and maturation, exosome-based regenerative therapy,
inflammation response, energy metabolism, atrial fibrillation, and personalized
medicine etc. will continue to attract substantial interest from investigators
worldwide. Cardiac organoids to in vitro recapitulate the intricate human heart is
emerging as a promising key research frontier. Significant challenges persist in
the clinical trials of stem-cell-mediated therapies for heart diseases.

KEYWORDS

PSC-CMs, organoids, organ-on-a-chip, maturation of cardiomyocytes, bibliometric
analysis, visualization
1 Introduction

Heart failure is the leading cause of hospitalization worldwide

impacting over 64 million people. Despite significant progress in the

diagnosis and management of this progressive cardiac condition, it

continues to be a pressing global health concern (1). The primary

cause of heart failure is cardiomyopathy, which can be classified

into four types: dilated cardiomyopathy (DCM), hypertrophic

cardiomyopathy (HCM), restrictive cardiomyopathy (RCM) and

arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/

D), based on morphological and functional criteria (2, 3). Several

risk factors, including coronary artery disease, long-term high

blood pressure, diabetes, obesity, binge drinking and genetic

family history, contribute to the development of cardiomyopathy.

To date, the most effective therapy option for this cardiac disorder

remains unavailable due to a lack of patient-specific models of

cardiomyopathies that can accurately and comprehensively

recapitulate the disease phenotype and significantly deepen our

understanding of the etiology, allowing for the identification of new

therapeutic targets and drug discovery (4–6).

In 2006, mouse induced PSCs were first generated via

overexpression of a set of specific transcription factors (7). In 2007,

Kazutoshi Takahashi et al. demonstrated that human induced PSCs

can differentiate into cardiomyocytes in vitro. It was not until 2009

that Zhang et al. provided the first evidence of functional

cardiomyocytes derived from human induced PSCs. This ground-

breaking discovery holds immense potential for cardiac regenerative

therapies, disease modeling, high-throughput screening in drug

discovery, and personalized or population-based toxicity assays

considering ethnicity and genetic variations (8–10). Recently, the

application of three-dimensional (3D) tissue engineering and

CRISPR/Cas9 genome editing techniques in induced PSC-CM

research has significantly accelerated progress in the field of cardiac

tissue engineering (11–14). However, human induced PSC-CMs

resemble more fetal or neonatal cardiomyocytes, appearing as small

cell size, short sarcomeres (1.6 µm), T-tubule absence, lack of some

ion transporters and regulatory proteins in the sarcoplasmic

reticulum, lower mitochondrial crista density, higher resting

membrane potential of −50 to −60 mV, and predominant
ytes; COVID-19, Coronavirus
hic cardiomyopathy; RCM
ore Collection; DZHK, Germ
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glycolysis for energy production. The structural and functional

immaturity of PSC-CMs poses a significant obstacle to their

widespread application (15, 16).

In this study, we utilized bibliometric tools to quantitatively

analyze and visualize the research on PSC-CMs from 2007 to

2024. The objective is to evaluate the present state of global

research on PSC-CMs, identify research issues and frontiers, and

provide investigators with valuable insights into potential future

research directions in the field of PSC-CMs.
2 Methods

2.1 Data collection and cleaning

The SCI-Expanded Web of Science Core Collection (WoSCC),

including over 12,000 academic journals, is recognized as one of the

world’s most comprehensive database platforms (17). We accessed

this platform to retrieve scientific literature and collected global

academic information for a full bibliometric analysis. In 2007, it was

first evidenced that human induced PSCs can be successfully

differentiated into cardiomyocytes in vitro (18), therefore, we

selected 2007 as the beginning year for our retrieval process.

For WoSCC retrieval, we accessed the SCI-Expanded WoSCC to

conduct a literature retrieval from January 1, 2007 to June 20, 2024.

The retrieval strategy was as follows: [TS = (cardiomyocyte*)

OR TS = (“cardiac myocyte*”) OR TS = (“cardiac muscle cell*”)

OR TS = (“cardiac cell*”) OR TS = (“three germ layers in vitro*”)]

AND [TS = (“induction of pluripotent stem cell*”) OR TS =

(“induced pluripotent stem cell*”) OR TS = (“pluripotent stem

cell*”) OR TS = (“embryonic stem cell*”)]. Only “articles” and

“reviews” in English were extracted. The other approximately eight

document types were excluded through the filters of WoSCC. All

searches were performed on a single day, June 20, 2024. Documents

were categorized based on species-specific pluripotent stem cells

using the filter of SCI-Expanded Web of Science Core Collection.

Documents were downloaded as original data from the SCI-

Expanded WoSCC for further bibliometric analysis (Figure 1).

Statistical analysis indicators mainly include the number of
disease 2019; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2;
, Restrictive cardiomyopathy; ARVC/D, arrhythmogenic right ventricular
an Center for Cardiovascular Research; ACE2, Angiotensin-converting enzyme
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FIGURE 1

Flowchart of literature selection.
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publications and citations, journals, publication year, countries/

regions, institutions, authors, keywords and references. The different

names representing the same country or institute were merged.

Duplicate words or noun phrases were merged into one word or

one noun phrase using a synonym database file, all misspelled

elements were corrected and all useless words were excluded before

data analysis by Bibliometrix, CiteSpace and VOSviewer.

For PubMed retrieval, the retrieval strategy was as follows:

((“Pluripotent Stem Cells"[Mesh]) OR (“Pluripotent Stem

Cell*"[tw])) AND ((((((“Myocytes, Cardiac"[Mesh]) OR (“Cardiac

Myocyte*"[tw])) OR (“Cardiac Muscle Cell*"[tw])) OR (“Heart

Muscle Cell*"[tw])) OR (Cardiomyocyte*[tw])) OR (“three germ

layers in vitro"[tw])). Time span is from January 1, 2007 to June

20, 2024.

For the clinical trial retrieval on the ClinicalTrials.gov database,

the retrieval strategy was as follows: [(stem cell*) OR (progenitor

cell*)] AND [(cardiac disease*) OR (heart disease*)]. Time range:

January 1, 2007 to June 20, 2024.
2.2 Scientometric analysis

In this study, the bibliometric online analysis platform

(bibliometric.com), CiteSpace (version 6.3.R3) and VOSviewer

(version 1.6.20) were used to statistically analyze the scientific

literature. The parameters of CiteSpace are as follows: (1) Time

slicing is from January 1, 2007 to June 20, 2024, and the time cutoff

point of analysis is one year; (2) g-index (k = 25 or 100);
Frontiers in Cardiovascular Medicine 03
(3) Pruning: Pathfinder and Pruning sliced networks are selected to

improve the calculation efficiency and trim the redundant links;

(4) Link strength: Cosine; Link scope: Within slices; (5) Minimum

duration (2 for keywords; 5 for references). In VOSviewer, we set

up the minimum number of publications or citations or occurrence

frequencies for the nodes based on the needs of effective data

visualization when mapping the cooperation of countries/regions or

institutions or authors, and the co-occurrence of keywords.
3 Results

3.1 Annual quantitative distribution
of publications

The variation in scientific publication output over time reflects a

research field’s evolutionary trajectory. Figure 2 illustrates the annual

volume and citations of publications concerning PSC-CMs over the

past 18 years. From 2007 to 2021, global publications on PSC-CMs

displayed an overall upward trend, peaking in 2021 with 695 papers

before declining in 2022 and 2023 with declines of 17.6% and

23.9% respectively, marking the major advance in PSC-CM

research before 2021. This recent decrease is likely attributable to

some challenges such as PSC-CM immaturity, poor engraftment,

and tumorigenic/immunogenic risks, which are hampering the

clinical translational application of PSC-CMs. To ensure sustained

advancement in the PSC-CM field, further investigation is essential

to address these limitations (19–21).
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FIGURE 2

Global trend in the annual outputs and citations of publications on PSC-CMs from 2007 to 2024. The horizontal axis denotes the publication year, with
the blue bar indicating the annual publication outputs and the orange curve representing the annual total citations.
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3.2 Contribution of countries and
institutions

The co-authorship of countries (or institutions) involved in the

papers on PSC-CMs was analyzed using VOSviewer. From 2007 to

2024, a total of 81 countries and regions published 6,404 papers on

PSC-CMs. In terms of academic collaboration among countries

(Figure 3A and Table 1), the United States exhibits the highest

total link strength (1,671 times), indicating strong international

cooperation with other countries, followed by Germany (896),

China (691) and England (612). In the cooperation network, the

intermediate centrality score is utilized to measure the

effectiveness of an entity in disseminating information to other

entities within the network. In general, an entity with a higher

centrality acts as the key hub to connect various clusters. Upon

analyzing the intermediate centrality, it becomes evident that the

United States, Germany, China, England, and Netherlands

possess a higher score of more than 0.1, suggesting these

countries play a core role as the vital bridge within the national

cooperation network in the field of PSC-CMs. The United States

and Germany are the two most influential nations, leading the

research of PSC-CMs. Among the top 10 prolific countries

(Figure 3B and Table 1), the United States ranks first with 2,683

publications, accounting for 41.90% of the total, followed by
Frontiers in Cardiovascular Medicine 04
China with 1,211 publications (18.91%) and Germany with 859

publications (13.41%). Scientific impact refers to the extent to

which scholar’s articles have contributed to knowledge and

influenced the thoughts of others (22). Citation impact is a

crucial metric for assessing a publication’s scientific influence

(23). The top 4 countries with the highest total citation are the

United States (154,247 citations), Japan (37,553), Germany

(31,122) and China (28,786).

The top 10 prolific institutions are presented in Table 2.

Stanford University contributes the maximum number of

publications (297), followed by the German Center for

Cardiovascular Research (DZHK) (283), Harvard University

(243) and Leiden University (155). We analyzed the

cooperation of 217 institutions with at least 15 papers.

Figure 3C shows the collaborative network of institutions,

highlighting 6 key collaborative clusters represented by Stanford

University, DZHK, Harvard University, Leiden University,

Chinese Academy of Sciences, Kyoto University and Osaka

University. However, a majority of institutions demonstrate an

intermediate centrality of less than 0.1, unveiling that the

studies on PSC-CMs that had been conducted by different

institutions remain somewhat isolated, which underscores the

need to enhance academic collaboration across institutions in

the future.
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FIGURE 3

Collaboration and contribution of countries/regions or institutions in the field of PSC-CMs. (A) Collaboration network of countries/regions
(publications per country ≥ 1). (B) the annual volume changes of publications in the top 10 countries from 2007 to 2024. (C) Collaboration
network of institutions (publications per institution≥ 15). The nodes in these networks represent countries/regions or institutions, with the larger
node corresponding to more publications. The lines connecting these nodes indicate academic cooperation, wherein a thicker line corresponds
to a more intimate partnership. The different colors of nodes and lines indicate different collaborative clusters, which were automatically
calculated by VOSviewer.

TABLE 1 Top 10 prolific countries in the field of PSC-CMs.

Rank Country Article counts Citations ACI Centrality TLS
1 USA 2,683 154,247 57.49 0.25 1,671

2 China 1,211 28,786 23.77 0.15 691

3 Germany 859 31,122 36.23 0.25 896

4 Japan 626 37,553 59.99 0.05 280

5 England 407 18,517 45.49 0.13 612

6 Netherlands 392 18,668 47.62 0.12 491

7 Italy 308 11,520 37.40 0.09 473

8 Canada 301 16,667 55.37 0.04 289

9 South Korea 226 5,730 25.35 0 155

10 France 187 5,838 31.22 0.07 274

Note: TLS, total link strength; ACI, average number of citations per publication.

Li et al. 10.3389/fcvm.2024.1435874
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TABLE 2 Top 10 productive institutions in the field of PSC-CMs.

Rank Institution Article
counts

Centrality TLS

1 Stanford Univ 297 0.05 352

2 DZHK 283 0.02 523

3 Harvard Univ 243 0.08 388

4 Leiden Univ 155 0.02 212

5 Univ of Toronto 151 0.02 116

6 Chinese Academy of
Sciences

150 0.11 181

7 Univ of Cologne 146 0.06 97

8 Univ of Washington 144 0.02 164

9 Kyoto Univ 135 0.06 133

10 Univ of Gottingen 131 0.02 261

Li et al. 10.3389/fcvm.2024.1435874
3.3 Contribution of scholars

The research output of scholars can be measured using both

the publication volume and the citation frequency. Highly cited

scholars have their studies widely recognized and cited by other

investigators in the same field, reflecting the significant impact of

their research on shaping the developmental trajectory of one

field and advancing our understanding. A total of 213 out of

29,660 authors worldwide performing the investigation of PSC-

CMs had published at least 15 papers (Figure 4A). The top 10

authors who have made substantial contributions to the field are

presented in Table 3. Joseph C. Wu is the most prolific scholar,

with 167 publications and 75.26 average citations per paper

(ACI), followed by Juergen Hescheler (95; 29.86), Christine

L Mummery (82; 90.99), Charles E Murry (77; 186.12), and

Thomas Eschenhagen (70; 65.93). Notably, Charles E Murry,

Timothy J Kamp, Christine L. Mummery, and Joseph C. Wu

shine as the top four highest average cited authors with ACI

scores of 186.12, 146.64, 90.99 and 75.26 respectively.

By analyzing the co-occurrence pattern of authors, we can

acquire valuable insights into collaborative pattern, intellectual

connection, and author impact in a specific research field. This

information not only enhances our understanding of the field’s

knowledge flow and intellectual structure but also aids to identify

influential author and potential collaborator. Figure 4A shows 9

major collaborative clusters represented by these core authors in

the field of PSC-CMs, including Joseph C. Wu, Juergen

Hescheler, Christine L Mummery, Charles E Murry, Thomas

Eschenhagen, Ronald A Li, Shigeru Miyagawa, Wolfram-

Hubertus Zimmermann and Timothy J Kamp. However, it is

notable that not all authors hold equal weights; only Joseph

C. Wu and Christine L Mummery have an intermediate

centrality score greater than 0.1 (Table 3), revealing their

prominent involvement in the cooperative network.
3.4 Core journals

Over the last 18 years, 896 journals have published studies on

PSC-CMs. As presented in Table 4, Circulation Research has the

highest average citation rate of 113.59, followed by Stem Cells
Frontiers in Cardiovascular Medicine 06
(56.98) and Stem Cell Rep (42.4). To determine the core journal

in the field, we mapped the co-citation relationship of journals

using VOSviewer, spanning the period from 2007 to 2024

(Figure 4B). Among the top ten co-cited journals (Table 4),

Circulation Research stands out with 19,100 citations and a total

link strength of 1,246,825 times, followed by Nature (13,968;

882,289) and Circulation (13,548; 877,313). These three journals

are highly prestigious and have a significant academic impact in

the field of PSC-CMs based on their highly cited frequencies and

impact factors.
3.5 Research hotspots and trends

3.5.1 Reference co-citation analysis
The representative co-cited references are the cornerstone in a

research field, reflecting the discipline’s development history and

influential perspectives (24). The citation burst is defined as a

sudden surge in citations in certain periods, indicating a

significant increase in research interest within specific themes

(25). In Figure 5, we list the top 30 references with the strongest

citation burst. The earliest reference was published by Takahashi

et al. (18), and first displayed that human iPSCs can differentiate

into cardiomyocytes in vitro. This article experienced a burst

duration of 5 years, from 2008 to 2012, with a burst strength of

124.94. Subsequently, Zhang et al. (26) first successfully

demonstrated the potential of human induced PSCs to in vitro

differentiate into the functional cardiomyocyte. Its citation burst

lasted 6 years from 2009 to 2014 with a burst strength of 100.91.

In 2010 (27), Moretti et al. published their work on patient-

specific induced PSC models for long-QT syndrome, which was

the first application of human induced PSC-CM in the disease

modeling. This article experienced a burst duration of 5 years

from 2011 to 2015, with a burst strength of 78.62. Over the next

two years (2012–2013), Lian et al. (28) and Tohyama et al. (29)

explored the methodology for the purity and scalable production

of human induced PSC-CMs. Their citation bursts lasted 5 years.

Furthermore, Chong et al. (30), Shiba et al. (21) and Liu et al.

(31, 32) investigated the potential of human PSC-CMs to

regenerate non-human primate hearts. Recently, the most

frequently cited topic was the maturation of human PSC-CMs.

Ronaldson-Bouchard K, Giacomelli E and Feyen DAM are 3 core

investigators in this research theme (13, 33, 34).

To determine the temporal evolution of the knowledge

structure in the field of PSC-CMs, we utilized CiteSpace to

generate a timeline view of the co-cited reference network.

Figure 6 shows the arrangement of references on the horizontal

timeline row based on their publication year and co-citation

frequencies. Each row corresponds to a specific cluster. Among

the top 11 clusters, the most recently active ones are Cluster 1

(metabolic maturation), Cluster 3 (cardiotoxicity assay/drug

screening), Cluster 4 (organoids/organ-on-a-chip/microtissue/

spheroids), Cluster 5/6 (disease modeling/Cov-2 infection/DMD/

DCM/HCM/arrhythrnias), and Cluster 7/10 (cardiac regeneration

and repair). These most recently active clusters highlight the

current research hotspots and emerging trends in the field.
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FIGURE 4

Collaboration and contribution of authors and the core co-cited journals. (A) Author collaboration network based on the co-authorship of papers
related to PSC-CMs (articles per author≥ 15). The sizes of nodes correspond to the number of papers. The links indicate the existence of a
cooperative relationship among the authors, with the thicker line corresponding to a closer partnership. Authors within the same cluster exhibit a
higher degree of collaboration. (B) Network of co-cited journals (citations per co-cited journal≥ 400). The size of the nodes represents the co-
cited frequencies of journals. The link reflects the co-cited relationship between the journals, with a thicker line indicating a higher co-cited
frequency, which can be weighted by a quantitative indicator TLS.

Li et al. 10.3389/fcvm.2024.1435874
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TABLE 3 Top 10 prolific authors in PSC-CM research.

Rank Author Institutions Article counts Citations ACI Centrality TLS
1 Joseph C Wu Stanford Univ. 167 12,568 75.26 0.40 317

2 Juergen Hescheler Univ. of Cologne 95 2,837 29.86 0.08 165

3 Christine L Mummery Leiden Univ. 82 7,461 90.99 0.11 171

4 Charles E Murry Univ. of Washington 77 14,331 186.12 0.07 142

5 Thomas Eschenhagen UKE 70 4,615 65.93 0.06 146

6 Ronald A Li Univ. of Hong Kong 68 3,317 48.78 0.07 157

7 Shigeru Miyagawa Osaka Univ. 65 1,385 21.31 0.03 252

8 Yoshiki Sawa Osaka Univ. 63 1,464 23.24 0.03 240

9 Katriina Aalto-setala Tampere Univ. 55 1,795 32.64 0.02 58

10 Timothy J Kamp Univ. of Wisconsin 50 7,332 146.64 0.07 71

TABLE 4 Top 10 productive journals and co-cited journals related to PSC-CMs.

Rank Journal Paper counts ACI IF (2024) Co-cited journal Citations TLS IF (2024)
1 Stem Cell Res 231 13.00 0.8 Circ Res 19,100 1,246,825 16.5

2 Plos One 200 38.23 2.9 Nature 13,968 882,289 50.5

3 Sci Rep 197 27.89 3.8 Circulation 13,548 877,313 35.5

4 Int J Mol Sci 151 10.84 4.9 PNAS 11,281 706,707 9.4

5 Stem Cell Rep 147 42.40 5.9 Cell 9,092 570,278 45.5

6 Circ Res 139 113.59 16.5 Cell Stem Cell 8,038 525,634 19.8

7 Stem Cells 123 56.98 4.0 Plos One 6,867 426,975 2.9

8 J Mol Cell Cardiol 119 42.36 4.9 J Mol Cell Cardiol 6,676 464,012 4.9

9 Stem Cell Res Ther 102 17.38 7.1 Science 6,669 427,819 44.7

10 Stem Cell Dev 99 36.65 2.5 Stem Cells 6,159 354,013 4.0

Li et al. 10.3389/fcvm.2024.1435874
Cluster 1, representing the theme of engineered cardiac tissues and

their maturation, will continue to receive significant attention from

researchers worldwide. The cardiac organoids (Cluster 4) is

expected to become a potential research hotspot in the near

future; while Cluster 3 (cardiotoxicity assay/drug screening),

Cluster 5/6 (disease modeling/Cov-2 infection/DMD/DCM/

HCM/arrhythrnias), and Cluster 7/10 (cardiac regeneration and

repair) have consistently been major themes of investigation

throughout the entire development of PSC-CM research. They

span a longer period and continue to remain active at present. In

contrast, highly cited studies in Clusters 0 (ESCs), Cluster 8

(cardiovascular progenitors/cardiogenesis), Cluster 9 (cell sheets/

cardiopatches) and Cluster 11(ESC-Test/developmental toxicity)

have been dwindling in recent years.

3.5.2 Keyword co-occurrence and citation bursts
Keywords in scientific literature serve as representative terms

that provide a concise overview of the research theme. Co-

occurrence analysis of keywords and citation burst detection are

two extensively utilized bibliometric methods (35). The former

provides valuable insights into the relationships between various

research themes, allowing researchers to determinate emerging

interdisciplinary topics and potential collaborations. The latter

tracks the evolution of research trends over time, identifies

frontier and hotspots, and recognizes landmark articles that

significantly impact the scientific community, thereby shaping

the direction of a research field.

First, we employed VOSviewer to extract keywords that appear

at least 10 times from a total of 6,406 publications for clustering
Frontiers in Cardiovascular Medicine 08
analysis of keyword co-occurrences. As presented in Figure 7A,

seven main clusters represented by different colors, reflecting the

4 major research directions in the field of PSC-CMs, are

identified. The yellow-green cluster reflects the investigation of

engineered cardiac tissues and their maturity, including these

keywords, such as Engineered Cardiac Tissue, Cardiomyocyte

Maturation, Electric Stimulation, Stiffness, Biomaterials,

bioreactors, Bioengineering, Microfluidics, 3D Bioprinting,

Organ-On-A-Chip, Organoids, etc. The red cluster highlights the

application of hiPSC-CMs in disease modeling and drug

discovery, involving in keywords such as Disease Modeling,

Arrhythmia, DMD, HCM, DCM, Drug Discovery, Drug Testing,

Predictive Toxicology, Safety Pharmacology, Cardiotoxicity,

Personalized Medicine, etc. The blue cluster indicates the

research on cardiac regeneration, containing keywords such as

Myocardial Infarction (MI), Cardiac Ischemia, Cardiac

Regeneration, Cell Transplantation, Extracellular Vesicles,

Exosomes, Direct Reprogramming, PSCs, etc. The green cluster

represents the investigation into the directed differentiation,

including Directed Differentiation, ESCs, hESCs, PSCs, hiPSCs,

Cardiac Progenitors, Cardiomyocyte Differentiation, Retinoic

Acid, Wnt Signaling, Bmp4, Ventricular Cardiomyocytes, SAN,

Proliferation, Purification, etc. The purple cluster reflects

numerous studies on the etiology and mechanisms of heart

diseases, encompassing these keywords such as Metabolism,

Mitochondrial Dysfunction, Oxidative Stress, Inflammation,

Cytokines, Covid-19, Sars-Cov-2, RNA-seq, etc.

VOSviewer software can be used to visualize the chronological

view of keyword co-occurrence by assigning different colors to each
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FIGURE 5

Top 30 references with the strongest citation bursts involved in the research of PSC-CMs. Note: the red bar stands for the duration of citation burst for
the references.
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included keyword based on its average appearance year. In

Figure 7B, the color of each node indicates the average

appearance year of a keyword. According to the color gradient

bar, blue-yellow nodes represent keywords that appeared

relatively earlier, before 2019. While red nodes indicate keywords

that have been the focuses of intensive investigation in recent

years, including Organoids, Organ-on-a-chip, Engineered Cardiac

Tissues, Cardiac Microtissues, Maturation of hiPSC-CMs, 3D

Bioprinting, SARS-CoV-2, Inflammation, Extracellular Vesicles,

Exosomes, Energy Metabolism, Personalized Medicine, etc.

Third, we utilized Kleinberg’s burst detection algorithm in

CiteSpace to analyze the top 50 keywords with the highest burst

strength, aiming to detect current hot topics in the field of PSC-

CMs. Among these keywords shown in Figure 8, we specifically

focused on those that started bursting after 2018, allowing us to

gain insights into the research frontiers. Excluding the search

keywords human induced PSC-CMs and induced PSC-CMs, we

identified 18 hot-spot keywords with the strongest citation burst

from 2018 to 2024. Extracellular Vesicles and Inflammation

exhibited burst periods exceeding 6 years, while Organ-on-a-chip,
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3D Bioprinting, Hydrogel, and Cardiac Fibrosis surpassed 5

years. Keywords such as Cardiac Microtissues, Energy-

metabolism, and Exosomes had burst periods over 4 years.

Additionally, Atrial Fibrillation, Personalized Medicine, and

Covid-19 demonstrated burst periods greater than 3 years.

Notably, in the past three years, Cardiomyocyte Maturation and

Cardiac Organoids, with the highest burst strengths of 27.19 and

12.45 respectively, have shown significant citation increases

(2022–2024), indicating emerging research frontiers.
3.5.3 Highly cited article analysis
We selected a highly-cited original research article with over 300

citations for analysis. Table 5 presents the top 20 highly-cited citing

papers on PSC-CMs from 2007 to 2024. These articles are mainly

categorized into five major research themes based on their content:

drug discovery and cardiotoxicity assessment, cardiac regenerative

therapy, maturation of PSC-CMs, cardiac disease modeling in vitro

and cardiac tissue engineering. These influential studies, reported

by the highly-cited citing articles, have significantly advanced the
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FIGURE 6

Timeline view of co-cited references related to PSC-CMs. A timeline view of the top 12 clusters with different research topics in the co-cited reference
network displays the distribution, chronological span and trends of various research themes in the field. Each horizontal row represents a cluster, while
each tree ring node along the row indicates a cited paper. Citation tree rings reflect the citation history of an article. The color of a ring represents the
time of corresponding citations. The thickness of a tree ring is proportional to the number of citations in a given time slice. The node size denotes the
frequency of the paper’s co-citation. The node’s position designates the publication year of the corresponding articles. Nodes experiencing citation
bursts are spotlighted with red dots or circles. Cluster terms are arranged vertically on the right in descending order of cluster size. Lines connecting
two different nodes symbolize the co-citation relationship between two studies. Modularity Q= 0.7187; weighted mean silhouette S= 0.8681.
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research of PSC-CMs. Therefore, we will provide a detailed discussion

on these studies.

3.5.3.1 Drug discovery and cardiotoxicity assessment
of drugs
Drug cardiotoxicity is a major cause of drug attrition, resulting in

numerous preventable patient deaths. The emergence of PSC-CMs

offers a promising experimental platform for high-throughput drug

testing and the assessment of drug-induced cardiac toxicity. Mathur

and colleagues utilized the cardiac microphysiological system (MPS)

to precisely forecast cardiotoxicity and determine the effective

concentration values of various pharmaceuticals. Their research

offers an optimal solution using engineered cardiac tissues,

enhancing both drug screening processes and disease modeling

capabilities (36). Similarly, Burridge et al. demonstrated the

effectiveness of human induced PSC-CMs as an in vitro platform

for assessing doxorubicin-induced cardiotoxicity and characterizing

the genetic foundation and molecular processes underlying

doxorubicin-induced cardiotoxicity (37).

3.5.3.2 Cardiac regenerative therapy
Human cardiomyocytes have a significantly low rate of self-

renewal, estimated to be approximately 0.3%–1% per year,

which is inadequate for restoring normal cardiac structure and
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function following myocardial infarction. The utilization of

PSC-based cardiac regenerative therapy has been extensively

studied over the past decade. Out of the 20 articles in Table 5,

nine reported on cardiac regenerative therapy. In 2016, Shiba

et al. first exhibited the efficacy of allogeneic PSC-CM

transplantation in regenerating the hearts of nonhuman

primates with myocardial infarction. However, there is

currently no effective strategy available in clinical practice to

repair injured myocardium due to limitations such as a lower

engraftment rate, electromechanical uncoupling between grafted

cells and resident cells, low purity, and immaturation of

differentiated cardiomyocytes. Consequently, researchers have

shifted their focuses toward extracellular vesicles or exosomes

and have made significant progress in recent years. As early as

2014 (38), Ibrahim et al. suggested that injecting exosomes into

damaged mouse myocardium can replicate the regenerative and

functional effects achieved through the transplantation of

cardiosphere-derived cells (CDCs). Based on these findings,

they further proposed that exosomes could be used as cell-free

therapeutic candidates for cardiac regeneration, thereby

avoiding potential risks associated with CDCs. Subsequently,

Wang et al. (39) unveiled that exosomes derived from PSCs can

deliver cardioprotective miRNAs and inhibit cardiomyocyte

apoptosis in the ischemic myocardium.
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FIGURE 7

Co-occurrence and distribution over time of keywords. (A) Each node represents a keyword. The size of the node indicates the occurrence frequency
of a keyword, and the larger the node is, and the higher its corresponding occurrence frequency. Keywords with close correlation are grouped into
one cluster with the same color. The thickness of the connecting line between nodes reflects the strength of co-occurrence, with a thicker line
indicating a higher co-occurrence frequency of the two connected keywords. (B) Distribution of keywords according to the average year of
publication. Blue nodes signify earlier-emerging keywords, around or before 2015, green nodes represent keywords appearing approximately
2017, and orange-red nodes denote frequently occurring keywords around or after 2020.

Li et al. 10.3389/fcvm.2024.1435874

Frontiers in Cardiovascular Medicine 11 frontiersin.org

https://doi.org/10.3389/fcvm.2024.1435874
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 8

Top 50 keywords with the strongest citation bursts involved in the research of PSC-CMs. The red bar stands for the duration of citation burst for
keywords.
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3.5.3.3 Maturation of PSC-CMs
The immaturity of PSC-CMs remains a persistent challenge in the

field of PSC-CMs. Clearly, it is becoming imperative to address the
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hurdle that still impedes further clinical applications of PSC-CMs.

Among the 20 articles, four specifically focus on the maturation of

PSC-CMs.
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TABLE 5 Top 20 highly cited papers on PSC-CMs during 2007 to 2024.

Rank Authors Article title Journal Citation Year
1 Burridge, PW Chemically defined generation of human cardiomyocytes differentiation Nat Methods 1,075 2014

2 Chong, JJH Human embryonic-stem-cell-derived cardiomyocytes regenerate non-humanprimate hearts Nature 990 2014

3 Ronaldson-
Bouchard, K

Advanced maturation of human cardiac tissue grown from pluripotent stem cells Nature 791 2018

4 Noor, N 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts Adv Sci 665 2019

5 Wang, G Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and
heart-on-chip technologies

Nat Med 627 2014

6 Zhang, YS Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip Biomaterials 597 2016

7 Khan, M Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance
Cardiac Function Following Myocardial Infarction

Cir Res 571 2015

8 Shiba, Y Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts Nature 546 2016

9 Burridge, PW Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast
cancer patients to doxorubicin-induced cardiotoxicity

Nat Med 502 2016

10 Yang, LL A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus
Infection in Human Cells and Organoids

Cell Stem Cell 466 2020

11 Bassat, E The extracellular matrix protein agrin promotes heart regeneration in mice Nature 422 2017

12 Deuse, T Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully
immunocompetent allogeneic recipients

Nat
Biotechnol

410 2019

13 Liu, YW Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human
primates

Nat
Biotechnol

401 2018

14 Tiburcy, M Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure
Modeling and Repair

Circulation 393 2017

15 Zhao, Y A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling Cell 363 2019

16 Mathur, A Human iPSC-based Cardiac Microphysiological System For Drug Screening Applications Sci Rep 347 2015

17 Wang, YJ Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and
prevent cardiomyocyte apoptosis in the ischemic myocardium

Int J Cardiol 329 2015

18 Giacomelli, E Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal
Non-cardiomyocyte Contributions to Heart Disease

Cell Stem Cell 315 2020

19 Ruan, JL Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation
of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue

Circulation 306 2016

20 Menasché, P Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical
case report

Eur Heart J 304 2015
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Early studies focused mostly on the structural maturation of PSC-

CMs. In 2013, Kamakura et al. (40) observed that PSC-CMs can

relatively mature to acquire more adult-like ultrastructural

characteristics over a prolonged culture period. Similarly, Lundy et al.

(41) uncovered that extended in vitro culture of PSC-CMs can

enhance the maturation of their structural and contractile properties

to a more adult-like phenotype. While Yang et al. (42) suggested that

treatment with triiodothyronine (T3) during cardiac differentiation

promotes morphological and structural maturation of PSC-CMs,

appearing as elevated sarcoendoplasmic reticulum ATPase levels,

increased cardiomyocyte size, anisotropy and sarcomere length.

Moreover, when PSC-CMs are cultivated on a matrigel mattress, the

addition of thyroid and glucocorticoid hormones to the cardiac

differentiation procedure promotes T-tubule formation and matures

the excitation-contraction coupling (43).

In recent years, the research focuses have shifted to the

functional and metabolic maturation of PSC-CMs. Advanced

maturation of PSC-CMs can be achieved when cardiac tissues are

subjected to increasing mechanical loading over time (13).

Cardiomyocytes normally occupy 75%–80% of the entire volume

of myocardium in an adult heart but only account for one-third

of the overall cell population, suggesting that non-myocytes play

a vital role in maintaining the functional homeostasis of

cardiomyocytes (44, 45). As proven by Giacomelli et al. (33),

noncardiomyocytes significantly contribute to the functional and
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metabolic maturation of PSC-CMs in a 3D microtissue that is

composed of PSC-CMs, PSC-derived endothelial cells, and

cardiac fibroblasts or dermal fibroblasts. This conclusion was

further buttressed by other several observations. Important

factors contributing to advanced cardiomyocyte maturation in

engineered cardiac tissues include the optimal cardiomyocyte-to-

nonmyocyte ratio, sequential application of serum-free medium

followed by serum-containing medium, low cell seeding density,

electromechanical stimulation, composition and stiffness of the

extracellular matrix, and cell culture time (typically 7 weeks)

(46–48). In a short, based on the timeline distribution of

keyword co-occurrence in Figure 7B, it is clear that more studies

on the maturity of PSC-CMs, particularly, metabolic maturation,

will be conducted in the near future.

3.5.3.4 In vitro cardiac disease modeling
In vitro cardiac disease modeling using patient-specific PSC-CMs

contributes to our comprehensive understanding of the molecular

mechanisms underlying the pathogenesis and progression of heart

disorder, allowing us to identify potential novel therapeutic targets.

Among the top 20 highly cited articles, three are related to this

theme. As early as 2013 (49), Kim et al. reported their research on

in vitro modeling of ARVC/D utilizing patient-specific PSC-CMs.

Subsequently, patient-specific PSC-based in vitro models for the

mitochondrial cardiomyopathy, DCM, and Brugada syndrome
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were reported sequentially (50–52). Over the past four years,

COVID-19 has been declared a global pandemic, causing the

deaths of hundreds of thousands of people worldwide. However,

the etiology of cardiac injury in COVID-19 remains elusive.

Sharma et al. (53) examined the susceptibility of human induced

PSC-CMs to infection by SARS-CoV-2 and revealed that SARS-

CoV-2 can directly bind to the ACE2 receptor to enter human

induced PSC-CMs. Additionally, SARS-CoV-2 can also infect

human induced PSC-CMs through extracellular vesicles harboring

viral RNA (54). Notably, Yang et al. (55) have established an

innovative platform utilizing human cell and organoid models to

investigate SARS-CoV-2 tropism. This approach offers a

comprehensive understanding of the virus’s impact on a variety of

cells and tissues, shedding light on the full spectrum of SARS-

CoV-2’s effects. These work expanded the application of PSC-CMs

in identifying potential novel therapeutic targets.

3.5.3.5 Engineered human myocardium
The emergence of microfluidics has significantly advanced the field

of cardiac tissue engineering (56). Recently, there has been growing

interest in developing the cardiac microphysiological system known

as heart-on-a-chip, which has the potential for various applications

including personalized cardiac regeneration, drug discovery,

cardiotoxicity assessment of drugs and disease modeling. Among

the top 20 highly cited papers, two articles have focused on

engineered cardiac tissue. Marsano and colleagues had specifically

concentrated on generating functional 3D cardiac microtissues

using a microfluidic platform and had successfully developed a

heart-on-a-chip that can replicate the physiological mechanical

environment experienced by cells in the native myocardium (57).

Vascularization is essential for the fabrication of engineered

cardiac tissues, such as heart-on-a-chip and cardiac organoids,

and is the most important factor when recapitulating vascular-

based diseases utilizing PSC-based in vitro models (58, 59). Zhang

et al. (60) constructed an endothelialized myocardium-on-a-chip

by adopting an innovative 3D bioprinting microfibrous scaffold to

integrate PSC-CMs and vascular endothelial cells together. The

model, when combined with a microfluidic perfusion bioreactor,

can be used for personalized drug screening. In 2019 (61), Noor

et al. further advanced the field by demonstrating an approach to

3D-printed thick, vascularized, and perfusable cardiac patches.

However, the vasculature in engineered vascularized tissues still

fails to completely mimic the complexity of natural vascular

networks due to the poor resolution of 3D bioprinters, which

needs to be addressed in the future.
4 Discussion

4.1 General information

In this study, we analyzed the spatiotemporal distribution of

literature, contributions, and collaborations among countries,

institutions, and authors in the field of PSC-CMs over the past 18

years. We identified 6,406 papers on PSC-CMs from the WoSCC

database, including 5,358 articles and 1,048 reviews, spanning from
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January 1, 2007, to June 20, 2024. All publications were in English

and appeared in 896 academic journals, authored by 29,660

researchers from 81 countries/regions. Moreover, we categorized the

original research articles on PSC-CMs according to species-specific

PSCs utilizing the SCI-Expanded Web of Science Core Collection

filter, revealing that studies on human PSCs accounted for the

largest proportion, approximately 40%. Additionally, studies on

non-human primate PSCs, pig PSCs, mouse PSCs, rat PSCs, and

others were also represented (Supplementary Table S1).

The annual output and citations of literature on PSC-CMs

showed an overall uptrend, reaching its peak in 2021, followed by a

distinct decline in 2022 and 2023. This decline may be attributed to

several challenges posed by the immaturity and heterogeneity of

PSC-CMs, as well as concerns regarding tumorigenicity and

arrhythmogenicity (19–21). The top 10 prolific nations are located

in Europe, North America and Asia. The United States, China, and

Germany are the top three major contributors to this area and have

the greatest communication and collaboration with one another.

The United States contributes approximately 41.90% of the total

papers and possesses the highest average citations per article,

indicating its dominant position in the field of PSC-CMs. This

suggests an imbalance in regional development in the field. Among

the top 10 institutions, Stanford University, Harvard University in

the United States, and DZHK in Germany are recognized as the

leading research centers. It is noteworthy that the top 10 writers

with the most papers and citations are mostly from the United

States, Germany and Japan, while productive and influential

investigators from China remain absent. Circulation Research,

Nature and Circulation are three journals with high prestige and

significant academic influence in this area based on their highly

cited frequencies and impact factors.
4.2 An overview of research focuses
and frontiers

Organ (heart)-on-a-chip, a prominent hot-topic in recent years,

has a 5-year burst period of citations and is attracting significant

interest from researchers worldwide because the innovative device

bridges the gap between animal models and clinical trials and

possesses an extraordinary potential to more accurately assess the

cardiotoxicity and efficacy of investigational drugs for clinical

application. Recent rapid progress in the field of tissue engineering

has made it possible to combine a variety of technologies, including

PSC-CMs, multicell-type co-culture, 3D bio-printing, microbio-

sensors, microfluidics, and microfabrication engineering. The

convergence of multiple technologies has dramatically accelerated

the development of cardiac tissue engineering; however, the

vascularized 3D cardiac in-vitro model is still in its prototype stage

and a series of unmet challenges need to be overcome in the near

future (62–64).

Maturation of PSC-CMs emerges as the hot-spot keyword

with the highest burst strength (27.24) among the 18 keywords with

the strongest citation burst from 2018 to 2024. In fact, to date, PSC-

CMs still fall short in fully recapitulating the phenotypes of adult

cardiomyocytes for disease modeling, cardiotoxicity testing, drug
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discovery, and regenerative therapy due to their immaturity (13, 65).

Various approaches have been attempted to enhance the maturation

of PSC-CMs, including long-term culture (41, 66), treatment with T3

(42), mechanical or electrical stimulation (13, 48), treatment with

thyroid and glucocorticoid hormones (43), genetic approaches (67),

and multicell-type 3D cardiac microtissues (13), However, no

single approach has been universally accepted to overcome this

barrier (68–70).

Extracellular vesicles (EVs), with a citation burst duration

exceeding 6 years, are emerging as a promising tool for the

diagnosis and treatment of cardiovascular diseases, including

facilitating cardiac regeneration and repair following injury. These

nanoscale vesicles harbor a variety of bioactive molecules that

modulate recipient cell functions and play critical roles in

inflammation, angiogenesis, and tissue repair. Despite their

potential, the clinical translation of EVs faces multiple challenges.

Firstly, the heterogeneity of EV populations, influenced by their

cellular origin and environmental conditions, hinders the

development of standardized methods for isolating, characterizing,

and ensuring the quality of EVs. Secondly, effective delivery of EVs

to cardiac tissue is impeded by their short circulatory half-life and

rapid clearance, necessitating enhanced stability and targeted

delivery strategies. Thirdly, scaling up the production of clinical-

grade EVs while preserving their integrity and function also poses

significant manufacturing challenges. Moreover, the mechanisms of

EV biogenesis, cargo loading, and uptake by target cells remain

poorly understood, impeding the development of targeted EV

therapies. Addressing these issues will require concerted efforts

from the research community to establish standardized methods,

clarify EV functional mechanisms, and innovate delivery

techniques, thereby unlocking the full therapeutic potential of EVs

for cardiovascular disease management (71–74).

Organoids are 3D, self-organizing structures derived from stem

cells that recapitulate key features of their corresponding organs

(75). Human cardiac organoids have shown great promise in

mimicking the structural and functional properties of the native

heart. However, several challenges remain to be addressed before

their full potential can be realized, especially in the context of heart

disease modeling and treatment. First, current protocols still

produce organoids with immature phenotypes compared to adult

heart, which limits their utility for modeling adult-onset diseases

and developing therapies. Another issue is the lack of

standardization in organoid generation. Current protocols often rely

on the spontaneous self-assembly of cells, which can lead to

variability in organoid size, shape, and cellular composition and

hinders reproducibility and comparability across different studies.

Third, to fully capture the complexity of the human heart, human

cardiac organoids need to incorporate multiple cell types, including

cardiomyocytes, endothelial cells, fibroblasts, and immune cells.

Achieving the right balance and spatial organization of these cell

populations is a challenge for recapitulating the intricate

intercellular interactions and signaling pathways that govern cardiac

function (69, 70, 76). Fourth, the development of human cardiac

organoids that accurately model specific cardiac chambers, such as

the atria and ventricles, remains difficult for studying chamber-

specific diseases and drug responses (77). Additionally, the absence
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of a functional vascular network is another limitation, as it leads to

suboptimal nutrient and oxygen supply, restricting organoid size

and causing cellular heterogeneity (78). Advances in bioengineering,

such as the incorporation of supporting cell types, dynamic culture

systems, and innovative biomaterials, may help improve the fidelity

and maturity of cardiac organoids.

Finally, the global dissemination of COVID-19 imposed a

tremendous financial and health burden. SARS-CoV-2 can trigger

thromboembolism, myocardial injury, acute coronary syndromes,

and arrhythmias in patients with severe cases of COVID-19

(79–81). Currently, there are two proposed mechanisms to explain

myocardial injury, but the exact pathophysiological mechanism of

cardiac dysfunction in COVID-19 remains elusive (82). In this

study, analysis of citation bursts for keywords revealed that

COVID-19 and coronavirus have recently experienced a surge in

citations (2021–2023), indicating that cardiac injury in COVID-19

will likely become prominent areas of research in the future.
4.3 The current status and challenges
of clinical trials for stem cell therapy in
cardiac diseases

We conducted the search on ClinicalTrials.gov using the terms

“heart disease” or “cardiac disease” and “stem cell” to identify 357

relevant clinical trials, with 174 completed trials and 45 involving

over 100 participants. However, only 15 clinical trials have

published results directly related to stem cell interventions for

heart diseases. A summary of these clinical trials is provided in

Supplementary Table S2. The primary cardiac conditions targeted

in these clinical trials are ischemic cardiomyopathy, myocardial

infarction (MI), dilated cardiomyopathy (DCM), left ventricular

(LV) dysfunction, and heart failure. Various stem cell types, such

as mesenchymal stem cells, bone marrow mononuclear cells,

cardiosphere-derived cells, c-kit-positive cardiac cells, bone

marrow CD34+ and CD133+ cells, and adipose-derived stem

cells, are utilized for the treatment of heart diseases, while the

autologous bone marrow-derived mesenchymal stem cells are the

most commonly used. Delivery methods for stem cells vary,

including transendocardial injection, intracoronary infusion,

intramyocardial injection, and intravenous infusion, while

transendocardial injection emerges as the preferred approach due

to its minimally invasive nature and favorable safety profile.

Notably, regarding the clinical application of hiPSC-CMs, to

date, no clinical trials involving human induced PSC-CMs for

heart disease treatment have been completed, and participant

recruitment is still ongoing according to the data from the

ClinicalTrials.gov database (Supplementary Table S3), although a

case report from Japan documented the successful transplant of

allogeneic human induced PSC-CM patches in one patient with

ischemic cardiomyopathy [#jRCT2053190081, (83)].

The clinical trials of stem-cell-mediated treatment for heart

diseases are at a critical juncture. While these trials have

demonstrated safety and potential feasibility, the efficacy of these

treatments remains variable and often limited. The heterogeneity

and immaturity of stem cells, the challenge of ensuring adequate
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engraftment and survival post-transplantation, and the timing and

method of cell delivery are significant hurdles. Further research is

imperative to refine these treatments, with a focus on improving

cell maturity, optimizing delivery methods, and understanding

the optimal timing for transplantation to enhance the therapeutic

potential of stem cells in treating cardiac diseases.
4.4 The present study’s reliability

To evaluate whether the 6,406 publications retrieved from the

Web of Science database are representative for mapping the

developmental trajectory of PSC-CM research over the past 18

years, we applied the same retrieval strategy to the PubMed

database, yielding 6,363 documents. We re-conducted scientometric

analyses, including the co-occurrence and clustering analyses of

keywords, and an assessment of author collaborative patterns and

author contributions. The results were consistent across both data

sets, suggesting our study’s reliability (Supplementary Figures S1, S2).

Traditionally, Web of Science and Scopus have been the two

most widely used databases for bibliometric analyses, both of

which require a subscription. Web of Science is often considered

the most user-friendly and accessible tool for bibliometric

analysis, leading to its prevalent use in such studies. On the

other hand, PubMed, which is freely available and dedicated to

biomedical sciences, can optimize the analysis of biomedical

subjects. However, the data in NBIB format from the PubMed

database lacks references, which makes it challenging to perform

comprehensive bibliometric analyses.
4.5 Limitation

This study presents a comprehensive analysis of global research

on PSC-CMs from a developmental perspective, offering

investigators new insights into the current hotspots and emerging

trends in PSC-CM research. However, there are still certain

limitations. First, we only searched the relevant literature in the

WoSCC, PubMed and Clinicaltrials.gov databases, while the

pertinent publications in other databases, such as Scopus, might

be missed, because existing scientometric software requires the

appropriate data format and merging two or more datasets from

different database sources for bibliometric analysis is unfeasible.

Second, the current bibliometric analysis unavoidably omits some

newly published relevant literature; but this omission has little

impact on the overall conclusion due to a time lag of citations. In

general, recent publications tend to have a relatively low citation

frequency. Nonetheless, updating the datasets can enrich the

results. Third, the WoSCC, PubMed and Clinicaltrials.gov

databases are continuously updated in real time, which means that

the publication volume during a specific time period may vary

slightly when accessed on different dates. However, given that

WoSCC is considered one of the most comprehensive database

platforms, PubMed focuses mainly on life sciences and biomedical

disciplines and both VOSviewer and CiteSpace are well-established
Frontiers in Cardiovascular Medicine 16
bibliometric software tools, our study should serve as a valuable

reference for physicians and researchers in the field.
5 Conclusion

The PSC-CM-based in vitro cardiac models bridge the gap

between animal models and clinical trials, offering vast potential

for the translational application of PSC-CMs. This study maps

the developmental trajectory of PSC-CM research over the past

18 years to identify hot issues, highlight the developmental

trends, and provide a historical perspective to guide scholars in

exploring new research directions. From 2007 to 2024, the global

annual outputs of literature on PSC-CMs exhibited an overall

uptrend, peaking in 2021, with a notable slump in 2022 and

2023. These prominent research hotspots, including fabrication

of vascularized and multicell type 3D engineered cardiac models

to mimic the intricate natural myocardium, maturation of PSC-

CMs, and extracellular vesicles will continue attracting interest

from global researchers. Moreover, the exact pathophysiological

mechanisms of cardiac involvement in COVID-19, personalized

medicine to focus on tailoring treatments to individual patient

characteristics and genetic profiles, atrial fibrillation, cardiac

fibrosis and energy metabolism of PSC-CMs will be worthy of

further exploration in the near future. While the clinical trials of

stem-cell-mediated treatment for heart diseases shows promise,

significant challenges remain. Further research is imperative to

optimize protocols, enhance cell delivery methods, and establish

standardized practices to improve clinical outcomes.
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