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Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian,
China, 3College of Pharmacy, Dalian Medical University, Dalian, China, 4Emergency Intensive Care Unit,
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Despite the increasing number of anti-hypertensive drugs have been developed
and used in the clinical setting, persistent deficiencies persist, including issues
such as lifelong dosage, combination therapy. Notwithstanding receiving the
treatment under enduring these deficiencies, approximately 4 in 5 patients
still fail to achieve reliable blood pressure (BP) control. The application of
neuromodulation in the context of hypertension presents a pioneering
strategy for addressing this condition, con-currently implying a potential
central nervous mechanism underlying hypertension onset. We hypothesize
that neurological networks, an essential component of maintaining
appropriate neurological function, are involved in hypertension. Drawing on
both peer-reviewed research and our laboratory investigations, we endeavor
to investigate the underlying neural mechanisms involved in hypertension by
identifying a close relationship between its onset of hypertension and an
excitation and inhibition (E/I) imbalance. In addition to the involvement of
excitatory glutamatergic and GABAergic inhibitory system, the pathogenesis
of hypertension is also associated with Voltage-gated sodium channels
(VGSCs, Nav)-mediated E/I balance. The overloading of glutamate or
enhancement of glutamate receptors may be attributed to the E/I imbalance,
ultimately triggering hypertension. GABA loss and GABA receptor dysfunction
have also proven to be involved. Furthermore, we have identified that
abnormalities in sodium channel expression and function alter neural
excitability, thereby disturbing E/I balance and potentially serving as a
mechanism underlying hypertension. These insights are expected to furnish
potential strategies for the advancement of innovative anti-hypertensive
therapies and a meaningful reference for the exploration of central nervous
system (CNS) targets of anti-hypertensives.
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1 Introduction

Hypertension has caused a huge burden in mortality and

healthcare worldwide due to its huge contribution to the

pathogenesis of multiple cardiovascular diseases, such as

coronary heart disease, stroke, aortic dissection, and renal

events (1, 2). Billions of adults worldwide suffer from

hypertension when using a threshold of systolic blood pressure

(SBP) ≥140 mmHg and/or diastolic blood pressure (DBP)

≥90 mmHg (3). The magnitude of issue escalates significantly

with the adoption of the new threshold of SBP ≥130 mmHg

and/or DBP ≥80 mmHg (4). The staggering toll of up to 10.4

million deaths attributed to hypertension in 2017 (5),

underscores the imperative for timely assessment and

implementation of antihypertensive interventions globally. The

majority of hypertension (≥90%) is essential hypertension, of

which the pathogenesis is unclear. The central modulation of

heart rate (HR) and BP offers a foundation for understanding

neurogenic mechanisms underlying hypertension. Besides

lifestyle improvements including exercise, reduced alcohol

consumption, quitting smoking, and lowering sodium and

saturated fats intake could be efficient in controlling

hypertension (6), guidelines also recommend the use of

diuretics, Angiotensin-Converting Enzyme Inhibitors (ACE/Is),

angiotensin II receptor blockers, and calcium channel

antagonists, etc. (7). Nonetheless, only about one-fifth of

hypertensive patients live with controlled BP (8). Some

hypertension that proved refractory escapes from various

antihypertensive drugs, which can be effectively managed using

deep brain stimulation according to N K Patel et al.’s report

(9). This further confirms the potential involvement of a

central nervous mechanism in hypertension pathogenesis. With

deeper studies in neurology, scientists have found that neural

function is not solely reliant on individual neurons but rather

on complex neural networks composed of neuronal clusters

(10). The dynamic balance of excitation and inhibition (E/I) is

necessary for ensuring the optimal functionality of neural

networks (11, 12).

Here we review the role of network E/I imbalance in the

pathogenesis of hypertension and its potential mechanisms, to

improve the understanding of neural mechanisms and narrow

the gap in this knowledge. Based on the published research of

peers and our lab, the possible neural mechanisms are explored

for different etiopathogenesis of hypertension. We focus on

hypertension that has received widespread attention over recent

years including, but no limited to stress-induced, salt-induced,

Angiotensin (Ang) II-induced, and neurogenic hypertension.

First, we address the brain regions underlying the genesis of

hypertension, and then explore the impact of alternations in

these regions at the whole-brain level, such as neural network

and neural connection. Accordingly, we have attempted to

provide researchers with a new perspective on the pathogenesis

of hypertension and with a view to providing some insights into

curing hypertension.
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2 The involvement of the network in
hypertension

Previous studies have identified that prenatal malnutrition is

tied to an increased risk of hypertension (13, 14). Offspring born

to mothers exposed to Dutch famine during pregnancy exhibited

heightened vulnerability to hypertension in middle age (15). It

may be attributed to the fact that undernutrition during fetal life

leads to lower body weight and brain changes, including neuronal

loss, impaired neuronal differentiation even neuroplasticity deficits

(16), all contributing to the functional aberrations observed in

neural networks. Various studies establish that BP regulation by

the CNS relies on the coordinated activity of a highly

interconnected network of neurons (17, 18). Cayupe et al.

reviewed the unfavorable Paraventricular-Coerulear Network

arising in the genesis of hypertension in prenatally malnourished

adult animals (19). Similarly, hypertension attributed to affective

disorders involves neural networks. Hypertension is well-known

to be influenced by genetic and environmental factors (20), and

so is anxiety formation, especially generalized anxiety disorder

(21). A significant anxiety-hypertension association in cross-

sectional and prospective studies was pointed out from 59 studies

by pooling data recently, even though the underlying pathway is

still elusive (22). The pandemic of COVID-19 gave rise to half of

the UK adults increased anxiety, depression, or stress due to fear

of contracting (23). This heightened anxiety had been associated

with a marked increase in cardiovascular events especially

hypertension (24). A functional neuroimaging study of anxiety in

humans hints at the frequent observation of amygdala and insular

cortex (lc) hyperactivation in anxiety disorder (25), change of

neural unit in both of which lead to neurogenic hypertension in

animals (26, 27). Further animal experiments had made efforts to

reveal the mechanism by which the alternation in the brain

causes hypertension. They found occlusion of the right middle

cerebral artery induces neurochemical disturbances in the

amygdala and lc (28), thereby increasing sympathetic outflow and

contributing to hypertension in mice (26). Sympathetic overflow

increases myocardial contractility and thus stoke volume.

Moreover, it also causes vasoconstriction leading increased

vascular resistance via the effect of norepinephrine on

postsynaptic α-adrenergic receptors of sympathetic nerves

innervating the peripheral vasculature. Sympathetic blockade in

hypertensive mice decreases cardiac output and peripheral

vascular resistance, hence ameliorating hypertension (29).

Another research in the context of menopausal women revealed

lower intrinsic resting-state functional brain connectivity of the

midbrain-brainstem-cerebellar network with bilateral anterior

middle insula in hypertension of this population (30).

Sympathovagal imbalance in the central autonomic network

may be involved in the pathophysiology of hypertension, given

recent evidence confirming the autonomic regulation of the

cardiovascular system, which encompasses the insular cortex and

anterior cingulate (31, 32). The dense neural projections connect

relevant brain regions such as the insula to the autonomic nucleus
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(33), known for their role in cardiac autonomic regulation (34, 35),

offer insights into the underlying mechanism by which these neural

connections cause cardiovascular events. A previous animal study

confirmed that a high-fat diet leads to changes in neuropeptide

gene expression within the CNS, possibly contributing to obesity-

induced hypertension and autonomic dysregulation (36). While

not directly establishing a causal relationship between autonomic

network imbalance and hypertension, this evidence gives few

hints. Shiina and his colleagues figured out that improving

sympathovagal imbalance is effective in alleviating obstructive

sleep apnea-associated hypertension and other adverse

cardiovascular events (37). Naiara A Herrera et al. came to a

similar conclusion that exercise ameliorates the autonomic balance

of dexamethasone-induced hypertensive mice thereby improving

the arterial pressure (38). Another acupuncture-based study found

that stimulating bilateral TaiChong points in rats enhances the

functional connection between the hypothalamus and brain

regions related to BP regulation, such as the entorhinal cortex,

hippocampal dentate gyrus, brain stem, etc., accompanied by anti-

hypertensive effects (39). All these clinical studies corroborate that

interventions targeting autonomic network balance alleviate

hypertension, confirming to an extent the role of the autonomic

network in hypertension pathogenesis. A recent animal

experiment proved that autonomic network dysfunction causes

hypertension which would be relieved when the autonomic

network dysfunction is rescued (40).
3 Excitatory glutamatergic system in
hypertension

Stress normally produces a temporary rise in arterial BP, with

untreated chronic stress triggering persistent hypertension,

especially in individuals with a genetic risk for hypertension (41).

As the major excitatory neurotransmitter in the vertebrate nervous

system, glutamate, along with the excitatory glutamatergic system

it comprises, accounts for over 90% of the excitatory synaptic

connections in the human brain (42). Glutamate makes its way to

the synaptic cleft and acts on downstream receptors and ion

channels, either synthesized de novo in glutamatergic neurons or

recycled through the glutamate-glutamine cycle before being

released into the synaptic cleft (43). Excess extracellular glutamate

causes neuroexcitotoxicity resulting in an excitatory-inhibitory

imbalance in the brain network, thereby precipitating pathological

processes (44). The imbalance of the neural network induces

excessive sympathetic outflow to trigger hypertension. Given the

essential role of the in maintaining neural network homeostasis,

its contribution to hypertension warrants investigation.
3.1 Stress-induced hypertension

Evidence suggests an important role for chronic stress in the

pathogenesis of hypertension, cardiovascular disease, and stroke
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(45). Our recent publication confirms that chronic stress-induced

activation of neurons in the dorsomedial prefrontal cortex

(dmPFC) leads to increased glutamate concentrations in the

hippocampal vCA1 projection areas of these neurons and

elevated BP in mice (46). While not assessing alternations in

neural networks excitability, our study observed a rise in

glutamate, the main excitatory neurotransmitter, without

significant changes in GABA. These results may also hint at the

imbalance of E/I in neural networks (42). Basting et al. assessed

the effects of acute stimulation of excitatory neurons in the

paraventricular nucleus (PVN) selectively on resting BP in awake

mice and found it was sufficient to drive an elevation of BP, akin

to hypertension (47). PVN integrates the effects of endocrine and

autonomic response to stress and ultimately causes hypertension

by projecting to sympathetic-related areas in the brainstem and

spinal cord leading to a sympathetic overflow (48, 49). A study

published recently showed that chronic stress increases

sympathetic outflow and ultimately induces hypertension through

activation of glutamatergic receptors in PVN and increased

binding to the corresponding ligands (41). Overactivation of

glutamatergic receptors in PVN is a major source of elevated

sympathetic outflow in hypertension (49). Ma et al. have further

confirmed that excessive glutamatergic excitatory inputs are

strongly linked to the pathogenesis of hypertension (50). Other

studies delved into the mechanism of increased glutamatergic

tone and found that it was maintained by presynaptic glutamate

release and enhanced postsynaptic NMDAR activity (51, 52).

Alternatively, research has suggested the upstream glutamatergic

output that is projected to the PVN, leading to the activation of

the vasopressin (VAP) neurons in it and raising BP (53).

Beyond the PVN, the glutamatergic tonic input of the rostral

ventrolateral medulla (RVLM) also results in hypertension (54), as

RVLM is a critical site central control of sympathetic outflow

playing an essential role in maintaining basal BP (55). Neurons in

the RVLM are proposed to send downward impulses to

sympathetic preganglionic neurons in the intermediolateral

column of the spinal cord (56). Additional glutamatergic input to

the RVLM facilitates BP and sympathetic nervous activity (57).

ROS-SAPK/JNK signaling pathway regulates the pressor effect of

glutamatergic neurons in RVLM in stress-induced hypertensive

mice (58). A study modeling stress-induced hypertension based on

foot shock combined with noise exposure similarly confirmed the

correlation between alterations in the glutamatergic system of

RVLM and hypertension. The authors suggested that angiotensin

(Ang) II-mediated glutamatergic effects as well as the upregulation

of NMDA could activate glutamatergic neurons in the RVLM,

releasing glutamate into the intermediolateral column (IML) and

altering sympathetic outflow in stress-induced hypertension (59).
3.2 Salt-induced hypertension

Numerous epidemiologic, clinical, and experimental studies

have confirmed that salt intake is associated with BP and that
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reducing dietary salt intake could lower BP (60). Normally, salt is

often referred to as sodium salt, even though salt constituting

only 40% of its composition. Salt-induced increases in BP are in

part believed to be mediated by enhanced NaCl in cerebrospinal

fluid (CSF) and sympathetic nerve activity (61, 62). Central

hypernatremia initiates hypothalamic pathways increasing

glutamatergic drive to RVLM neurons, thereby increasing arterial

BP (63). An earlier study also found a significant elevation of BP

when injecting glutamate into the RVLM of salt-sensitized rats,

suggesting a relationship between excessive glutamatergic input

and the development of hypertension (64). Changes in gut

microbiota are believed to play an important role in salt-induced

hypertension. Healthy animals exhibited elevated BP following

transplantation of gut bacteria from hypertensive patients or

animals. Zheng et al. found that salt overconsumption caused the

upregulation of glutamate and its derivatives from comparing the

differences between intestinal flora, metabolites, and metabolites

pathways in salt-induced rats and controls (65). Subsequent

KEGG analysis revealed that the salt-induced alternations were

associated with the glutamatergic synaptic pathway, potentially

culminating in disruption of E/I balance and consequent

hypertension (52). Blocking the angiotensin type 1 receptors

(AT1Rs) in the PVN fails to further decrease the peak BP

response to the glutamate receptor blockers in salt-induced

hypertension while conversely works, probably suggesting the

activation of AT1 is primarily mediated by locally released

glutamate (66). Also, some research concluded that

prohypertensive signals, such as salt can be perceived by

autonomic brain regions enhancing resident microglia mainly

located in PVN to promote hypertension (67, 68). Instead,

attenuation of microglial activation in PVN by administration of

minocycline produces antihypertensive effects (69). Stabilized

microglia prevent the overactivation of pre-sympathetic neurons

in PVN, overactivated microglial constitutive releases platelet-

derived growth factor B promoting neuronal potassium current

conduction, which in turn triggers excess sympathetic outflow

disrupting the excitatory balance of the autonomic system (70).

In addition, some researchers stated that brain-derived

neurotrophic factor from microglia increases the expression of

NMDARs at postsynaptic terminals (71), which might underlie

the association of microglial activation with the pathogenesis

of hypertension.
3.3 Neurogenic hypertension

Sympathetic strain serves as a major pathway in the

development of neurogenic hypertension. Basting et al.

confirmed the critical role of glutamatergic neurons of PVN in

the development of neurogenic hypertension in conscious mice

using optogenetics (47). They found a frequency dependent

increase in BP upon direct photoactivation of these PVN

neurons. Whereas the model of deoxycorticosterone acetate-

induced neurogenic hypertension exhibited near-normal BP

when these PVN neurons were impaired. The use of calcineurin

inhibitors in constructing neurogenic hypertension models has
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been employed in several studies (72, 73). Elevated synaptic

NMDAR activity in pre-sympathetic neurons increased

excitability inputs to the PVN, sustaining excessive sympathetic

outflow, which may contribute to the genesis of neurogenic

hypertension (72). This was supported by an earlier study that

NMDAR activation normalize the higher frequency and

amplitude of excitatory postsynaptic currents in PVN neurons,

which elicits sympathetic tension, a crucial factor in the

development of neurogenic hypertension (74). Besides NMDAR,

also AMPA-type glutamate receptors (AMPARs) in the

postsynaptic membrane, was shown involved in the occurrence

of neurogenic hypertension (73). Calcineurin inhibitors initiated

an altered phenotype of AMPARs in PVN pre-sympathetic

neurons, resulting in an increased Ca2+-permeable AMPARs.

These changes triggered an increased postsynaptic currents

mediated by AMPAR, leading to excessive sympathetic outflow

and the induction of neurogenic hypertension (73). AMPARs are

homomeric or heteromeric tetramer consisting of a combination

of four pore-forming subunits, GluA1, GluA2, GluA3, and

GluA4. A study from Zhou et al. also found that increased

synaptic Ca2+-permeable AMPARs in PVN presympathetic

neuron maintain the sympathetic outflow in neurogenic

hypertension by inhibiting the assembly of GluA1/GluA2

heteromers (75). In spite of being glutamate receptors,

metabotropic glutamate receptors (mGluRs) do not play exactly

the same role in hypertension as the above two. The mGluRs in

PVN affect hypothalamic presympathetic neurons via opposing

presynaptic and postsynaptic actions (76). Activation of

presynaptic group III mGluRs depresses the excitability of PVN

presympathetic neurons, attenuating sympathetic vasomotor

activity. Conversely, postsynaptic group III mGluRs excite PVN

presympathetic neurons, increasing sympathetic vasomotor

activity (76).
3.4 Ang II-induced hypertension and other
hypertension

As a critical site in the development of hypertension, PVN is also

identified in other hypertensive models (52, 77, 78). Increased

mineralocorticoid receptor leads to enhanced AT1 and glutamate

receptor-dependent signaling in the PVN, thereby promoting a

chronic increase in circulating Ang II to maintain BP in Ang II-

dependent hypertension (77). Another study equally found that

enhanced glutamate signaling of PVN, for instance, NMDA-

mediated elevation of excitatory currents was present in Ang II-

dependent hypertension (78). Central Ang II facilitated glutamate

release, that enhanced glutamatergic neuron activation in the

RVLM via AT1R binding to enhanced NMDAR and AMPAR, as

well as increased sympathetic excitation, causing hypertension in

mice (59). Glutamatergic connection activation between the

nucleus tract solitarius and the ventral-lateral segment of the

medulla oblongata may be one of the baroreflex pathways that

produce hypertension (79). Qiao et al. demonstrated that

presynaptic and postsynaptic NMDAR activity of RVLM-

projecting PVN neurons in essential hypertensive rats whereas
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blocking this increase lowered BP (52). Nicotine possibly accelerates

and deteriorates hypertension by enhancing glutamatergic

transmission in spontaneously hypertensive rats (SHR) (80). The

glutamatergic signaling network is as well involved in obesity-

related hypertension, as the elevated BP induced by excessive

central leptin was blocked by glutamatergic inhibition in mice fed

a high-fat diet (81). Even blocking the glutamate receptor in

postnatal period rescued some of the leptin-induced hypertension

from regular feeding (82). All these findings above prompt the

pivotal role of the glutamatergic system in the pathophysiology of

hypertension and suggests its potential as a reliable strategy for the

treatment of essential hypertension.
4 Inhibitory GABAergic system in
hypertension

The GABAergic (gamma-aminobutyric acid) system serves as

the major inhibitory system in the brain, working along with the

excitatory system to maintain the delicate balance in the brain

for adequate neurological function. Despite making up only 20%

of the neurons, GABAergic neurons are vital in generating

inhibitory inputs over others (83). As the main bearers of

GABAergic signaling, GABAergic receptors (GABARs) were

involved in numerous physiopathological processes such as pain,

emotion, and cognition (84). As we reviewed above, E/I balance

is thought to be implicated in the pathogenesis of hypertension.

And what role does the GABAergic system, as an important

component of E/I balance, play in achieving hypertension?
4.1 Stress-induced hypertension

Over the past decades, it has been well established that stress

induces cardiovascular problems such as hypertension, and the

regulation of various neurogenic pathways bridges the gap between

stress and hypertension as well as cardiovascular disease (85). An

MRI-based study showed that GABA levels in the hypothalamus

of inherited SHR were significantly lower than in controls,

accompanied by an elevated in excitability and energetic activity

(86). Another study identified a precise brain region in SHR

where E/I imbalance occurs, arguing that the decline in

GABA and elevation of glutamate in RVLM may be closely

related to the pathogenesis of hypertension (87). They examined

neurotransmitter concentrations only in homogenates of tissue

from RVLM. It would be more convincing to detect the levels of

intercellular neurotransmitter which affect E/I balance in the brain

network. Xia et al. examined the intercellular neurotransmitters in

the RVLM of SHR treated with PVN injection of melatonin. They

discovered that melatonin ameliorated hypertension in SHR while

increasing intercellular GABA in the RVLM (88). It hints that

altered intercellular GABA-mediated E/I balance in the PVN

projective site RVLM closely correlates with the pathogenesis and

modulation of hypertension.

To elucidate the mechanisms of neurotransmitter imbalance in

the RVLM of SHR, numerous studies are underway. As one of the
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participants in hypertension, Ang II acts on various receptors, such

as AT1R and AT2R. Du et al. found activation of the Ang II

pathway plays an important role in SHR by reducing the GABA

release (89). However, they did not explain how Ang II caused

changed GABA release, which was given by Laura Légat and his

team in their recent study. Ang II may cause AT2R activation at

synapses in GABAergic neurons, thus altering GABA release

(90). It has also been noted that GAD67 expression is decreased

in hypertensive rats, ultimately leading to increased vesicle-

dependent GABA release (91). Despite these intensive studies

were conducted, none of them gave direct evidence to confirm

their conclusions. This may await advances in experimental

techniques or the launch of extensive research.
4.2 Salt-induced hypertension

Given that our daily salt intake far exceeds the recommended

limit, health hazards especially cardiovascular risks such as

hypertension, are increasingly being emphasized (92). Zheng

et al. showed that high salt intake not only affected the excitatory

glutamatergic system but also led to a downregulation of GABA.

The KEGG enrichment analysis suggested that high salt intake

may impact the relevant pathways of GABA metabolism (65).

Distinctly, some researchers found that suppressing GABAergic

excitation inhibits salt-induced hypertension via reducing the

output of AVP neurons (93, 94). Given the inhibitory effect of

GABA on neurons, it follows that activating the GABAergic

system should inhibit the release of AVP from AVP neurons to

attenuate hypertension. They believed that when GABAergic

inhibition converts to excitation, the baroreflex loses its function

in buffering BP and instead contributes to the development of

hypertension via promoting AVP release (94). Kim and his

colleague revealed that GABA does not consistently function as

an inhibitory neurotransmitter in the brain network according to

their study (95). These contradictory studies just indicate that it

is unclear what the role of the GABAergic system is in the

pathogenesis of hypertension, which is exactly the question that

later researchers need to answer.
4.3 Neurogenic hypertension

Increased sympathetic outflow is considered to be a major

contributor in the pathogenesis of hypertension, with both

glutamatergic and GABAergic system being involved (72, 74, 96).

PVN pre-sympathetic neurons receive tonic and inhibitory

inputs, the balance of which determines the excitability of PVN

pre-sympathetic neurons (49). The GABAergic current in PVN

neurons of SHR was markedly lower compared with controls, a

phenomenon that could be reversed by antagonizing GABARs

concomitant with an improvement in hypertension (97). In

another study using BPH/2J mice as subjects, it was found that

maintenance of hypertension may be due to GABAAR structure

and function alteration, reducing tonic neuronal inhibition of

amygdalohypothalamic network and leading to subsequent
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sympathetic tension (98). This might account for the disrupted

function of GABA receptors and GABAergic inputs to PVN that

may lead to increased hypertensive sympathetic outflow in the

neurogenic hypertension. It has also been noted a disruption of

chloride homeostasis in PVN presympathetic neurons reduces

GABAergic inhibition and plays a key role in the

hyperexcitability of presympathetic neurons and elevated

sympathetic vasomotor tone (96). Numerous studies have

identified chronic intermittent hypoxia (CIH) contributes to

neurogenic hypertension as well. Short term CIH induces a

relatively rapid adaptive response that drives the tonic activity of

PVN sympathetically regulated neurons and their acute

excitability, a possible mechanism by which CIH evokes

neurogenic hypertension (99). Farmer et al. further explored the

reason behind this uncontrolled excitation, highlighting the

possibility of CIH disrupting GABAA-mediated inhibition (100).

While a lot of research pointed to a regulatory role for

GABAergic system in neurogenic hypertension, its promise as

therapeutic target has not been fully demonstrated. Even if some

studies have confirmed the therapeutic potential of targeting the

GABAergic system through specific injections of the drug in

mice brains, an unbridgeable gap remains before an actually use

of it for the cure of neurogenic hypertension.
4.4 Ang II-induced hypertension and other
hypertension

The bed nucleus of the stria terminalis (BST) is a region rich in

GABAergic neurons known to regulate cardiovascular parameters.

Ang II upregulates the E3 ubiquitination ligase that targets it and

promotes angiotensin-converting enzyme 2 (ACE2) ubiquitination

and degradation. Onset of this ACE2 ubiquitination in BNST

GABAergic neurons decreases PVN presympathetic inputs,

promoting hypertension (101). In addition, brain Ang II increases

mean arterial pressure and sympathetic outflow by working on

AT1R in diverse parts of the brain, including the PVN, RVLM and

nucleus of the solitary tract (NTS) (90). Ang II mediated stimulation

of AT1R in the NTS leads to activation of eNOS or (and) nNOS,

followed by local production of NO, enhancing GABA release from

NTS interneurons (90). GABA release in the NTS inhibits

glutamatergic neuronal projections to the caudal ventrolateral

medulla (CVLM), reducing activation of inhibitory GABAergic

nerves in CVLM and subsequently deregulating sympathetically-

driven glutamatergic neurons in the RVLM (102). Control of

GABAergic is also exhibited in other forms of hypertension.

Haywood et al. confirmed that injection of GABA receptor

inhibition in bilateral PVN resulted in a significant increase in BP

and HR in renal-wrap hypertensive rats (103). They also concluded

stronger GABAergic activity is the outcome of increased GABA

release from the PVN (104). Maycon et al. instead uncovered that

peripheral GABAergic control may also be part of the pathogenesis

of renal hypertension, suggesting the equal importance of peripheral

and central E/I balance in the pathogenesis of hypertension (105).

Likewise, exercise could elevate glutamic acid decarboxylase (GAD)

expression, which increases GABA levels to attenuate renal
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sympathoexcitability and hypertension by diminishing GABAergic

deficits in the caudal hypothalamus (106, 107).
5 Nav isoforms and the potential
effects of Nav-mediated E/I in
hypertension

Chronic stress has garnered significant attention due to its

capacity to trigger a cascade of pathophysiologic alterations,

thereby contributing to kinds of cardiovascular disease via the

(CNS) (85). For instance, sympathetic overactivity and neuronal

excitation imbalance in the brain are involved in the regulation

of hypertension (108). Except for chronic stress, sodium (Na+)

intake is another environmental factor known to influence BP;

increased Na+ heightens an individual’s susceptibility to

hypertension while the reduction of Na+ intake alleviates

hypertensives (109). In human beings, there is a continuum of

BP sensitivity to sodium, which is related to vascular

endothelium and smooth muscle, renin-angiotensin-aldosterone

system, immune responsive system. Additionally, the specific

regions of the brain would influence the salt-sensing variability

(110–112). It has been reported that epithelial sodium channels

contribute to the salt sensitivity of BP in the kidney (113), the

organ primarily responsible for sodium homeostasis.

Recent studies have found that function or expression changes

of sodium, potassium, and calcium plasma channels in specific

brain regions are related to the regulation of hypertension (114).

Among these channels, Nav are normally responsible for the

generation and propagation of action potentials in neurons, which

directly affects the excitability of neurons and is involved in the

regulation of Ca2+ transfer and the release of glutamate and/or

GABA at the end of axons (115). The mammalian Nav family

consists of 10 α-subunit genes encoding Nav1.1–Nav1.9. Nav1.1–

1.9, each of which is expressed in different tissues and exert

different functions. Mutations in Nav1.1 result in altered sodium

channel activity occurring primarily on inhibitory interneurons

with consequent slow recovery from inactivation, greater use-

dependent inactivation and reduced action potential firing in

interneurons. These changes ultimately lead to diminished

inhibition and E/I imbalance within the brain (116). By contrast,

Nav1.2 mutations caused a reduction in Na+ currents primarily

on pyramidal neurons, with decreased excitatory synaptic inputs

to pyramidal neurons in brain slices, whereas interneurons were

unaffected, which biased the brain towards an inhibitory

imbalance (117). Mice heterozygous of Nav1.6 had neurons in

hippocampal CA1 in a state of hyperexcitability with a significant

increase in the rate of rising rate of action potentials, spike

amplitude and input resistance. Neuronal excitability in the cortex

was also increased, which have led to the neural network

hyperexcitability. Apart from this, these mice exhibited

simultaneous tonic extension and bradycardia on ECG (118).

Some other types of Nav introduce E/I imbalance response as

well, which we will elaborate on in the following sections. Along

with the direct alterations in Nav, the auxiliary protein fibroblast

growth factor 13, which encodes Nav, would lead to decreased
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inhibitory synaptic inputs and increased excitatory synaptic inputs,

leading to an E/I imbalance in the neural networks (119). In the

CNS, Nav-mediated abnormal electrical activity of neurons can

induce the neurological network E/I imbalance and lead to

anxiety (120, 121). Then, would the Nav mutations in the brain

affect the BP and the formation of hypertension? Our laboratory

has long been involved in research related to ion channels, and

we hypothesize the existence of additional central mechanisms

involvement of ion channels in hypertension.
5.1 Stress-induced hypertension

Various Nav isoforms expressed in different tissues and exert

different functions. Na1.1, Na1.2, Nav1.3, and Na1.6 are the

primary isoforms expressed in the CNS, Nav1.4 is distributed in

skeletal muscle, and Nav1.5 is only expressed in cardiac muscle.

Especially, Nav1.6 is highly expressed in excitatory neurons, and is

also shown in inhibitory neurons. We have reported that

downregulating or inhibiting Nav1.6 suppresses intracellular Ca2+

accumulation, thereby attenuating the pathogenesis of Alzheimer’s

disease (122) and 6-OHDA-induced neurotoxicity and

neuroinflammation (123). Recent findings by Lei Tong et al.

declared that Nav1.6 is overexpressed in the RVLM neurons in

SHR, accompanied by increased vesicular glutamate transporter 1

(VGluT1) expression and VGluT1-positive neurons, alongside

decreased GAD67 expression and GAD67-labeled inhibitory

neurons (124). In stress-induced hypertensive rats subjected to

electrical foot and noise, the Nav1.6 expression in RVLM is

markedly increased, whereas knockdown the Nav1.6 in RVLM

significantly ameliorates stress-induced in SBP, HR and

sympathetic nerve activity in rats (125). Calcium ion is the switch

for glutamate release, and GAD catalyzes the conversion of

glutamate to GABA. These indicate the E/I imbalance, resulting

from the overactivated glutamate system and (or) inhibited

GABAergic system, may be induced by increased Nav1.6 and Ca2+

accumulation, thereby mediating the stress-induced elevation of BP.

No reports are available to reveal a correlation between Nav1.7

and hypertension, although attempts to explore this area have

concluded a lack of association (126, 127). Nav1.8 in the brain is

mainly expressed in a few regions including lateral septal nucleus,

BST, dorsal striatum, amygdala, hypothalamus, and the ventral

periaqueductal gray (128), several of which may be involved in the

pathogenesis of hypertension (26, 39, 101). The involvement of

Nav1.8 in prolactin-regulated stress-induced behavior response

was found in a study on preclinical migraine models done by

Bianca and his colleagues (129). Another study also confirmed

that stress-induced an upregulation of neuronal Nav1.8 expression,

although this alteration was transient (130), which was

corroborated by Helia et al. on their discovery that neurons

transiently expressing Nav1.8 were able to sense noxious stimuli in

the brain (128). Upregulated of Nav1.8 in prefrontal neurons

undergoes excitatory deficits including reduced spiking frequency

of action potential and depolarization of resting membrane

potentials (131). Knockout out of Nav1.8 on dorsal root ganglion

neurons prevents them from emitting all-or-none action potentials
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at the resting potential state (132). Above studies confirm the

involvement of Nav1.8 on CNS and peripheral neurons trigger

deficits in neuronal excitability, but lack evidence tying it to E/I

imbalance and hypertension which deserves further exploration.
5.2 Salt-induced hypertension

Neuronal activity is affected by the concentration of Na+ in the

CSF, which is extremely sensitive. An increase of 2 mmol/L in the

Na+ concentration in the CSF triggers neuronal discharges (133),

whereas chronic elevation of CSF [Na+] by 5 mmol/L results in

sympathetic hyperactivity and hypertension (134). The sodium

concentration in this fluid depends on the sodium transport

between plasma and CSF by CP epithelial cells through the

epithelial sodium channels (ENaCs) and Na + -K + -ATPase.

High-salt diet increased the concentration of sodium ions in the

CSF of rats, which led to the increase of sympathetic nervous

system excitability, BP and HR, and these effects were more

significant in Dahl-sensitive rats (135). The abnormal regulation

of Na+ transport and Na + -K + -ATPase activity may be one of

the reasons for the increase of [Na+] in CSF in Dahl salt-

sensitive rats fed a high-salt diet, but not related to the abnormal

regulation of ENaCs (136). They also found the reduction of

[Na+] influx caused by blocking ENaCs by benzamil still resulted

in elevated [Na+] in CSF even leaving the salt diet (136). It

reflects the key role of ENaCs of transporting Na+ in salt-

induced hypertension. Furthermore, the sympathetic and pressor

responses to intracerebroventricular injection of sodium-rich

artificial CSF were greater in Dahl S Rats than in salt-insensitive

(R) or Wistar rats (135). This may be due to the acute and

chronic increases in [Na+] that reduce NO release, leading to an

imbalance of E/I and increasing Na + -induced hypertension via

enhancing Ang-II release and AT1R activation in PVN (137).
5.3 Neurogenic hypertension and Ang
II-induced hypertension

Some debate over the notion that excessive sodium intake leads

to elevated [Na+] or CSF [Na+] which later causes hypertension.

Nomura et al., in studying neurogenic hypertension, found that

Nax (encoded by SCN7A) knock out mice failed to manifest

mean blood pressure increases even after high-salt ingestion

(138). Elevated extracellular [Na+] in the organum vasculosum

lamina terminalis (OVLT) activates Nax, which stimulates the

release of H+ from Nax-positive glial cells. The released H+

provokes OVLT (projecting to PVN) neurons to further activate

PVN (projecting to RVLM) neurons, thereby increasing

sympathetic activity and leading to hypertension. The OVLT’s

significant role in neurogenic hypertension likely stems from its

lack of a typical blood-brain barrier and proximity to the third

ventricle, allowing it to sense increased [Na+] in both the blood

and CSF (138). This strained sympathetic activity is associated

with elevated Nav1.6 expression in the RVLM, and reducing

Nav1.6 expression results in decreased sympathetic activity (125).
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1436059
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

A conclusion of the neural network involved in the pathogenesis of hypertension. (A) Shows that hypertension involves neural mechanisms (innermost
circle) and corresponding brain regions (two outer circles of the same color). (B) Demonstrates the process of external stimuli causing hypertension
through disturbed neural networks and sympathetic overflow.
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Overexpression of Nav1.6 leads to intracellular calcium

accumulation via Na + -Ca2+ exchange in the brain (123),

triggering excessive release of excitatory neurotransmitters thus

initiating E/I imbalance (139). However, definitive evidence

linking Nav1.6 to neurogenic hypertension through these

mechanisms is still lacking, requiring further research. Gabor

et al. demonstrate that glutamate receptor-dependent signaling in

the PVN contributes to the BP maintenance in Ang II-

hypertensive Wistar rats (77). Despite overexpression of Nav1.6

could bring excessive glutamate release based on previous studies

(122, 123), it is difficult to justify the role of Nav1.6 in

development of Ang II-dependent hypertension. More than just

neurogenic hypertension, the role of Nav in the pathogenesis of

Ang II-induced hypertension needs more exploration.
6 Conclusion

Hypertension is so far incurable that current treatment relying

on medications to control the BP. Most hypertensive patients are

required lifelong use of two or more antihypertensive drugs,

leading to reduced compliance and disruption of normal

routines. We reviewed the important role of neural network E/I

imbalance in the pathogenesis of hypertension (Figure 1),

suggesting its potential as a therapeutic target. This opens the

possibility of exploring approaches such as transcutaneous or

transcranial electrical stimulation targeting specific brain regions,

nano-delivery systems, and targeted drugs to optimize disturbed

brain network. These interventions could potentially lead to a
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curable outcome for hypertension, enabling patients to live a

routine life free from lifelong medication.
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