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Cardiac computer tomography-
derived radiomics in assessing
myocardial characteristics at the
connection between the left atrial
appendage and the left atrium in
atrial fibrillation patients
Xiao-Xuan Wei1, Cai-Ying Li1, Hai-Qing Yang1, Peng Song1,
Bai-Lin Wu1, Fang-Hua Zhu2, Jing Hu1, Xiao-Yu Xu1 and Xin Tian1*
1Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China,
2Department of Statistical Investigation, Statistical Information Center of Hebei Health Commission,
Shijiazhuang, China
Objectives: To evaluate the feasibility of utilizing cardiac computer tomography
(CT) images for extracting the radiomic features of the myocardium at the
junction between the left atrial appendage (LAA) and the left atrium (LA) in
patients with atrial fibrillation (AF) and to evaluate its asscociation with the risk of AF.
Methods: A retrospective analysis was conducted on 82 cases of AF and 56
cases in the control group who underwent cardiac CT at our hospital from
May 2022 to May 2023, with recorded clinical information. The morphological
parameters of the LAA were measured. A radiomics model, a clincal feature
model and a model combining radiomics and clinical features were
constructed. The radiomics model was built by extracting radiomic features of
the myocardial tissue using Pyradiomics, and employing Least absolute
shrinkage and selection operator (LASSO) method for feature selection,
combining random forest with support vector machine (SVM) classifier.
Results: There were 82 cases in the AF group [44 males, 65.00 (59, 70)], and 56
cases in the control group (21 males, 61.09 ± 7.18). Age, BMI, hypertension,
CHA2DS-VASC score, neutrophil to lymphocyte ratio (NLR), LAA volume, LA
volume, the myocardial thickness at the junction of LAA and LA, the area,
circumference, short diameter, and long diameter of the LAA opening, were
significantly different between the AF group and the control group (P < 0.05).
After conducting multivariate logistic regression analysis, it was found that
BMI, the myocardial thickness at the junction of the LAA and the LA, LA
volume, NLR and CHA2DS-VASC score were related to AF. 12 radiomics
features of the myocardium at the junction of the LAA and the LA were
extracted and identified. ROC curve analysis confirmed that the nomogram
based on radiomics scores and clinical factors can effectively predict AF
(AUC 0.869).
Conclusion: Radiomics enables the extraction of the myocardial characteristics
at the junction of the LAA and the LA, which are related with AF, facilitating the
assessment of its relationship with the risk of AF. The combination of radiomics
with clinical characteristics enhances the evaluation capabilities significantly.

KEYWORDS

atrial fibrillation (AF), radiomics, myocardial thickness, cardiac CT, left atrial
appendage (LAA)
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TABLE 1 CHA2DS-VASC score.

Risk factors Score
Congestive Heart Failure/Left ventricular dysfunction 1

Hypertension 1

Age ≥75 years 2

Diabetes mellitus 1

Stroke 2

Vascular disease 1

Age 65–74 years 1

Sex (female sex) 1

Wei et al. 10.3389/fcvm.2024.1442155
1 Introduction

AF is one of the most common sustained arrhythmias, with a

prevalence of approximately 1%–2% (1). In severe cases, it can

cause complications such as thromboembolism and heart failure

in patients (2, 3). Therefore, early identification of AF for

intervention and treatment is of great significance. Recent

research has elucidated the significance of the morphology and

structural features of the LA and LAA in the onset and

progression of AF (4).

The LAA is a residual irregular and highly trabecular tissue of

the embryonic LA that develops in early embryonic development.

It is connected to the LA through a narrow foramen (5, 6). The

persistent stimulation of AF prompts various myocardial cells to

release multiple factors, leading to cardiomyocyte hypertrophy

and fibrosis (7), which contribute to myocardial remodeling.

Previous studies have shown that LA myocardium is involved in

the pathological remodeling progress (8). Therefore, it is

believable that the myocardium situated at the junction of the

LAA and LA is remodel because of fibrosis. Consequently,

assessing the myocardial characteristics at the junction holds

promise for predicting the risk of AF.

Radiomics is defined as extracting numerous image features

based on computer tomography (CT), and magnetic resonance

imaging (MRI) after converting image information into data

information (9, 10). Then the radiomics features is screened

out by statistical software and other methods to build

radiomics models for diagnosis and prognosis assessment (11),

including distinguishing between benign and malignant tumors,

lymph node metastasis, and prognosis analysis (12–14). Least

absolute shrinkage and selection operator (LASSO) is a

regression technique for variable selection and regularization to

enhance the prediction accuracy. LASSO regression adds a

penalty equal to the absolute value of the magnitude of

coefficients, and some coefficients can become zero and are

eventually eliminated from the model, resulting in variable

elimination, and thus models with fewer coefficients, to feature

screening (15, 16). After feature selection, it will obtain

radiomics features that have a significant impact on diagnosis,

prognosis, and other results (17).

Radiomics models have been used to analyze epicardial tissue,

including adipose and myocardium. Previous studies have

proposed radiomics models based on CTA and CMR to predict

AF and AF recurrence. A radiomics model based on CT was

used to analyze features of epicardial adipose tissue surrounding

the left atrium (LA-EAT). Combined with the volume

information of LA, it can effectively distinguish subtypes of AF

and predict recurrence (18). CMR can also be used to extract

radiomics features of the volume and surface of the LA in the

end diastole phase. The radiomics model, combined with ECG

parameters, can predict the risk of AF, particularly in female

patients (19). The recurrence of AF after ablation can be

predicted based on the fractal features of the LA and pulmonary

veins, as well as the LA wall (20). However, radiomic analysis

focused on myocardial thickness at the junction of the left atrial
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appendage (LAA) and left atrium (LA) has not yet been

explored. Our approach introduces this novel indicator, providing

a new avenue for AF prediction. The aim of this study is to

extract the radiomics characteristics of the myocardium at the

junction between the LAA and the LA in patients with AF, and

combine radiomics with the clinical characteristics to predict the

risk of AF.
2 Materials and methods

2.1 Subjects

A retrospective analysis was conducted on 82 cases of AF and

56 cases of controls who underwent cardiac CT scans at the Second

Hospital of Hebei Medical University between May 2022 and May

2023. The study complied with the Declaration of Helsinki and was

approved by the Institutional Ethics Committee of the Second

Hospital of Hebei Medical University.

Inclusion criteria for patients in the AF group: (1) All patients

were clinically diagnosed with AF by physical examination and

electrocardiogram; (2) All patients had undergone 256-slice

cardiac CT examination. Exclusion criteria for patients in the AF

group: (1) Poor cardiac CT image quality with unclear

myocardium visualization. (2) Contraindications for cardiac CT,

including patients with cardiac implants. (3) Presence of valvular

heart disease, congenital heart disease, cardiomyopathy, or

myocarditis. Inclusion criteria for the control group: (1) No

evidence of cardiomyopathy. (2) cardiac CT images indicating

the absence of coronary artery sclerosis. Exclusion criteria: (1)

Poor cardiac CT image quality. (2) Allergy to iodine contrast

media or presence of pacemakers/other internal devices. (3)

History of myocardial infarction.
2.2 Clinical data

Patient clinical data were recorded, including age,

gender, Body mass index (BMI), CHA2DS-VASC score (21)

(Table 1) (congestive heart failure, hypertension, age ≥ 75

years, diabetes, Previous stroke, transient ischemic attack, or

thromboembolism), NLR (neutrophil/lymphocyte), hypertension

and diabetes (22).
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2.3 Cardiac CT acquisition

Scanning was performed using Philips 256-slice spiral CT, with

an image resolution of 5.12 Lp/cm, The slice thickness was 0.9 mm,

the slice spacing was 0.45 mm. During CT scan, patients were

positioned supine, employing retrospective ECG gating

technology and a single end-expiration breath-hold scan to

accurately control the scanning range. The non-ionic contrast

agent iohexol (350 mgl/ml, dose 0.8 ml/kg) was injected

intravenously into median cubital vein, and the scanning range is

0.5 cm below the tracheal bifurcation to the diaphragm. Scanning

parameters: tube voltage 80∼120 kV, tube current 280∼350 mAs/

revolution, collimation 128 × 0.625, pitch 0.18, rotation time

330 ms, matrix 512 × 512, field of view 250 mm.
2.4 Image post-processing and
measurement

A comprehensive cardiac analysis (CCA) cardiac function

processing software on the Philips EBW 4.5 workstation was

used for image post-processing and measurement. The original

images of 75% phase of the cardiac cycle were used to identify
FIGURE 1

The measurement of myocardial thickness at the junction of the LAA and th
the junction of the LAA and the LA was shown. The thickness of myocardium
thickest myocardium layer. LA and LAA are colored. (D) A sagittal image disp
was located by positioning the marker on the myocardium of the aforemen
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the LA and LAA, obtaining three-dimensional images of the LA

and LAA. The myocardial thickness at the junction of the LAA

and the LA, the volume of the LAA and the LA, and the LAA

depth were measured. The LAA base opening was observed using

multi-plane reconstruction technology (MPR).

Measurement of LA and LAA parameters: Three planes of the

heart were obtained on the Philips EBW 4.5 workstation. Initially,

the thickness of the myocardium at the junction of the LAA and

the LA was measured on multiple consecutive cross-sectional

plane images (Figures 1A–C). The thickest layer of the

myocardium was identified at the isthmus of the LAA.

(Figure 1A) (23). Then, by positioning the marker on the

thickest myocardium on the cross-sectional plane image, the

marker automatically placed on the corresponding location on

the sagittal image (Figure 1D). Finally, it was verified on the

sagittal image to ensure the thickest layer of the myocardium.

The long diameter, short diameter, area, and circumference of

the opening of the LAA were measured. Find the maximum plane

at the junction of the LAA and the LA in the coronal plane,

perpendicular the positioning line to the junction of the LAA

and the LA (Figure 2A). Then, on the sagittal plane image,

perpendicular the positioning line to the junction of the LAA

and the LA (Figure 2B). Utilizing the MPR technique and finally a

cross-sectional image of the LAA opening was obtained (Figure 2C).
e LA. (A–C) three consecutive cross-sectional images of myocardium at
on three layers was measured, and Figure 1A was determined to be the

layed the thickest part of the myocardium, indicated by the crossroads. It
tioned cross-section.
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FIGURE 2

Measurement of LAA opening. (A) A coronal image of the LAA opening. The red line was along the plane of the LAA opening. (B) A sagittal image of the
LAA opening. (C) A transverse image of the LAA opening.

FIGURE 3

Measurement of the long diameter, short diameter, circumference, and area of the LAA opening. (A) On the plane depicting the LAA opening in
Figure 2C, the longest diameter of the LAA opening was measured, and a line segment perpendicular to it was drawn to represent the short
diameter of the LAA opening. (B) On the same image of A, the circumference and area of the LAA opening was automatically calculated by
outlining the opening of the LAA.

Wei et al. 10.3389/fcvm.2024.1442155
The long diameter, short diameter, area, and circumference of the

LAA base opening were measured on this cross-sectional image of

the LAA opening (Figure 3).

Measurement of LAA and LA volumes. The CCA software

automatically calculates the total volume of the LA and LAA

(Figure 4A). Subsequently, the LAA was isolated by segmenting

it at the root. The root of the LAA refers to the narrow region or

base connecting the LAA to the main body of the LA. The root

of the LAA was defined as the site of reflection of this structure

with the surrounding LA wall (24). After that, the volume of the

LAA was obtained automatically (Figure 4B), and the volume of

the LA was calculated by subtracting the volume of the LAA

from the total volume.

Measurement of the LAA depth diameter. The distance

from the farthest point of the LAA tip to the center of the
Frontiers in Cardiovascular Medicine 04
LAA opening plane was measured on a separate 3D image of the

LAA (Figure 4B).
2.5 Radiomics feature extraction

In this study, the 3D-slicer software was utilized to delineate

region of interest (ROI) on five or six consecutive axial images,

which optimally visualized the myocardium at the junction of

the LAA and LA. The center of ROI was designated as the

junction point of the LAA and LA. Subsequently, the ROI was

extended 1 cm along both sides of the LAA and LA, and the

myocardium within this specified range was outlined (Figure 5).

Following ROI delineation, the Python software, specifically the

Pyradiomics package, was employed to extract radiomics features
frontiersin.org
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FIGURE 4

Measurement of LAA volume, LA volume, and LAA depth. (A) The post-processing software automatically calculate the volume of the LAA and the LA.
LAA was segmented at the connection between the LAA and the LA. (B) LAA was obtained separately. The length from the tip of the LAA to the
midpoint of the LAA opening was measured as the depth of the LAA.

FIGURE 5

ROI delineation. On the axial image of cardiac CT, the myocardium
at the junction of the LAA and the LA is delineated (green). The
length of ROI was 1 cm in total.

Wei et al. 10.3389/fcvm.2024.1442155
and generate a dataset. For each patient, 112 radiomics features

were extracted, encompassing first-order features, shape features,

Gray Level Co-occurrence Matrix (GLCM) features, Gray Level

Size Zone Matrix (GLSZM) features, Gray Level Run Length

Matrix (GLRLM) features, and neighboring gray level

dependence matrix (NGLDM).
Frontiers in Cardiovascular Medicine 05
2.6 Radiomics feature selection and model
establishment

LASSO is used to select the most predictive radiomics features

by reducing the regression coefficients of certain variables to zero

through regularization penalties, thereby eliminating less

important features (16, 25, 26). The PyRadiomics toolkit

facilitates feature extraction and selection. Start by normalizing

the data and then randomly split it into training and testing sets

in a 7:3 ratio. Use the T-test and LASSO algorithms within the

toolkit to perform dimensionality reduction on the normalized

radiomics training data. From this analysis, select the radiomics

feature with the highest predictive value, construct a radiomics

signature based on the final selected feature, and generate

radiomics scores (Rad scores) for each patient by weighting the

selected feature values by their corresponding non-zero

coefficients. Next, construct a radiomics feature model using

random forest and support vector machine (SVM) classifiers.

10-fold cross-validation was performed on the training set (97

samples) to find the most appropriate parameters.

J(w) ¼ 1
m

Xm

i¼1

(yi � wTxi)
2 þ l

Xm

i¼1

jwij

*note: Cost Function. Yi, prediction result; Xi, corresponds to each

eigenvalue of Yi; Wi, corresponds to the coefficient of

each eigenvalue.

Calculate radiomics score:

Radiomics Score = β0 + β1X1 + β2X2 + β3X3 + .. + βnXn

*note: In the above formula, Xn represents the radiomics feature

value with the most predictive value screened out in the
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LASSO regression model, and βn is the corresponding weighting

coefficient of the corresponding radiomics feature in this

regression model. The radiomics score of each patient can be

calculated based on this formula.

3 Statistical analysis

All data were statistically processed using SPSS 21.0 statistical

software, with econometric data presented as mean ± standard

deviation for normality and median (interquartile range) for

non-normality. Count data were described statistically using

composition ratios. Statistical comparisons were conducted

between the measurement data of the AF group and the control

group. The measurement data underwent two independent

sample t-tests for normality and homogeneity of variance, while

the Mann-Whitney U rank sum test was used for non-

normality or heterogeneity of variance; count data underwent

chi-square tests. For confounding factors, a multiple factor

logistic regression analysis was conducted to determine their

degree of influence, with a P < 0.05 indicating a statistically

significant difference. Separate correlation analyses were

conducted between LA volume, onset time of AF, and the

myocardial thickness at the junction of LAA and LA.

Univariate logistic regression analysis was carried out on the

statistical clinical data, selecting feature variables with P < 0.05,

and establishing a multivariate logistic regression model.

A nomogram was employed to evaluate the combination of

radiomics and clinical features model for the risk of AF. The
FIGURE 6

Flowchart of patient recruitment and study design. AF, Atrial fibrillation.
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performance of the nomogram was assessed by calibrating the

curve and the area under the ROC curve (AUC). Finally, a

decision curve was used to evaluate the clinical benefit of the

model. R Studio program was utilized to draw nomograms,

calibration curves, and decision curves.
4 Results

4.1 Comparison of clinical data between the
AF group and control group

This study initially involved 90 patients with AF and 65

patients in the control group. Due to poor image quality and

other reasons, 8 or 9 patients were excluded from each group,

respectively. Consequently, a total of 82 patients were enrolled in

the AF group and 56 patients were enrolled in the control

group (Figure 6).

The clinical data of patients with AF and control group were

compared. The patients with AF were older than the control

group (Z/T =−3.03, P = 0.004). There were more cases of

hypertension in the AF group than the control group

(Z/T = 9.82, P = 0.002). BMI was slightly higher (Z/T = 3.21,

P = 0.002) and NLR (Z/T =−4.79, P < 0.001) was lower in the

AF group. The CHA2DS-VASC score (Z/T =−5.51, P < 0.001)

was much higher in the AF group.In this study, patients with

AF were older, had a high prevalence of hypertension, larger

BMI, higher CHA2DS-VASC score and lower NLR. In the
frontiersin.org
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meanwhile, there was no statistical difference in gender

and diabetes between the AF group and the control group

(P≥ 0.05) (Table 2).
4.2 Comparison of LAA morphological
parameters and LA volume between the AF
group and the control group

The results showed that the AF group had a larger LAA

opening area (P = 0.001), circumference (P < 0.001) than the

control group and the short diameter (P < 0.001), long diameter

(P = 0.002) are also longer. The LAA volume (P = 0.001), LA

volume (P < 0.001) are also larger, and the myocardial thickness

at the junction of LAA and LA(P < 0.001) was thicker than the

control group.The LAA opening area, circumference, long and

short diameter, myocardial thickness, the LAA and LA volume in

patients with AF were all larger than those in the control group.

The LAA was prone to involvement when AF occurred. There

was no significant difference in LAA depth between the two

groups (P > 0.05) (Table 3).
TABLE 2 Comparison of clinical data between the AF group and the
control group.

Variable
AF group Control

group
Z/T P

Age (years)* 65.00 (59.0,
70.0)

61.09 ± 7.18 −3.03 0.004

Male, n (%) 44 (53.7%) 21 (37.5%) 3.82 0.51

Hypertension, n (%)* 59 (72.0%) 25 (44.6%) 9.82 0.002

Diabetes, n(%) 25 (30.4%) 12 (21.1%) 0.286 0.593

BMI* 26.98 ± 3.51 25.11 ± 3.09 3.21 0.002

Time of onset of AF 359 (333, 439.3) / / /

CHA2DS-VASC
score*

4.00 (2.00, 5.00) 1.36 (1.00, 3.00) −5.51 P < 0.001

NLR* 1.49 (1.37, 1.62) 2.61 (1.43, 3.62) −4.79 P < 0.001

*P < 0.05.

TABLE 3 Comparison of LAA morphological parameters and LA volume
between the AF group and the control group.

Variable
AF group Control

group
P

LAA opening area (mm2)* 354.40 (260.35,
462.15)

291.60 ± 91.93 0.001

LAA opening circumference
(mm)*

70.63 ± 13.95 63.30 ± 9.43 P < 0.001

LAA opening short diameter
(mm)*

18.90 (15.25, 21.95) 16.11 ± 3.20 P < 0.001

LAA opening long diameter
(mm)*

26.29 ± 5.01 23.89 ± 3.52 0.002

LAA depth (mm) 38.5 (35.18, 42.43) 37.13 ± 4.69 0.79

myocardial thickness (mm)* 6.85 (6.00, 8.53) 5.93 ± 1.37 P < 0.001

LAA volume (mm3)* 7.45 (5.57, 10.00) 5.90 (4.70, 7.60) 0.001

LA volume (mm3)* 102.30 (75.35,
131.60)

71.50 ± 14.15 P < 0.001

*P < 0.05.
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4.3 Multivariate logistic regression of
parameters between the AF group and the
control group

In Table 4, B is the Beta coefficient, indicating the direction and

magnitude of the relationship between each predictor and the

outcome. A positive B value represents a positive correlation,

while a negative B value represents a negative correlation. Odds

Ratio (OR) quantifies the strength and direction of the

association between each predictor and the likelihood of the AF.

Multivariate analysis revealed that BMI (P = 0.046), the

myocardial thickness at the junction of LAA and LA (P = 0.017),

LA volume (P = 0.004), NLR (P = 0.001), and CHA2DS-VASC

score (P = 0.029) demonstrated statistically predictors of AF.

BMI: Each 1 kg/m2 increase was associated with a 1.250-fold

increase in the likelihood of AF. Myocardial Thickness: Every

1 mm increase at the junction of the LAA and LA increased AF

risk by 1.922 times. LA Volume: Each 1 mm3 increase was linked

to a 1.060-fold higher risk of AF. NLR: Every 1-unit increase in

NLR was associated with a 0.079-fold decrease in AF risk.

CHA2DS2-VASc Score: Each additional point was linked to a

2.261-fold increase in AF risk (Table 4).
4.4 Comparison of Rad-score between the
AF group and the control group

The results showed that the AF group had a low score

(P < 0.001) (Table 5).
4.5 Correlation analysis between LA volume,
onset time of AF and the myocardial
thickness at the junction of LAA and LA

There was a significant positive correlation between LA volume

and the myocardial thickness at the junction of LAA and LA

(P = 0.001). The myocardial thickness did not correlated with AF

onset time (P > 0.05) (Table 6).
TABLE 4 Multivariate logistic regression analysis of different parameters
in the AF group and the control group.

B OR P
Age −0.062 0.940 0.266

Hypertension −0.150 0.860 0.839

BMI* 0.223 1.250 0.046

LAA opening area −0.006 0.994 0.734

LAA opening circumference −0.308 0.735 0.052

LAA opening short diameter 0.486 1.627 0.102

LAA opening long diameter 0.437 1.549 0.125

Myocardial thickness* 0.653 1.922 0.017

LAA volume 0.309 1.362 0.152

LA volume* 0.059 1.060 0.004

CHA2DS-VASC score* 0.816 2.261 0.029

NLR* −2.533 0.079 0.001

*P < 0.05.
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TABLE 5 Comparison of Rad-score between the AF group and the
control group.

AF group Control group Z P
Rad-score 75.33 (53.14, 98.70) 130.3964 ± 5.47 −5.901 P < 0.001

TABLE 6 Correlation between LA volume, onset time of AF and myocardial
thickness at the junction of LA and LAA.

Variable LA volume* P AF onset time P
Myocardial thickness 0.324 0.0001 0.079 0.356

*P < 0.05.

*AF onset time was defined as follows: if the patient did not receive radiofrequency ablation

treatment, the AF onset time was calculated from the diagnosis time to the cardiac CT time; if
the patient received radiofrequency ablation treatment, the AF onset time was calculated from

the diagnosis time to the treatment time point.

Wei et al. 10.3389/fcvm.2024.1442155
4.6 Radiomics feature extraction of the
myocardium in patients with AF

One hundred and twelve candidate radiomic features were

extracted of each patient. After the features were normalized, the

LASSO regression was used for feature selecting. Through

LASSO regression, suitable variables were selected from 112

radiomics features, and the prediction effect was best when λ

reached the minimum. A total of 14 variables (Table 7) were

selected from all of the radiomics features Figure 7.

Some values obtained from the PyRadiomics library are

redundant. lt is important to eliminate such redundant features

prior to the machine learning and feature selection processes. As

a result, two of these redundant parameters are among the 14

important features identified by their predictive model and

regularization term. One is Unname, and the other is

diagnostics-Image-original_Mean. They represented radiomics

features of raw data, instead of myocardial features.
5 Building predictive models

Three predictive models were established to predict AF,

including a model driven by clinical features, a radiomics model

and a combined model integrating radiomics with clinical features.
TABLE 7 Variable name and weight value.

Variable Feature Weight
original_shape_Maximum2DDiameterRow feature1 −0.005
original_shape_Maximum3DDiameter feature2 −0.022
original_shape_MinorAxisLength feature3 −0.158
original_shape_SurfaceVolumeRatio feature4 0.024

original_firstorder_Kurtosis feature5 −0.01
original_glcm_Autocorrelation feature6 0.023

original_glcm_Imc2 feature7 −0.083
original_glcm_JointEntropy feature8 0.027

original_glcm_MaximumProbability feature9 −0.027
original_glrlm_RunLengthNonUniformity feature10 0.138

original_glszm_ZoneEntropy feature11 0.011

original_ngtdm_Complexity feature12 0.001

Unname feature13 −0.014
diagnostics-Image-original_Mean feature14 0.019
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5.1 The predictive model based on
clinical data

Supported by univariate and multivariate logistic regression

analysis, BMI, LA volume, the myocardial thickness at the

junction of LAA and LA, NLR, and CHA2DS-VASC score were

found to be associated with the occurrence of AF. R studio

software was used to establish a clinical multivariate logistic

regression model (As shown in the following code).

lrm(group∼ NLR + BMI + LAV + thickness + C, data = training_

dataset, x = TRUE, y = TRUE,maxit = 1,000)

*note: lrm() is used to construct the logistic model function,

Constructing a logistic regression model by incorporating

risk factors (NLR, BMI, LAV, thickness, C) that have an

impact on AF.
5.2 Radiomics score

The Radiomics score was calculated by the feature values of the

selected 12 feature variables multiplied with their corresponding

weights, and then added together. Steps: (1) The feature values

were obtained as followings: after drawing the regions of interest

(ROI) on myocardium of each patient, Pyradiomics feature

extractor was used to extract features, and the values of features

were showing simultaneously. In the formula, the values of

Feature n(n = 1,2,3..,12) is varied from person to person. (2) 14

features were selected with their weights by LASSO. Because of

the data redundant, only 12 features remained. These values of

12 features were multiplied with their corresponding weights,

which were also called coefficients (shown in Figure 8). (3) They

were added together to calculate the radiomics score.

It was found that the Radiomics score of the AF group was

lower than that of the control group. The predictive power of

Radiomics score for reflecting radiomics model is 0.825.

Radiomics score formula:

Rad-score =−0.005*feature1- 0.022*feature2 −0.158*feature3 + 0.024

*feature4 −0.010*feature5 + 0.023*feature6 −0.083*feature7
+ 0.027*feature8 −0.027*feature9 + 0.138*feature10 + 0.011

*feature11 + 0.001*feature12
5.3 Establishment of a model based on a
combination of radiomics and clinical
features

A predictive model for AF was established by combining BMI,

LA volume, the myocardial thickness at the junction of LAA and

LA, NLR, CHA2DS-VASC score, and radiomics score. The model

was ultimately presented in a nomogram (Figure 9). The

nomogram establishes variable scales based on the weights of the

regression coefficients for all independent variables. It connects

each known variable through contour lines, assigns corresponding

scores to each independent variable, and calculates a total score by
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FIGURE 7

LAASO regression model dimensionality reduction. Lambda(λ) in the shrinkage coefficient represented the adjustment parameter. The vertical axis
represented the mean square error, and the horizontal axis represents λ.
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summing up the scores of each variable. The patient’s total score is

then located on the total score axis. Drawing a line perpendicular to

the risk probability axis from this point provides the estimated risk of

the patient experiencing the event. This study will use multivariable

logistic stepwise regression analysis to construct a nomogram based

on radiomic features and clinical risk factors, which visually displays

the range of variable values and their contributions to the risk,

making the results of the prediction model more interpretable.
5.4 Comparison of predictive models

The radiomics model, the clinical feature model and the

combined model were compared, respectively. The combined

model, which integrates radiomics with clinical features, achieved

a higher AUC (0.869) compared to the radiomics model

(AUC = 0.825) and the clinical features model (AUC = 0.848).

ROC curves for the radiomics model, the clinical features model

and the combined model were obtained (Figure 10). The

accuracy, specificity and sensitivity of the combined model,

which integrates radiomics with clinical features model are 0.88,

0.82, 0.92 (Table 8).
5.5 Calibration curve

Calibration curves for the model based on a combination of

radiomics and clinical features showed good fit between

prediction and observation of AF in the training and test

sets (Figure 11).
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5.6 Decision curve

The decision curve demonstrated the clinical utility of the

model based on a combination of radiomics and clinical features

by comparing the net benefits across various threshold

probabilities in both the training and testing sets. The curve

indicated that the model yielded substantial net benefits,

representing its effectiveness (Figure 12).
6 Discussion

This article investigated radiomic features extracted from the

myocardium at the junction of the LAA and LA to establish

predictive models. Three models were developed: a radiomics

model of the myocardium at the junction of the LAA and LA, a

clincal feature model and a combined model incorporating both

radiomic and clinical features. The combined model superiorly

predicted the risk of AF. This represents a novel endeavor,

monitoring AF by observing the myocardium. Multivariate

analysis was conducted to exclude confounding factors, revealing

that BMI, myocardial thickness at the junction of the LAA and

LA, LA volume, NLR, and CHA2DS-VASC score were

independent risk factors for AF. In contrast, age, hypertension,

LAA circumference, LAA ostium area, and LAA ostium long/

short diameter showed no association with AF, consistent with

previous studies (27). We found that although LAA volume

related with AF, it is not an independent factor for AF. The

reason might be that hypertension patients were enrolled in both
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FIGURE 8

Selected features and weights. Fourteen features were extracted, which were showed on X-axis. The weights of features were displayed on Y-axis. The
positive or negative weights indicate positive or negative correlation with AF.

FIGURE 9

The nomogram of a predictive model combining radiomics and clinical features.
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FIGURE 10

The ROC curve. (A) The ROC curve of the radiomics model; (B) The ROC curve of the clinical feature model; (C) The ROC curve of the model
combining radiomics and clinical features.

TABLE 8 Accuracy, specificity and sensitivity of the three models.

Radiomics model Clincal feature model Model combining radiomics
and clinical feature

Training Testing Training Testing Training Testing
Accuracy 0.91 0.83 0.84 0.85 0.87 0.88

Specificity 0.93 0.91 0.87 0.76 0.92 0.82

Sensitivity 0.86 0.74 0.81 0.91 0.83 0.92

Wei et al. 10.3389/fcvm.2024.1442155
groups, and hypertension caused increasing of the volume of the

LA and LAA. Some studies have shown that the LAA is more

sensitive to hypertension (28). NLR is associated with AF,

which is consistent with the Lu M study (29). Furthermore,
Frontiers in Cardiovascular Medicine 11
the CHA2DS-VASC score is associated with stroke caused

by AF (24).

Researches have indicated that AF patients commonly exhibit

extensive fibrosis in the myocardium of the LAA, accompanied
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FIGURE 11

Calibration curves of combining radiomics and clinical features. When the solid line (predicted situation) is closer to the dashed line (actual situation),
the calibration effect of the model is better.

FIGURE 12

Decision curve. The Y-axis represents the net benefit and the X-axis represents the threshold probability. The gray curve represents the hypothesis that
all patients develop AF events, and the black curve represents the hypothesis that no patients develop AF.
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by myocardial fiber degeneration, elongation of myocardial cell

sarcomeres, increased intercellular matrix, and collagen

production, leading to a reduction in LAA and LA emptying

fraction (30). These alterations are believed to contribute to

radiomic characteristics (31). Our study leveraged radiomics to
Frontiers in Cardiovascular Medicine 12
extract myocardial characteristics and to evaluate subtle changes

within the myocardium. In the formula of Rad-score, the larger

coefficients were associated with the feature 10 and feature

3. The feature 10 was the Run Length Non Uniformity, which

indicated potential fibrosis of the myocardium. The feature 3 was
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the Minor Axial Length, which indicated the shape of myocardium

at the junction of the LAA and LA changed in AF patients.

Therefore, radiomic model can identify fibrosis and

morphological change of myocardium. The AUC of the radiomic

feature model to predict AF was 0.825. Rad-score is a

comprehensive index of radiomics features, which combines

multiple radiomics features into one value to predict AF. The

lower of the Radcore, the higher the risk of AF.

The nomogram showed that the thicker the myocardium and

the larger volume of the LA, the lower the radiomics score, the

higher the risk of AF. ROC curve analysis confirmed the model,

based on both radiomics features and clinical factors, can

effectively predict AF. The Calibration curves and the decision

curve indicated that the model exhibited a good predictive capability.

We found that there is a correlation between LA volume and

the myocardial thickness at the junction of LAA and LA, while

there is no correlation between the onset time of AF and

myocardial thickness. When evaluating myocardial changes in

AF patients, we may need to consider changes in LA volume

rather than the onset time of AF.

The reproducibility and robustness are important for a imaging

research. To ensure the reproducibility, we followed standardized

protocols and methodologies as mentioned in “Methods” section.

Pre-training and discussion between observers when they had

different opinions are helpful to obtain consistent results. To

ensure the robustness, we enrolled patients with high quality

images with same CT protocols.
7 Limitations

This study only included cases from one center, lacking multi

center and large sample size for dataset training and validation.

Nonetheless, the study underscores the potential predictive value

of CT radiomics, particularly based on myocardial thickness at

the junction of LAA and LA, in assessing the risk of AF.
8 Conclusions

We have demonstrated the feasibility of using myocardial

radiomics features at the junction of LAA and LA to predict

the risk of AF. The Rad score of the AF group was lower than

that of the control group. The lower the Rad score, the higher

the risk of AF. The combination of clinical features and

myocardial radiomics features has superior predictive capability

of AF, providing reliable evidence that radiomic features of

the myocardium at the junction of the LAA and LA might

predict AF.
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