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DEPDC1B, CDCA2, APOBEC3B,
and TYMS are potential hub
genes and therapeutic targets for
diagnosing dialysis patients with
heart failure
Wenwu Tang1,2†, Zhixin Wang1†, Xinzhu Yuan1†, Liping Chen3,
Haiyang Guo4, Zhirui Qi4, Ying Zhang1 and Xisheng Xie1*
1Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College,
Nanchong, China, 2Department of Nephrology, Guangyuan Central Hospital, Guangyuan, China,
3Psychiatry Major, North Sichuan Medical College, Nanchong, China, 4College of Clinical Medicine,
North Sichuan Medical College, Nanchong, China
Introduction: Heart failure (HF) has a very high prevalence in patients with
maintenance hemodialysis (MHD). However, there is still a lack of effective and
reliable HF diagnostic markers and therapeutic targets for patients with MHD.
Methods: In this study, we analyzed transcriptome profiles of 30 patients with MHD
by high-throughput sequencing. Firstly, the differential genes between HF group
and control group of patients with MHD were screened. Secondly, HF-related
genes were screened by WGCNA, and finally the genes intersecting the two
were selected as candidate genes. Machine learning was used to identify hub
gene and construct a nomogram model, which was verified by ROC curve and
RT-qPCR. In addition, we further explored potential mechanism and function of
hub genes in HF of patients with MHD through GSEA, immune cell infiltration
analysis, drug analysis and establishment of molecular regulatory network.
Results: Totally 23 candidate genes were screened out by overlapping 673
differentially expressed genes (DEGs) and 147 key module genes, of which four
hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two
machine learning algorithms. Through GSEA analysis, it was found that the four
genes were closely related to ribosome, cell cycle, ubiquitin-mediated proteolysis.
We constructed a ceRNA regulatory network, and found that 4 hub genes (TYMS,
CDCA2 and DEPDC1B) might be regulated by 4 miRNAs (hsa-miR-1297, hsa-miR-
4465, hsa-miR-27a-3p, hsa-miR-129-5p) and 21 lncRNAs (such as HCP5, CAS5,
MEG3, HCG18). 24 small molecule drugs were predicted based on TYMS through
DrugBank website. Finally, qRT-PCR experiments showed that the expression trend
of biomarkers was consistent with the results of transcriptome sequencing.
Discussion: Overall, our results reveal the molecular mechanism of HF in
patients with MHD and provide insights into potential diagnostic markers and
therapeutic targets.
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Abbreviations

HF, heart failure; MHD, maintenance hemodialysis; WGCNA, weighted gene co-expression network
analysis; ROC, receiver operating characteristic; RT-qPCR, real-time quantitative PCR; GO, gene
ontology; KEGG, Kyoto encyclopedia of genes and genomes; GSEA, gene set enrichment analysis; CKD,
chronic kidney disease; Lasso, a binary logistic regression model of minimum absolute contraction and
selection operator; SVM-RFE, support vector machine for feature selection; GAPDH, glyceraldehyde 3-
phosphate dehydrogenase; PBMC, peripheral blood mononuclear cell; ceRNA, competing endogenous RNA.
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1 Introduction

Chronic kidney disease (CKD) and heart failure (HF) often

coexist. About 50% of HF patients have CKD at the same time

(1, 2). Compared to the general population, patients with CKD

have a higher prevalence of heart failure, which increases with

deteriorating kidney function, especially in maintenance

hemodialysis patients, with an incidence rate as high as 44%

(2, 3). It is the second most frequent cardiovascular disease,

accounting for 10.2% of all MHD-related cardiac deaths. The

cardiovascular fatality rate for MHD patients is as high as 50%

(4, 5). Like the general population, patients with MHD suffer

form customary risk factors such as diabetes and hypertension,

but it is inadequate to account for the increased incidence and

mortality rate of HF in this group (6–8). Altered bone mineral

metabolism, anemia and uremic toxin accumulation caused by

renal function decline are closely related to HF (9). In addition,

MHD treatment, which was originally used to maintain the

patient’s life, also increased the risk of HF, such as rapid
changes in hemodynamics and electrolyte composition,

myocardial injury caused by inadequate dialysis (6, 7, 10).

Although numerous studies have comducted molecular research

and employed bioinformatics technology to investigate HF in

ordinary patients, there was a lack of information on the role

of hub genes and potential molecular mechanisms for patients

with MHD (11–13). This study aimed to investigate the

biological processes implicated in pivotal genes of patients with

MHD in the HF phase specifically via transcriptome

sequencing, yielding novel perspectives the clinical diagnosis

and treatment of such patients.

Due to varying degrees of volume overload affecting HF

symptoms and signs, biomarkers and imaging examinations in

MHD patients, were affected by volume overload to varying

degrees, diagnosis of HF in this population remain challenging

(14, 15). HF in patients with MHD was mainly treated by drugs

and intensive hemodialysis, but traditional drugs did not

effectively attenuate the progression of HF. In recent years,

numerous studies had confirmed the efficacy of angiotensin

receptor neprilysin inhibitors and Sodium-glucose cotransporter

2 inhibitors in controlling heart failure symptoms and improving

myocardial remodeling. Unfortunately, most studies excluded the

special population of patients with MHD, so there was still a lack

of evidence on the efficacy and safety of drugs in this population

(14, 15). Therefore, it was urgent to explore the characteristic

genes closely related to HF in patients with MHD, in order to

provide a better choice for the early diagnosis and treatment of

HF in this population.

We used transcriptome sequencing technology to explore the

transcriptome characteristics of HF in patients with MHD,

screened hub genes, and the biological function of immune cells

linked to hub genes is subsequently examined. After that, we

performed real-time quantitative PCR (qRT-PCR) on peripheral

blood samples of dialysis patients without HF and dialysis

patients with HF human in order to validate our hypotheses. It

provided a new reference for the diagnosis and treatment of HF

in patients with MHD.
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2 Material and methods

2.1 Sample preparation and processing

Peripheral blood mononuclear cell (PBMC) samples of 15

dialysis patients without heart failure (Normal) and 15 dialysis

patients with heart failure (Case) human were collected for

mRNA transcriptome sequencing. RNA was isolated and purified

from the total samples using TRlzol (invitrogen, CA,USA)

according to the manufacturer’s protocol. NanoDrop ND-1000

(Wilminton, DE, USA) was used to detect purity and

concentration of total RNA. The fragmented RNA was

synthesized into cDNA by reverse transcriptase, and the cDNA

was amplified and purified. Building the library and prepared for

sequencing on the illumina Novaseq 6000 sequencing platform.

After the inferior-quality reads were deleted, the cleanreads were

aligned into the human genomic reference (GRCh38_

gencode_v33) by HISATI (16).
2.2 Data processing and differential
expression genes (DEGs) screening

DEGs between Case and Normal were identified using R-

package DESeq2 with the standard of P.value < 0.05 and |

log2FoldChange (FC)| > 1. The R-package “ggplot2” was utilised to

create a volcano map, displaying differential genes with

indication of the top 10 increased and decreased gene. All

differential genes were sequenced according to log2FC, and

expression heat map was drawn using the R package

“ComplexHeatmap” (17).
2.3 Weighted gene co-expression network
analysis (WGCNA)

The “WGCNA” package in R was used to construct the co-

presentation network. First, the outlier samples were removed

through the clustering analysis, and the weighted coefficient β

was determined according to the scale-free network principle.

Then, the modules were detected using the tree cutting algorithm

and then calculate the correlation between the module and the

disease. The module displaying the strongest correlation with the

disease was designated as the pivotal module, and the genes

within the module were identified as the pivotal module genes

(18). The module’s hub genes were overlaid with DEGs to obtain

candidate genes.
2.4 Functional enrichment

To investigate the pathways and functions of the identified

candidate genes, we conducted the Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis using the “clusterProfiler” package (19). Any

result with a P.adjust < 0.05 was deemed statistically significant.
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The R package “GOplot” was used to plot the chordal graph in

regard to the most significantly enriched GO items and

KEGG pathway.
2.5 Acquisition of hub genes

To further identify hub genes, we used Lasso and SVM-RFE

algorithms to screen candidates Using the “Glmnet” package of R

language, a binary logistic regression model of minimum absolute

contraction and selection operator (Lasso) was executed for

candidate hub genes screening. Meanwhile, candidate genes were

screened using recursive feature elimination by support vector

machine for feature selection (SVM-RFE) via the “caret” package

in the R language. The results of the two machine learning

algorithms were intersected to obtain the hub genes, and the

diagnostic value of the hub genes to gene was evaluated by

receiver operating characteristic (ROC) curve. Moreover, to

forecast the occurrence of heart failure following dialysis, we

utilised the “RMS” package of the R language to create a

nomogram featuring significant genes by logistic regression.
2.6 Gene set enrichment analysis (GSEA)

According to the median amount of hub gene expression, the

samples were divided into two groups, one with high gene

expression and the other with low gene expression. Difference

analysis is performed by “limma”, sequencing genes according to

their logFC values. The KEGG gene set was obtained from the

MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/),

and it was employed as the background set for GSEA. The top

five pathways were visualized by enrichplot package of R (20).
2.7 Immune infiltration analysis

Enrichment scores for 28 immune infiltrating cell types were

calculated using gene expression data based on ssGSEA

algorithm within the R package “GSVA”. Heat maps were used to

visualize the results. The difference between the Case and

Normal groups was determined (P.value < 0.05), and the

relationship between various immune cells and hub genes was

assessed using Spearman correlation analysis through “psych”.
2.8 Competing endogenous RNA (ceRNA)
regulatory network

The miRNAs targeting hub genes were predicted using miRDB

and TargetScan database, and cross-over miRNAs were obtained.

lncRNAs targeting cross miRNAs were predicted using miRanda

and StarBase databases. The mRNA-miRNA-lncRNA regulatory

network was constructed based on the obtained cross miRNAs,

mRNAs, and lncRNAs (21).
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2.9 Drug prediction

The DrugBank library was used to predict the small molecule

drugs corresponding to hub genes, and the relationship between

hub genes and drugs was visualized with Cytoscape software (22).
2.10 Real-time fluorescence quantitative
PCR (Rt-qPCR)

Ten peripheral blood samples of patient with dialysis patients

with and without heart failure were obtained from Nanchong

Central Hospital with their knowledge and consent. This study

was approved by Medical Ethics Committee of Nanchong

Central Hospital. Total RNA has been purified with TRIZol

(Thermo Fisher, Shanghai, CN), which was then used to inverse-

transcribe mRNA into cDNA. Thereafter, qPCR analysis was

carried out using 2xUniversal Blue SYBR Green qPCR Master

Mix, and the PCR primer design is available in Supplementary

Table S1. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

was utilised as the internal reference gene, whilst the expression

levels of pivotal genes were measured using the 2−ΔΔCt method.
2.11 Statistical analysis

All statistical analyses were conducted using R software. The

Wilcoxon test was used to compare the differences between two

groups, with a significance level of P.value < 0.05 applied unless

otherwise specified.
3 Results

3.1 Differential expression analysis

The analysis revealed that a total of 673 DEGs meeting the

thresholds of P.value < 0.05 and |log2FC| > 1 (Supplementary

Table S2) were singled out, including 524 up-regulated genes and

149 down-regulated genes (Figure 1A). The top 10 up-regulated

and down-regulated genes were labeled in the volcano map

(Figure 1A). As can be seen in the heat map, there

were significant differences between the disease and normal

samples (Figure 1B).
3.2 Acquisition and enrichment analysis of
candidate genes

In order to screen genes associated with disease, 28 samples

were analyzed by WGCNA. The clustering analysis results

showed that there were no outliers among the 28 samples

(Figure 2A), and the scale-free network was constructed by

determining the soft threshold β = 6 (Figure 2B). These genes

were clustered into several modules and partitioned with

different colors. Finally, 15 different modules were identified
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FIGURE 1

Identification of differential expression genes (DEGs) between case and normal groups. (A) Volcano plot of DEGs, with red dots signifying up-regulated
genes, green dots representing down-regulated genes, and gray dots indicating undifferentiated genes. (B) Heat map of DEGs. The upper section
presents a heat map illustrating the expression density of DEGs. It displays the lines representing the five quartiles and the mean expression levels.
The lower section showcases a heat map depicting the expression of all DEGs.
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(Figure 2C). In order to determine the correlation between

phenotype and modules, a correlation analysis was performed. It

was found that the tan module was highest positively correlated

with Case (Cor = 0.42) (Figure 2D) containing 147 genes

(Supplementary Table S3), which were related to the

development of heart failure in dialysis patients.

Twenty-three intersection genes of DEGs and Case-related

module genes was obtained as candidate genes, like KLHL14,

DEPDC1B, CDCA2, ALDH1L2, APOBEC3B, TP73, TSHR, TTK,

TYMS (Figure 3A). In order to analyze the biological pathways

involved in candidate genes, candidate gene GO and KEGG

enrichment analysis was carried out. After screening, the

candidate genes were enriched in 37 GO biological functions

(Supplementary Table S4), of which 9 candidate genes

(BHLHA15, BHLHE41, ALDH1L2, CDCA2, CDC6, TYMS,

NEK2, GTSE1, TTK) were enriched in the top 10 biological

processes (GO:BP), such as cylindrical/cubic epithelial cell

maturation, negative regulation of myoduct differentiation,

tetrahydrofolate metabolism, epithelial cell maturation, mitotic

cell division regulation (Figure 3B). Four candidate genes

(ALDH1L2, PYCR1, CDC6, MCM10) were enriched in three

molecular functions (GO:MF), including DNA replication

starting point binding, REDOX activity—donor NAD or NADP

acting on the CH-NH group as a receptor, REDOX activity—

acting on the donor CH-NH group (Figure 3C). For example,

TYMS was involved in the maturation of columnar/cubic

epithelial cells, tetrahydrofolate metabolism, epithelial cell

maturation, and the metabolism of folate-containing compounds.
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Additionally, these genes were found to be involved in One

carbon pool by folate, Cell cycle, Maturity onset diabetes of the

young, Antifolate resistance, Circadian rhythm, p53 signaling

pathway (Figure 3D).
3.3 Hub genes in the process of heart failure
after dialysis

To identify hub genes in dialysis patients with heart failure, the

Lasso and SVM-RFE algorithms have been used for selection. Five

characteristic genes were obtained using Lasso algorithm, including

DEPDC1B, CDCA2, RGS16, APOBEC3B and TYMS (Figures 4A,B).

Eight characteristic genes, TYMS, CDC6, DEPDC1B, APOBEC3B,

CDCA2, GTSE1, TTK and KLHL14, were obtained by SVM-RFE

algorithm (Figure 4C). The results of Lasso and SVM-RFE were

combined to obtain four hub genes (DEPDC1B, CDCA2,

APOBEC3B, and TYMS) (Figure 4D).

In order to obtain the diagnosis value of four hub genes for

Case, ROC curves of single genes were drawn, and it was found

that all four hub genes had suitable diagnostic value for dialysis

with heart failure (AUC > 0.8) (Figures 4E–H). Besides, the

expressions of DEPDC1B, CDCA2, APOBEC3B, and TYMS were

considerably greater in Case samples compared to Normal

samples (Figure 5A).

To forecast the likelihood of heart failure following dialysis, a

nomogram was constructed based on four hub genes (Figure 5B).

Calibration curves showed that the nomogram model could
frontiersin.org
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FIGURE 2

Weighted gene co-expression analysis (WGCNA) based on the 28 samples. (A) Sample hierarchical clustering. (B) Analysis of the scale-free index and
mean connectivity for various softthreshold powers. (C) The gene dendrogram is generated using average linkage hierarchical clustering. The module
assignment determined by the Dynamic Tree Cut algorithm is displayed below the dendrogram. (D) Positive and negative correlation coefficients of
the WGCNA modules between case and normal group.

Tang et al. 10.3389/fcvm.2024.1442238
predict heart failure caused by dialysis (Figure 5C). Based on the

ROC curve drawn on the nomogram, the AUC value of the ROC

curve was 0.774, demonstrating that the nomogram model

exhibited significant diagnostic value (Figure 5D).
3.4 GSEA of hub genes

To investigate the signal pathway of notable enrichment of hub

genes, GSEA was carried out. The results showed that APOBEC3B,

CDCA2, TYMS and DEPDC1B all significantly affected the

ribosome and cell cycle, Oocyte meiosis and ubiquitin mediated

protein breakdown process (Figure 6). In addition, APOBEC3B

also affected the B-cell receptor signaling pathway, and CDCA2

had a significant impact on the process of processing and

presenting antigens, whereas TYMS had a significant effect on
Frontiers in Cardiovascular Medicine 05
the toll-like receptor signaling pathway (Figure 6). These findings

suggest that four hub genes may influence the onset and

progression of dialysis patients with heart failure through

these pathways.
3.5 Relationship between hub genes and
immune cells

The heat map displayed the enrichment fraction of 28 types of

immune infiltrating cells between Case and Normal samples

(Figure 7A). Four kinds of immune infiltrating cells (Activated

B cell, Activated CD4+ T cells, Immature B cell and Regulatory T

cell) in Case samples were considerably greater than that in the

Normal samples (Figure 7B). Spearman correlation was analyzed

between 4 different immune infiltrating cells and 4 hub genes.
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FIGURE 3

Candidate gene GO enrichment analysis. (A) Venn diagram illustrates the candidate genes by overlapping DEGs and case-related module genes. (B)
Gene Ontology (GO) analysis of the candidate genes. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the candidate genes.

Tang et al. 10.3389/fcvm.2024.1442238
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FIGURE 4

Machine learning algorithms screen hub genes. (A,B) Obtaining five characteristic genes through Lasso algorithm. (C) Obtaining eight characteristic
genes by SVM-RFE algorithm. (D) Venn diagram illustrates the hub genes by overlapping both machine learning algorithms. Receiver operating
characteristic (ROC) curve of (E) DEPDC1B, (F) CDCA2, (G) APOBEC3B, and (H) TYMS.

Tang et al. 10.3389/fcvm.2024.1442238
The results showed that all 4 hub genes showed positive

correlations with the 4 differential immune cells, in which

CDCA2 DEPDC1B, and TYMS showed the highest correlation

with activated CD4+ T cells (cor = 0.571, 0.691, 0.612), while

APOBEC3B showed the highest correlation with regulatory T

cells (cor = 0.518) (Figure 7C). Through immune infiltration

analysis, it was found that four hub genes can interact with

Activated B cells, Activated CD4+ T cells, Immature B cells and

Regulatory T cells to further affect dialysis patients with

heart failure.
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3.6 CeRNA regulatory network of hub genes

The miRNAs of hub genes were predicted using miRDB and

TargetScan database respectively, and four miRNAs (hsa-miR-

1297, hsa-miR-4465, hsa-miR-27a-3p, hsa-miR-129-5p) were

obtained after intersection, of which hsa-miR-1297, hsa-miR-

4465, and hsa-miR-27a-3p targeted DEPDC1B, and hsa-miR-

129-5p targeted TYMS and CDCA2. Unfortunately, no miRNA

targeting APOBEC3B was retrieved. The intersection lncRNAs

were predicted by miRANDA and StarBase databases, and 21
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FIGURE 5

Validation of diagnostic value of hub gene in heart failure. (A) Expression level analysis of hub genes between case and normal groups. *P < 0.05,
**P < 0.01, ***P < 0.001. (B) Construction of hub genes related nomogram. (C) Calibration curves to evaluate the association between actual
probability and predicted probability. (D) Receiver operating characteristic (ROC) curve to evaluate the sensitivity and specificity of nomogram.
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intersection lncRNAs were obtained. The ceRNA regulatory

network was plotted by Cytoscape software, which showed that

DEPDC18 was regulated by hsa-miR-4465, hsa-miR-1297

(Figure 7D); both CDCA2 and TYMS were regulated by hsa-

miR-129-5p (Figure 7D).
3.7 Drug prediction based on hub genes

The DrugBank database was used to predict the small molecule

drugs corresponding to 4 hub genes. Among the four hub genes,

only TYMS predicted multiple small molecule drugs. A total of

24 small molecule drugs targeting TYMS were predicted,

including Raltitrexed, Floxuridine, Pemetrexed, Capecitabine,

Fluorouracil (Supplementary Table S5), contributing to the
Frontiers in Cardiovascular Medicine 08
development of new therapeutic targets for dialysis patients heart

failure. The relationship between TYMS and small molecule

drugs was visualized by Cytoscape software (Figure 7E).
3.8 Verification of gene expression

The RT-qPCR results had revealed that the expression levels of

both CDCA2 and TYMS were significantly up-regulation in the

Case samples compared to Normal samples, which were

consistent with the results of bioinformatics analysis (Figure 8;

Supplementary Figure S1). In addition, the expression of

DEPDC1B and APOBEC3B was not significant between the Case

and Normal groups, which might be due to the small sample

size. In the future, we will keep focusing on them.
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FIGURE 6

Gene set enrichment analysis (GSEA) results of (A) APOBEC3B, (B) CDCA2, (C) DEPDC1B and (D) TYMS.
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4 Discussion

Due to the considerably higher incidence of HF in patients with

MHD compared to the general population, the combination of HF

and MHD results in a significant rise in hospitalization rates, risk

of mortality and economic burden (2, 4, 5). Clinical data

demonstrate that traditional risk factors, uremia and dialysis-

related risk factors contribute to the occurrence and development

of HF in patients with MHD (14, 15). This raises the hypothesis

that genes may play a critical role in the pathogenesis (14, 15).

More and more evidence shows that HF is a polygenic disease
Frontiers in Cardiovascular Medicine 09
with a large number of genetic components and high heritability

(23). Although the diagnosis and treatment of HF has made

great progress in recent years, the diagnosis and treatment of HF

in Patients with MHD is still difficult because almost all studies

exclude Patients with MHD (14, 15).

This study was the pioneering effort to investigate the

biological processes underlying the cruial genes implicated in the

HF pathogenesis of MHD patients based on transcriptome

sequencing. Through a series of bioinformatics methods

(WGCNA, Protein-Protein Interaction) and machine learning

algorithms (SVM-RFE and Lasso regression analysis), four hub
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FIGURE 7

Relationship between hub genes and immune cells & CeRNA regulatory network of hub genes. (A) Heat map of enrichment fraction of 28 types of
immune infiltrating cells between case and normal samples. (B) Box plot illustrate the difference in enrichment fraction of 28 types of immune
infiltrating cells between case and normal samples. *p < 0.05. (C) Heat map illustrate the correlation between different immune infiltrating cells
and hub genes. *p < 0.05, **p < 0.01, ***p < 0.001, ns: p > 0.05. (D) Competing endogenous RNA (ceRNA) regulatory network of hub genes is
depicted, with mRNA represented in green, miRNA in purple, and lncRNA in blue. (E) Drug prediction network of hub genes, where red circles
represent genes, green circles represent drugs, triangles represent drug states, and quadrilaterals represent drug types.

Tang et al. 10.3389/fcvm.2024.1442238
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FIGURE 8

The expression levels of hub genes. The expression levels of (A) DEPDC1B, (B) CDCA2, (C) APOBEC3B, and (D) TYMS were analyzed in both case and
normal samples by real-time fluorescence quantitative PCR (RT-qPCR). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: p > 0.05.

Tang et al. 10.3389/fcvm.2024.1442238
genes (APOBEC3B, CDCA2, TYMS and DEPDC1B) were finally

identified, and their hub genes and molecular pathways were

further analyzed. Subsequent immune infiltration analysis found

that CDCA2, DEPDC1B, and TYMS are closely related to CD4+

T cells activation and myocardial infiltration and injury, which

helps us to further understand the immune-related pathogenesis

of HF in the context of MHD. Through qPCR detection, our

clinical specimens verified the high expression of four hub genes

in HF of MHD patients. Through literature review, we found

that the above four genes have not been deeply studied in HF of

MHD patients so far. Therefore, the results of this study will

help to broaden the horizons of their biological functions and

molecular mechanisms, and provide new insights for the clinical

diagnosis and treatment of HF in MHD patients.

Several studies shown that 3 hub genes (DEPDC1B,

APOBEC3B, CDCA2) were linked to HF in the MHD setting.

DEPDC1B (DEP domain protein 1B), located on chromosome 5

(5q12.1), is a gene that encodes a protein involved in the

regulation of cell growth and division. The DEPDC1B protein is

a member of the DEP (Dishevelled, Egl-10, and Pleckstrin)

domain-containing protein family and has been found to play a

role in various cellular processes such as the cell cycle and cell

proliferation. The function of DEPDC1B is not fully understood,

but some studies have shown that it plays an important role in

regulating cell mitosis, transcription and tumorigenesis (24, 25).

It contained two conserved domains: DEP domain and RhoGAP

domain. The DEP domain was not only a membrane anchor

protein, but also negatively interacted with charged

phospholipids located on the membrane, thereby activating the

Wnt signaling pathway (26). Recent evidence suggested that

Wnt/β-catenin-mediated cardiomyocyte hypertrophy and cardiac

fibroblast activation may eventually progress to HF (27, 28).

However, further investigation was required to determine the

precise significance of DEPDC1B in MHD patients with HF. Our

study found four miRNAs that predicted hub genes by

establishing a ceRNA network, namely hsa-miR-1297, hsa-miR-

4465, hsa-miR-27a-3p, and hsa-miR-129-5p, where hsa-miR-4465

and hsa-miR-27a-3p are involved in the targeted regulation of

DEPDC1B. Previous studies have shown that hsa-miR-4465 plays

a key role in regulating glucose metabolism, glutamine
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metabolism, autophagy and cancer progression in various cell

types (29), while miR-27-3p inhibits adipogenesis by inhibiting

PPARγ (30, 31). A large number of studies have shown that

glucose and lipid metabolism disorders are significantly

associated with the formation of HF (32, 33). Therefore, miR-

4465 and hsa-miR-27a-3p may induce the occurrence of HF in

MHD patients by affecting DEPDC1 B and inducing glucose and

fat metabolism disorders. Future research is expected to further

explore this field. Studies indicated that the APOBEC3B

(Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3B)

gene was a member of the APOBEC family of proteins, which

are cytidine deaminases involved in innate immunity and

antiviral defense, and it primarily caused cytosine mutations,

resulting in DNA/RNA alterations (34). Daniela’s recent study

found that the typical and atypical nuclear factor-kappa B (NF-

κB) pathway could mediate the high expression of APOBEC3B

in immune or tumor cells (35). Several studies indicated that, in

activated B cells, reactive oxygen species (ROS)—mediated

oxidative stress promotes the progression of cardiomyopathy to

HF, and NF-κB was a key mediator of oxidative stress (36, 37).

Finally, NF-κB was translocated to the nucleus and triggers

inflammatory genes, which promoted the occurrence of

congestive heart failure (38, 39). However, more detailed and

broader studies were still needed to comprehensively evaluate the

specific mechanism of the NF-κB/APOBEC3B pathway in MHD

patients with HF. CDCA2 (Cell Division Cycle Associated 2) is a

gene that plays a crucial role in cell cycle regulation and cell

division. It encodes a protein known as CDCA2, which is

involved in coordinating various processes during cell division.

Currently, most studies of CDCA2 focused on cancer, revealing

that CDCA2 promotes tumor growth and inhibits apoptosis by

regulating BRCA1-NRF2/p53-PUMA in liver cancer (40, 41), or

by activating the CCAD1/AURKA signaling pathway to promote

melanoma proliferation and migration (42, 43). In addition,

Zhen’s recent study found that the expression of CDCA2

expression was closely related to p53 signaling and apoptosis in

hepatocellular carcinoma cells (Huh-7) (41). There was also

evidence that activation of the p53 signaling pathway leads to

apoptosis and cardiac fibroblast activation/proliferation, which

ultimately induces the occurrence of HF (44, 45). Interestingly,
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our study found that TYMS and CDCA2 received hsa-miR-129-5p

targeting regulation. Recent studies have shown that miR-129-5p is

involved in the regulation of the syndecan signaling pathway and

the level of IL-4, which affects cardiac fibroblast differentiation

and collagen cross-linking, ultimately leading to cardiac

remodeling (38, 46, 47). On the other hand, it was also involved

in the regulation of Toll-like receptor (TLR)-4, which was highly

expressed in the heart, binds to endogenous ligands and activates

cascade reactions (38). Although conventional biomarkers (N-

terminal pro-B-type natriuretic peptide and B-type natriuretic

peptide) have shown excellent performance in detecting CHF

patients, Reza’s study found that hsa-miR-129-5p has potential

added value with circulating natriuretic peptides in the diagnosis

of different types of CHF (38). The specific mechanism of miR-

129-5p mediated CDCA2 and CDCA2 involved in P53 signaling

pathway in cardiomyocytes deserves further study.

Unlike the above 3 genes, no evidence of TYMS was been

found in HF studies. TYMS (Thymidylate Synthase) is an

enzyme that plays a pivotal role in DNA synthesis and

replication. It is involved in catalyzing the conversion of

deoxyuridine monophosphate (dUMP) to deoxythymidine

monophosphate (dTMP), which is a nucleotide necessary for

DNA replication and repair. Currently, there were few studies on

TYMS gene polymorphism and HF. TYMS was a folate-

dependent essential enzyme that produces the only intracellular

de novo source of dTMP required for DNA synthesis and repair

(48). Current studies shown that elevated TYMS mRNA and

protein levels were associated with anti-cancer drug resistance or

worse clinical prognosis in a variety of hematological and solid

tumors (49–51). This study explored the association between

TYMS gene polymorphisms and HF in the context of MHD for

the first time. We will continue to pay attention to its

mechanism, which is also our future research direction.

Further immune infiltration analysis showed that there were 4

different immune cells in the MHD combined HF group and the

control group. The results of our correlation analysis

demonstrated a positive correlation between the following

immune cells Activated B cell, Activated CD4+ T cells, Immature

B cell and Regulatory T cell. Among these correlations, we found

that CDCA2, DEPDC1B and TYMS were moderately correlated

with Activated CD4+ T cells. Recent research indicates that the

myocardium undergoes adverse cardiac remodeling due to innate

and adaptive immunity in response to cardiac pressure overload

(52). Reactive oxygen species (ROS) -induced specific antigen

production activates the clonal expansion and proliferation of

CD4+ T cells, which ultimately leads to the infiltration of

activated CD4+ T cells into the left ventricle and the production

of a large number of cytokines (such as interleukin 17A), thereby

promoting cardiac remodeling (53, 54). Since the kidneys of

ESRD patients could not maintain blood sodium and body water

homeostasis, and maintain the intermittent nature of

hemodialysis treatment (three times a week), these closely related

risk factors all aggravate the overload of the cardiac pressure

cycle, which in turned continuously induces myocardial cell

remodeling (55, 56). Moreover, the complete loss of renal

function in ESRD patients, there are complex imbalances such as
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uremic toxin accumulation, immune system activation, reactive

oxygen species production, and calcium and phosphorus

metabolism disorders, which are manifested as pro-inflammatory

and anti-inflammatory markers (57). Although the above

phenomenon can be improved by MHD treatment, but it is not

completely comparable to the filtration function of the kidney

and the molecular size of the uremic toxins completely removed,

will lead to residual accumulation of uremic substances (57). In

addition, due to the heterogeneity of dialysate, filter membrane,

and dialysis pipeline itself, it may lead to the activation of the

immune system and aggravate the micro-inflammatory state (57).

Based on the above research, we speculated that CDCA2,

DEPDC1B and TYMS genes may promote the occurrence of HF

by changing the immune inflammatory response of MHD, but

this still needed further research to confirm. Based on the

current research, we speculated that CDCA2, DEPDC1B and

TYMS genes might be involved in the activation of the innate

immune system and micro-inflammation of MHD, which in turn

mediates heart and kidney terminal organ damage and eventually

leads to the occurrence of HF. Future research may further

clarify the internal mechanism.

Although this was a comprehensive and novel evaluation

system for exploring hub genes and related signaling pathways in

patients with MHD, our study also had some limitations. First of

all, although we focused on the analysis of significantly up-

regulated genes in this study, we recognized that down-regulated

genes may be of potential importance in the development of HF

in MHD patients, because many down-regulated genes may be

closely related to negative regulation in pathological processes or

disease remission mechanisms, which is worthy of further study.

We plan to further explore whether these down-regulated genes

can also show important biological significance under other

experimental conditions in future studies. Secondly, since we

were the first data set sequenced for patients with MHD, the

sample size in our study was very limited and cannot be verified

by other data sets, so further clinical investigation is needed.
5 Conclusion

This study utilized advanced transcriptomic techniques to

explore the molecular mechanisms underlying heart failure (HF)

in patients with MHD. It comprehensively and extensively

analyzed the related genes and pathways. We identified four hub

genes (APOBEC3B, CDCA2, TYMS, and DEPDC1B) that

broaden our understanding of the molecular mechanisms and

provide potential therapeutic targets for clinical diagnosis

and treatment.
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