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Protein tyrosine phosphatase 1B
in metabolic and cardiovascular
diseases: from mechanisms to
therapeutics
Yan Sun1, Frank A. Dinenno1, Peiyang Tang1 and
Maria I. Kontaridis1,2,3*
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Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator
of metabolic and cardiovascular disease. It is a non-transmembrane protein
tyrosine phosphatase that negatively regulates multiple signaling pathways
integral to the regulation of growth, survival, and differentiation of cells,
including leptin and insulin signaling, which are critical for development of
obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given
PTP1B’s central role in glucose homeostasis, energy balance, and vascular
function, targeted inhibition of PTP1B represents a promising strategy for
treating these diseases. However, challenges, such as off-target effects,
necessitate a focus on tissue-specific approaches, to maximize therapeutic
benefits while minimizing adverse outcomes. In this review, we discuss
molecular mechanisms by which PTP1B influences metabolic and
cardiovascular functions, summarize the latest research on tissue-specific
roles of PTP1B, and discuss the potential for PTP1B inhibitors as future
therapeutic agents.
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Introduction

Obesity has reached epidemic proportions worldwide, with over 70% of the US

population classified as overweight, obese, or morbidly obese. Projections from the

World Health Organization indicate that by 2030, half of the US population will be

considered obese, with children being the most vulnerable demographic (1). Obesity

significantly increases the risk of developing several diseases, including certain cancers,

type 2 diabetes (T2D), and cardiovascular disease (CVD) (2). Obesity adversely affects

glucose and lipid levels, raises arterial blood pressure, induces inflammation, and

impairs pulmonary function, which can lead to cardiac hypertrophy, atrial fibrillation,

and heart failure if untreated (3–6). Despite understanding the contributing factors, the

molecular mechanisms linking obesity to CVD remain poorly understood.

Primarily driven by high-calorie diets, sedentary lifestyles, and stress, insulin resistance

is linked to the development of T2D, metabolic syndrome and chronic low-grade

inflammation (7, 8). Indeed, the global prevalence of T2D, which accounts for

90%–95% of all diabetic cases, has surged by approximately 90% from 1990 to 2021
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and is expected to increase an additional 60% by 2050 to affect

more than 1.31 billion people (9, 10). This rapid rise in T2D,

characterized by the dysregulation of glucose homeostasis, poses

significant challenges for global health systems.

Insulin resistance is also a primary risk factor for CVD, non-

alcoholic fatty liver disease (NAFLD), and hypertension (11, 12).

CVD accounted for 18 million deaths in 2019 and is projected to

exceed 22 million by the year 2030 (13). Atherosclerosis,

characterized by lipid plaque accumulation in arterial walls,

underlies most of these cardiovascular events, causing myocardial

infarctions (MIs) and strokes (14). Chronic low-grade

inflammation also plays a crucial role in the pathogenesis of

CVD and can exacerbate systemic insulin resistance (15).

The interconnection between obesity, insulin resistance, and

CVD underscores the need for comprehensive prevention and

management strategies, including lifestyle changes and targeted

interventions to enhance metabolic and cardiovascular health. In

this regard, enzymes that modulate protein signaling pathways

are crucial to maintaining cellular homeostasis; their controlled

function is instrumental to preventing the development of insulin

resistance, T2D, and CVD.

Protein Tyrosine Phosphatase 1B (PTP1B), encoded by the

PTPN1 gene, is a non-receptor protein tyrosine phosphatase

(PTP) that has been extensively studied due to its regulatory

function in insulin and leptin signaling (16, 17). As such, PTP1B

plays a critical role in metabolic regulation, making it a potential

target for therapeutic intervention in obesity and diabetes, as well

as in CVD pathophysiology. Here, in this review, we will discuss

the significance of the biochemical, functional, and mechanistic

roles for PTP1B, and how its hyperactivation can lead to the

development of metabolic dysfunction and CVD. We will also

discuss the current and emerging therapeutic strategies for

treating obesity and diabetes, including use of PTP1B inhibitors.
PTP1B structure and function

PTP1B is a 50kDA protein initially discovered by biochemical

purification methods targeting enzymes involved in protein

tyrosine dephosphorylation (16, 18, 19). The C-terminus of the

enzyme contains two proline-rich domains that interact with Src-

homology 3 (SH3) domain-containing proteins to recruit binding

substrates (19), as well as a hydrophobic domain that anchors to

the endoplasmic reticulum (ER) to allow access to intracellular

targets (20, 21). The N-terminal domain of PTP1B houses the

catalytic domain, which includes the essential cysteine (Cys215)

and arginine (Arg221) residues of the phosphatase signature

motif [I/V]HCXXGXXR[S/T], a sequence that defines all protein

tyrosine phosphatases (17).

The crystal structure of PTP1B has also revealed its biochemical

function; it is a PTP that forms a catalytic pocket with high

specificity for phosphotyrosine-containing substrates (22). Upon

substrate binding, PTP1B undergoes a conformation change, closing

its WPD loop around the phosphotyrosine residue to stabilize and

ready the invariant aspartic acid (Asp181) for hydrolytic catalysis, a

process that proceeds in two steps (23). First, a nucleophilic attack
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by the cysteine residue forms a phosphocysteine intermediate, which

is hydrolyzed by glutamine (Gln262) and Asp181 (23). Next, the

closed WPD loop sequesters the phosphocysteine intermediate to

prevent the transfer of phosphate to extraneous acceptors. This

process is critical to PTP1B’s function, making it an integral

regulator of signaling pathways involved in metabolic regulation.
PTP1B and RTK signaling

As a PTP, PTP1B catalyzes the dephosphorylation of receptor

tyrosine kinases (RTKs) to modulate multiple spatiotemporally

complex signaling processes, including those mediated by

epidermal growth factor (EGF), leptin, and insulin (17). RTKs are

single-span transmembrane receptors that facilitate communication

between cells and their extracellular environment. Tyrosine

phosphorylation (pTyr), a crucial post-translational modification,

regulates essential biological processes that include cellular

proliferation, migration, and invasion (24). The process is

mediated by the coordinated actions of both protein tyrosine

kinases (PTKs), which add phosphate (PO4) groups, and PTPs,

which remove these phosphate groups (25, 26). Disruption of this

delicate balance between PTKs and PTPs can result in aberrant

pTyr. While most previous research historically focused on the

role of PTKs, recent studies have emphasized the critical functions

of PTPs in maintaining this balance. As PTPs can act as both

initiators and terminators of pTyr signaling, their importance in

maintaining cellular homeostasis is paramount (27, 28); absence or

dysfunction of PTPs can lead to a myriad of pathological

conditions, including autoimmunity, cancer, CVD, and obesity-

related metabolic disorders (29, 30).
Insulin signaling and the role of PTP1B

In healthy individuals, food intake elevates blood glucose and

stimulates insulin release from the pancreas, inducing a feedback

mechanism that increases glucose uptake by peripheral tissues to

regain normal blood glucose concentrations (31, 32). Insulin

resistance occurs when tissues such as skeletal muscle, adipose

tissue, and the liver become less responsive to insulin, leading to

reduced glucose uptake, hyperglycemia, and hyperinsulinemia,

and eventually, T2D (33, 34).

Insulin signaling, a key RTK pathway, and PTP1B regulation are

integral mediators of this biological process. Briefly, when insulin is

released into the bloodstream by the pancreas, it binds to cells

through the insulin receptor (IR), inducing autophosphorylation and

activation of its intrinsic kinase activity (35). The activated receptor

then phosphorylates its downstream effectors, the insulin receptor

substrates (IRS1/2), which mediate activation of phosphatidylinositol

(PI) 3′-kinase (PI3K), a lipid kinase complex consisting of a

regulatory p85 subunit and a catalytic p110 subunit that

phosphorylates the 3′-hydroxyl group of phosphoinositides.

Specifically, with respect to insulin signaling, phosphorylated IRS

proteins interact with the regulatory p85 subunit of PI3K through

their SH2 domains, inducing a conformational change that relieves
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1445739
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Sun et al. 10.3389/fcvm.2024.1445739
the inhibition on the p110 catalytic subunit, recruiting the now

activated PI3K complex from the cytosol to the plasma membrane

(PM). Once at the membrane, PI3K can phosphorylate its substrate,

phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2, also known as

PIP2] to generate phosphatidylinositol-3,4,5-trisphosphate (PIP3),

driving downstream signaling and activation of protein kinase B

(PKB; also known as AKT) (36). AKT then further promotes

activation of downstream effectors involved in protein synthesis and

survival, as well as induces translocation of glucose transporters

to the cell membrane, resulting in increased glucose uptake by the

cells (37) (Figure 1).

PTP1B negatively regulates this process by directly

dephosphorylating both the IR and its downstream effectors, IRS1

and IRS2, reducing their activity and downregulating PI3K/AKT

signaling (38). Indeed, whole-body PTP1B knockout (KO) mice

exhibit enhanced insulin sensitivity, elevated phosphorylation of IR

and IRS-1, and resistance to high-fat diet (HFD)-induced weight

gain and obesity (27). Functionally, PTP1B KO mice have elevated

basal metabolic rates and increased energy expenditures (39).

Interestingly, the effects of reduced adiposity are not consequent to

decreased fat cell numbers; rather, they are mediated by having

decreased fat cell sizes (39). Collectively, these findings demonstrate

a critical role for PTP1B in the regulation of metabolism in vivo.
PTP1B regulation of leptin signaling

Leptin, an adipocyte-secreted hormone, acts in the mediobasal

hypothalamic nuclei to suppress food intake and increase energy

expenditure, regulating energy balance and body mass (40). As such,
FIGURE 1

Role of PTP1B in the insulin signaling cascade. Binding of Insulin receptor sub
(PI3K)/AKT pathway which is crucial for cellular survival and the mitogen
differentiation and cell growth. PTP1B negatively regulates insulin signalin
activity of downstream effectors, including the PI3K/AKT pathway, reducin
factor; PTP1B, protein tyrosine phosphatase 1B; MEK, MAPK ERK kinase;
PI3K; PIP, phosphatidylinositol phosphate; PDK, protein dependent kinase. I
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circulating leptin levels correlate with adiposity (41). Mechanistically,

leptin binds to the leptin (LR), a type I cytokine receptor that is

expressed in the hypothalamus, and activates its effector JAK2, a

protein that promotes the growth and division of cells (42). Once

activated, JAK2 induces activation of the IRS proteins, which like

insulin signaling, can lead to the activation of the PI3K/AKT

pathway (43) (Figure 2). Activation of JAK2 also directly

phosphorylates the LR itself, allowing for recruitment of the SH2

domain-containing protein-tyrosine phosphatase 2 (SHP2), another

critical PTP that promotes activation of the extracellular signal-

regulated kinase 1/2 (ERK1/2)-mitogen activated protein kinases

(MAPK) pathway, which is critical for the proliferation and growth

of cells (44, 45). In parallel, JAK2-mediated LR phosphorylation also

drives activation of the signal transducer and activator of

transcription factor 3 (STAT3) pathway, which suppresses

transcription of both the hypothalamic neuropeptide Y (Npy) and

agouti-related protein (Agrp), co-expressive neuropeptides that

stimulate food intake and repress energy expenditure (46).

Like with insulin, PTP1B is a negative regulator of leptin

signaling by directly dephosphorylating JAK2, thereby blocking

the phosphorylation and activities of both the receptor and STAT3

(47). PTP1B KO mice have increased leptin sensitivity, lower

leptin/body fat ratios, and enhanced hypothalamic signaling,

leading to reduced adiposity and increased energy expenditure (48).
Effects of PTP1B in metabolism

Located on chromosome 20q13.1-13.2, several single

nucleotide polymorphisms (SNPs) in the PTPN1 gene have been
strates (IRS) activates the phosphatidylinositol-4,5-biphosphate-3-kinase
-activated protein kinase (MAPK) pathway that is responsible for cell
g by directly dephosphorylating both the IR and IRS1/2, reducing the
g cellular glucose uptake. IR, insulin receptor; IGF, insulin-like growth
ERK, extracellular signal-regulated kinases; p85 and p110, subunits of
mage created with BioRender.com.
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FIGURE 2

Role of PTP1B in regulation of the leptin signaling pathway. Binding of leptin to the leptin receptor initiates the recruitment of Janus Kinase 2 (JAK2)
and their auto-phosphorylation process. Phosphorylated JAK2 then phosphorylates the tyrosine residue on the receptor which allows the docking of
signal transducer and activator of transcription 3 (STAT3). STAT3 promotes the activation of Proopiomelanocortin (POMC) and inhibits the expression
of agouti-related protein (AgRP). PTP1B suppresses the phosphorylation level of JAK2 and leptin receptors and henceforth STAT3 docking. PTP1B:
protein tyrosine phosphatase 1B. Image created with BioRender.com.
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linked to obesity and diabetes in various populations. In French

Canadians, for example, at least six PTP1B SNPs have been

associated with these conditions (49, 50). PTP1B SNPs have also

been identified in individuals with early onset diabetes in Danes,

Canadians, and Italians (10, 51, 52). Moreover, the PTP1B SNP

rs3787348 is linked to a poorer weight reduction outcome in

obese Japanese patients (53). Based on this, and the PTP1B

global KO mouse data, it is clear that PTP1B influences glucose

homeostasis and energy balance through its actions on insulin

and leptin pathways. Inhibition of PTP1B enhances signaling to

these pathways, improving glucose uptake and energy

expenditure, and thus highlights the crucial role for PTP1B in

metabolic health.

However, despite these overall positive outcomes, global, as

well as myeloid-specific, PTP1B KO mice can develop acute

myeloid leukemia and have been shown to have reduced

lifespans (27, 54), suggesting differential tissue-specific effects of

PTP1B. As such, global therapeutic targeting of PTP1B,

particularly for treatment of metabolic diseases, appears to be

rather complicated. To therefore circumvent this issue and to

better elucidate the precise molecular, functional, and biological

regulations of PTP1B, tissue-specific deletion models for PTP1B

have been generated and studied (Table 1).
Skeletal muscle

PTP1B deletion in skeletal muscle cells enhances systemic

insulin sensitivity and increases glucose uptake in the muscle,

independent of body weight and adiposity (56). These mice also

exhibit increased insulin signaling, as indicated by enhanced

phosphorylation of the IR and its downstream effector IRS1, as

compared to controls (56). PI3K activity and phosphorylation of

both AKT and ERK1/2 are also elevated in these mice. Despite
Frontiers in Cardiovascular Medicine 04
these effects, however, deficiency of PTP1B in skeletal muscle

does not affect lipid profiles, leptin levels, leptin sensitivity, body

weight, or adiposity (56, 68), suggesting that these mechanisms

for PTP1B regulation reside in other tissues and/or cell types.
Adipose

Adipose-specific PTP1B KO mice maintain similar body weight

to controls when fed a HFD, but have larger adipocytes, increased

circulating leptin levels, and increased basal lipogenesis (58). These

mice have decreased phosphorylation of IR and its downstream

effector AKT and have overall increased expression of lipogenic

genes (58). Moreover, pyruvate kinase M2 (PKM2) is a newly

identified substrate for PTP1B in adipocytes, but its mechanism of

regulation in these cells remains unclear (69). In addition, PTP1B’s

role in different adipose depots is variable, influencing

adipogenesis and insulin sensitivity differently between white and

brown adipocytes; specifically, PTP1B knockdown in 3T3-L1

adipocytes inhibits adipogenesis (69), whereas PTP1B deficiency in

brown adipocytes accelerates adipogenesis and enhances insulin

sensitivity through activation of AKT and increased resistance to

TNFα-induced apoptosis (70, 71).
Liver

Mice with liver-specific PTP1B deletion show increased insulin

sensitivity and suppressed hepatic gluconeogenesis and lipogenic

genes, without affecting weight gain (62, 63). In addition, these

mice have alleviated endoplasmic reticulum (ER) stress following

HFD, with decreased phosphorylation of downstream p38-MAPK

and c-Jun N-terminal kinase (JNK)-MAPK signaling pathways,

as well as reduced ER-resident proteins, PERK and eukaryotic
frontiersin.org
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TABLE 1 Effects of global and tissue specific deletion of PTP1B in rodents.

Site of deletion Genotype Observed phenotype References
Global PTP1B−/− 1. Lower blood glucose concentrations

2. Enhanced insulin sensitivity
3. Increased basal metabolic rate and total energy expenditure
4. Resistant to weight gain and remained insulin sensitive on HFD

(27, 55)

Muscle PTP1B−/− 1. Increased muscle glucose uptake
2. Improved systemic insulin sensitivity
3. Enhanced glucose tolerance

(56, 57)

Adipocyte PTP1B−/− 1. No differences in body weight/adiposity compared to PTP1B+/+

2. Increased adipocyte size
3. Increased circulating glucose and leptin levels
4. Reduced leptin sensitivity
5. Increased basal lipogenesis

(58, 59)

Neuronal PTP1B−/− 1. Reduced weight and adiposity
2. Increased energy expenditure
3. Hypersensitive to leptin and elevated leptin levels
4. Improved glucose homeostasis

(57, 60)

POMC PTP1B−/− 1. Reduced adiposity
2. Improved leptin sensitivity
3. Increased energy expenditure
4. Reduced BP response to ganglionic blockade
5. Increased vascular adrenergic reactivity
6. Exhibited a blunted increased in diastolic and mean BP

(61)

Myeloid PTP1B−/− 1. Impaired BMDC activation
2. Decreased migratory capacity of epidermal DC
3. Fail to present antigen to T cells as efficiently as control BMDC
4. Shortened lifespan and development of acute leukemia

(54)

Liver PTP1B−/− 1. Improved glucose homeostasis and lipid profiles
2. Increased hepatic insulin signaling
3. Decreased triglyceride and cholesterol levels
4. Protective effect against endoplasmic reticulum stress

(62, 63)

Endothelial cell PTP1B−/− 1. Promotes cardiac and extracardiac angiogenesis during chronic pressure overload-induced hypertrophy
2. Reduce hypoxia, oxidative stress and fibrosis
3. Enhanced cardiac VEGF signaling and increased Caveolin-1 expression
4. Restore altered NO production in the peripheral circulation in CHF

(64–66)

Islet PTP1B−/− 1. Absence of islet PTP1B increased graft functional vascularization by increasing the number of newly formed
vessels

2. Up-regulation of several EC markers and reduced IEC loss in culture
3. Enhanced VEGF-A production and activation of the PGC1α/ERRα axis

(67)

HFD, high fat diet; BP, blood pressure; POMC, pro-opiomelanocortin; BMDC, bone marrow dendric cells; DC, dendric cell; VEGF, vascular endothelial growth factor; NO, nitric oxide; CHF,

chronic heart failure; EC, endothelial cell; IEC, induced endothelial cell.
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initiation factor 2 α (eIF2α) factors (62, 63). This decreased

signaling also leads to lowered expression of stress-related

transcription factors and improved lipid profiles (62, 63). Liver-

specific PTP1B KO, however, does not impact leptin levels, leptin

sensitivity, body weight, or adiposity (62, 63), underscoring the

liver-specific benefits of PTP1B inhibition in metabolic regulation.
Neuronal

Neuronal deletion of PTP1B in mice show decreased body

mass and adiposity, as well as improved glucose homeostasis

(57). These mice also exhibit increased physical activity and

energy expenditure and are hypersensitive to leptin with elevated

leptin levels (57). Moreover, deletion of PTP1B in arcuate pro-

opiomelanocortin (POMC), a specific regulatory neuronal

subpopulation that controls metabolism and is expressed only in

hypothalamus and regions of the spinal cord and brain stem,

reduces adiposity, improves leptin sensitivity, and increases

energy expenditure (61, 72). These mice are also protected
Frontiers in Cardiovascular Medicine 05
against leptin- and sympathetically mediated increases in blood

pressure. Collectively, these data suggest that PTP1B modulates

leptin production and resistance primarily through activation of

pathways within the central nervous system (CNS) (61). In

addition, POMCs induce brain-derived neurotrophic factor

(BDNF) signaling in the hypothalamus, mediating neural

connectivity and neurite outgrowth (73). In this regard, PTP1B

modulates this process by acting as a direct negative regulator of

the downstream BDNF effector, tropomyosin receptor kinase B

(TrkB) (60, 73, 74), thus increasing both AKT and ERK

activation. These effects highlight the critical role of the CNS in

PTP1B-mediated metabolic regulation and the control of food

intake and energy expenditure.
PTP1B in CVDs

As previously discussed, obesity is a major risk factor for CVD,

increasing mortality and morbidity, particularly in individuals with

central adiposity (75). Obesity is also associated with the
frontiersin.org
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development of high blood pressure, a leading risk factor for stroke,

cardiac hypertrophy, and heart failure (76, 77). Several studies have

established a significant link between PTPs, PTKs and cardiac

pathophysiology (78). Indeed, increased activation of PTP1B in

the heart is associated with development of heart failure in both

rats and humans (78, 79). Cardiac contractile dysfunction and

intracellular calcium dysregulation are also linked to elevated

levels of PTP1B (80). Thus, there is precedence for a critical role

for PTP1B in CVD (81).
PTP1B and endothelial cells (ECs)

Endothelial dysfunction is a primary event in the

progression of CVD and is a known predictor of diabetes- and

obesity-related CVD (82). Increased PTP1B expression in ECs

impairs macro- and micro-vascular systems and increases the

risk of having an MI or ischemic stroke (64, 83–87).

Mechanistically, enhanced PTP1B-mediated signaling in ECs

inhibits activation of AKT and blocks endothelial nitric oxide

synthase (eNOS), an enzyme responsible for producing nitric

oxide (NO), a potent vasodilator and regulator of glucose

uptake (64, 88). Inhibition of PTP1B enhances serine

phosphorylation of eNOS and improves NO-mediated

vasodilation in mice with chronic heart failure induced by

coronary ligation (64). These data suggest that PTP1B
FIGURE 3

Vascular endothelial growth factor (VEGF) signaling. Binding of VEGF to
activation of downstream effectors including PLCγ/PKC/ERK1/2, PI3K/A
dephosphorylates VEGFR. PTP1B directly binds to platelet-derived growt
(SMCs). The fibroblast growth factor receptor (FGFR1) directly phosphory
regulates myocyte regeneration. VEGF, vascular endothelial growth factor
PI3K, phosphatidylinositol 3-kinases; eNOS, endothelial nitric oxide synth
kinase C; ERK1/2, extracellular signal-regulated kinase 1/2; PKM2, pyruvate
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inhibition could potentially be considered for patients with

CVD and/or endothelial dysfunction.

Vascular endothelial growth factor (VEGF) receptor 2

(VEGFR2) and its ligand VEGF-A are key mediators of

angiogenesis, the process by which existing blood vessels grow

(89). Binding of VEGF-A to VEGFR2 induces

autophosphorylation of the receptor and, subsequently, leads to

activation of multiple crucial downstream signaling pathways

necessary for survival, proliferation, and migration of ECs (90).

To drive angiogenesis, VEGFR signaling activates Src, which

induces phosphorylation of VE-Cadherin, as well as P38-MAPK,

to mediate EC migration (91). In addition, VEGFR activation

induces signaling to both ERK1/2 and PI3K/AKT, to promote

EC proliferation and EC survival, respectively (92) (Figure 3).

Here too, PTP1B has a prominent role in CVD; it directly

dephosphorylates VEGFR2 to inhibit angiogenesis (66). Mice

with endothelial-specific deletion of PTP1B, however, have

improved angiogenesis, enhanced wound healing, and are

protected against development of chronic heart failure post-MI

(66, 93). Primary ECs isolated from these mice reveal that the

mechanism of this regulation is mediated by enhanced VEGF-A-

induced VEGFR2 activity, which leads to increased ERK

signaling to induce angiogenesis (66). Similar effects on

angiogenesis, revascularization and survival are also noted in

PTP1B-deleted pancreatic islets (67), as well as in human

umbilical vein ECs, both in vitro and in vivo (94).
VEGFR induces its tyrosine phosphorylation, which is followed by the
KT, Src, p38 and FAK/Paxillin. PTP1B binds to VEGFR and directly
h factor receptor (PDGFR), inducing motility in smooth muscle cells
lates pyruvate kinase M2 (PKM2), PTP1B dephosphorylates PKM2 and
; PTP1B, protein tyrosine phosphatase 1B; FAK, focal adhesion kinase;
ase; NO, nitric oxide; PLCy, phospho-lipase C gamma; PKC, protein
kinase M2. Image created with BioRender.com.
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PTP1B and vascular smooth muscle
cells (VSMCs)

The motility and proliferation of VSMCs is critical for

neointima formation and remodeling in response to vascular

injury (95). Elevated levels of platelet-derived growth factor

(PDGF) and/or fibroblast growth factor-2 (FGF2) contribute to

this remodeling event, mediating autophosphorylation and

activation of PDGF receptor β (PDGF-βR) and increased

downstream signaling (96). Here, induction of NO can increase

PTP1B activity, whose direct binding to the PDGF-βR can then

inhibit downstream signaling and suppress proliferation and

motility in cultured SMCs (96–98).

Indeed, adenoviral overexpression of PTP1B blocks insulin-

mediated activation of IR and decreases cell motility, whereas

dominant-negative expression of PTP1B attenuates NO-mediated

inhibition of cell motility (98). Treatment of injured arteries with

dominant negative PTP1B adenovirus, however, increases cell

proliferation, intimal cell number, and neointima formation,

without affecting apoptosis. Moreover, primary isolated newborn

rat aortic SMCs treated with an antisense oligonucleotide against

PTP1B enhances cell motility and increases pTyr of several

adhesion molecules, including p130cas, paxillin and focal

adhesion kinase (FAK) (99) (Figure 3). Together, these findings

demonstrate that PTP1B is an important regulatory protein

involved in motility and proliferation, and that it may be a good

potential therapeutic target for treating VSMC pathophysiology.
PTP1B and cardiac myocytes

Cardiomyocytes (CMs) are contractile muscle cells that allow

the heart to maintain proper pumping function (100). CMs are

also the major source of VEGF signaling in the heart (101, 102).

Here, activation of P38-MAPK promotes secretion of VEGF-A,

which in turns acts as a feedback mechanism to stimulate

binding and activation of the VEGFR (103). CM-mediated VEGF

signaling also mediates cardiac morphogenesis, transforming

cardiac ECs into mesenchymal cells in mice (104, 105). However,

the mechanisms for how PTP1B is involved in this process in

CMs requires further study.

Interestingly, research on PTP1B activity in CMs has

demonstrated both protective and deleterious effects. For example,

PTP1B directly binds PKM2, increasing its activity in CMs (106).

Since PKM2 is a key cell cycle regulator, increasing its activity

induces CM cell division, improves cardiac function, and extends

long-term survival after acute or chronic MI (107) (Figure 3).

Conversely, PTP1B overexpression mediates age-induced CM

contractile dysfunction and other myocardial anomalies (80, 108).

In response to HFD, global deletion of PTP1B in mice reduces

cardiac pathologies, including hypertrophy (108). Our own

laboratory also recently demonstrated that CM-specific deletion

of PTP1B in mice ameliorates HFD-induced cardiomyopathy and

cardiac steatosis (106). Furthermore, metabolomics data revealed

that CM-specific deletion of PTP1B elevates fatty acid oxidation

and lipolysis, but reduces glucose metabolism (106). In response
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CMs, PTP1B expression increases; ablation of PTP1B in these

cells increases AKT activity and decreases hypoxia-associated

apoptosis (109). These findings indicate that PTP1B inhibition

may mitigate cardiac abnormalities and improve heart function.

While these data all suggest a protective role for PTP1B

deletion in the heart, Coulis et al. have found that CM-specific

deletion of PTP1B in mice may also be pathological, inducing a

hypertrophic phenotype that is exacerbated by pressure overload

(110). Specifically, they found that argonaute 2 (AGO2), a critical

component of the RNA-induced silencing complex, is inactivated

in response to CM-specific deletion of PTP1B, thereby

preventing miR-208b-mediated inhibition of mediator complex

subunit 13 (MED13) and leads to thyroid hormone-associated

pathological cardiac hypertrophy (110). However, in this regard,

inhibition of miR-208b has previously been shown to improve,

not induce, cardiac dysfunction in titin-induced dilated

cardiomyopathy (111). Moreover, upregulation of MED13 is

protective in the heart, conferring resistance to obesity (112).

Regardless, it remains possible that different pathological stimuli

may lead to different outcomes and/or that too much or too

little PTP1B can lead to similar, but distinct, pathological

outcomes (106). Exactly if and how PTP1B is involved in

modulating these various physiological vs. pathological responses

in the heart remains to be determined (106).
PTP1B as a potential therapeutic target

Overall, given PTP1B’s critical role in insulin and leptin

signaling, it is considered an excellent target for treating obesity

and diabetes (17). However, targeting PTP1B, in a cellular and

tissue-specific manner, has been challenging, particularly because

of its positively charged active site, its selectivity, and its

bioavailability (78, 113). Consequently, only a few PTP1B

inhibitors have been tested in clinical trials, and most have,

unfortunately, been discontinued due to insufficient efficiency,

lack of specificity and detrimental side effects (114–116)

(Table 2). Therefore, more research is needed to fully elucidate

the effects of PTP1B inhibition in cardiometabolic diseases.

Ertiprotafib, a monocarboxylic acid mimetic, is a noncompetitive

multiple-action inhibitor (129). It was the first PTP1B inhibitor to be

tested in clinical trials for the treatment of diabetes (130). This

inhibitor has an atypical mechanism of action; while most small

molecules bind to and increase their target’s melting temperature

(Tm) to stabilize their interaction, ertiprotafib lowers the Tm of

PTP1B, destabilizing it (131, 132). Indeed, the mechanism by

which ertiprotafib inhibits PTP1B activity is mediated by inducing

protein aggregation (133). However, the selectivity of this

compound is very low, with IC50 values of 1.6–29 µM, depending

on assay conditions (129). Therefore, development of newer and

more specific inhibitors was needed.

Trodusquemine, also known as MSI-1436, is a natural

aminosterol cholestane that is a noncompetitive, reversible, and

allosteric inhibitor of PTP1B (117, 134). In terms of specificity,

this small molecule targets a novel allosteric binding site located
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TABLE 2 An overview of PTP1B inhibitors.

PTP1B inhibitor Inhibitor type In diabetic & cardiovascular studies IC50 value References
MSI-1436/trodusquemine Noncompetitive, reversible,

allosteric inhibitor
1. Reduced fat & insulin levels in HFD induced obese mice
2. Weight loss, suppressed food intake, decreased adipocyte

size/lipid content & lowered plasma insulin levels
3. Reduced osteogenic & myofibrogenic VIC differentiation
4. Decreased VIC osteogenic differentiation, inhibits

myofibroblast, & protective against aortic valve stenosis
5. Decreased phosphorylation of p44/42 MAP kinase in

breast cancer model mice

0.6 μM–40.6 μM,
depending on PTP1B
enzyme form

(117, 118)

ISIS 113715 Antisense inhibitor 1. Inhibited PTP1B mRNA and protein expression in
monkey hepatocytes

2. Reduced PTP1B mRNA expression in liver/adipose tissues
in monkeys

3. Increased adiponectin concentrations & lowered insulin
responses in monkeys

4. Improved insulin sensitivity & normalized plasma glucose
levels in mice and monkeys

5. Downregulated lipogenic genes within fat and liver as well
as adipocyte differentiation associated genes in fat tissue of
mice

6. Tolerated and safe in people, improved dyslipidemia &
increased adiponectin, decreased body weight

<0.01 μM (59, 119–121)

BDB Competitive, selective inhibitor 1. Antidiabetic effects in spontaneously developing diabetic
mice.

2. Marked improvements in pancreatic islet cell architecture
and increased ratios of β-cells to α-cells

1.86 μM (87)

DPM-1001 Analog of MSI-1436 1. Reversed obesity
2. Improved glucose tolerance
3. Insulin sensitivity

0.1 μM (122)

Isoxazol-5 (4H) one
derivative C3

Competitive, binds to the active
site

1. Suppressed weight gain in mice upon HFD 2.3 µM (123)

TCS 401 Competitive, selective inhibitor 1. Increased dopamine response to insulin & general
responsiveness to insulin compared to the HFD control
mice

2. Increased ERK & AKT expression in RPE & CMECs
3. Decreased apoptosis & caspase 3 activity in CMEC

2 μM (124–127)

XWJ24 Competitive and selective
inhibitor, 4.5 times more potent
than TC-PTP

No studies in the context of obesity, diabetes or cardiovascular
disease

0.6 μM (128)

HFD, high fat diet; VIC, valvular interstitial cells; RPE, retinal pigment epithelial; CMEC, cardiac microvascular endothelial cell.
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within the C-terminus of PTP1B, allowing it to bind with affinity

values that range from 0.6 μM to 40 6 μM, depending on the

enzyme form (117). Because of its high specificity,

trodusquemine was initially considered to be the more effective

inhibitor with fewer off-target side effects (135). Indeed, in HFD-

fed mice, MSI-1436 significantly decreased obesity by reducing

insulin levels, decreasing body weight, lowering lipid content,

decreasing adipocyte size, and suppressing food intake (118). In

addition, MSI-1436 reduced osteogenic and myofibrogenic

valvular interstitial cell (VIC) differentiation, alleviating aortic

valve fibro-calcification and stenosis in a diet-induced mouse

model of calcific aortic valve disease (136). Unfortunately,

though effective in these mouse studies, this inhibitor was

discontinued for use in human clinical trials due to its low

activity and poor bioavailability in patients (19).

JTT-551, a mixed-type PTP1B inhibitor, was shown to have

good selectivity. Like trodusquemine, chronic administration of

JTT-551 in mice with diet-induced obesity demonstrated anti-

obesity properties (137). In addition, JTT-551 reduced blood

glucose and exhibited antidiabetic effects, without changes in body

weight, in diabetic mice (137). Taken together, these data indicated
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that JTT-551 was an effective inhibitor for treatment of T2D and

obesity; however, trials here too were discontinued due to

insufficient efficacy and increased adverse effects in patients (138).
New therapies on the horizon for PTP1B
inhibition

Fortunately, several new PTP1B inhibitors have been recently

generated and are in process of being tested for efficacy against a

myriad of cardiometabolic diseases, including T2D. The hope is

that one (or several) will succeed in patient trials and provide

future therapeutic benefits for these devastating diseases.

IONIS-PTP-1BRx, also known as ISIS-113715, is an antisense

PTP1B inhibitor with an IC50 of less than 0.01 μM (59). In

obese insulin-resistant monkeys, this inhibitor improved insulin

sensitivity, increased adiponectin concentration, and lowered

insulin responses (59). Similarly, in insulin-resistant diabetic

mice, IONIS-PTP-1BRx improved insulin sensitivity, normalized

plasma glucose levels, and decreased expression of lipogenic

genes in both fat and liver, downregulating adipocyte
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differentiation (120). In 2018, IONIS-PTP-1BRx made its way to

clinical trials, and preliminary data indicate that treated T2D

diabetic patients have reduced body weight and decreased mean

HbA1c levels (121), all without adverse interactions with other

antidiabetic drugs (119). However, as of the date of this

submission, no further updates have been posted about this study.

BDB [3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-

benzenediol] is a recently developed competitive inhibitor of

PTP1B with demonstrated high selectivity (87). In vitro, BDB is

cell-permeable and enhances insulin signaling. Moreover, oral

administration of BDB leads to antidiabetic effects in

spontaneously developing diabetic mice, with marked

improvements in pancreatic islet cell architecture and increases

in ratios of β-cells to α-cells (87). No information, however, is

yet available about its progression to clinical trials.

DPM-1001, an analog of MSI-1436 with an IC50 of 0.1 μM,

reverses obesity and improves insulin sensitivity and glucose

tolerance in HFD mice (139). In May of 2022, DepYmed

released a statement that it received FDA orphan drug

designation for the clinical candidate DPM-1001, for the

treatment of Wilson Disease, a rare genetic disorder that

prevents the body from removing copper, causing the metal to

build up in the liver, brain, and corneas (122) (https://www.

iospace.com/article/releases/depymed-receives-fda-orphan-drug-

designation-for-clinical-candidate-dpm-1001-for-the-treatment-

of-wilson-disease/). This classification for DPM-1001 is an

important milestone, as it furthers the development and

progression of PTP1B inhibitors for use in diseased patients.

Other potent inhibitors have also been recently studied in the

context of metabolism. A competitive derivative of Isoxazol-5(4H)

suppresses weight gain in HFD mice, although at a comparatively

reduced potency than other PTP1B inhibitors (123). TCS 401,

another competitive and selective inhibitor, increases dopamine

responses to insulin in HFD mice (124). Inhibitors, such as

XWJ24 and compounds from D. crassirhizomai and M. alba, have

recently shown strong PTP1B inhibition, but have yet to be tested

in HFD or CVD studies (128, 140, 141). Finally, a new patent

application has identified 5-(naphthalen-2-yl)-1,2,5-thiadiazolidin-

3-one 1,1-dioxide derivatives (represented by “formula 1”) as a

newly garnered PTP1B inhibitor, but its efficacy and specificity

have yet to be determined (114).
Navigating the challenges: future
opportunities for PTP1B inhibitors in
disease treatment

New targeting strategies for PTP1B
inhibition

The transcriptional and translational regulation of PTP1B is

well studied, providing potential novel sites for therapeutic

targeting, particularly for metabolic disorders and cancers. In this

regard, characterization of the PTP1B promoter region revealed

several binding sites for transcription factors such as Egr-1, Sp1,

Sp3 (142), YB-1 (143), NF-κB (144) and HIF (145). These
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factors can be activated by various stimuli, including glucose,

insulin, proinflammatory cytokines, and oncoproteins (146).

Additionally, PTP1B expression is regulated by several miRNAs,

including miR-338-3p, miR-744, miR-122, miR-193a-3p, miR-

135a, miR-146-b, and miR-206 (147–152). Each of these can be

considered as additional, indirect PTP1B inhibitors for future

studies, as they have the potential to be targeted with high

specificity, to reduce downstream PTP1B signaling, and

hopefully, to prevent development of insulin resistance, T2D,

CVD, as well as onset of other diseases such as cancer. The

efficacy of this strategy remains to be determined.
Outside the box approaches for
PTP1B inhibition

Over the past few decades, numerous PTP1B inhibitors have

been identified, but their lack of specificity and cellular

permeability pose significant challenges for clinical use (115). Most

inhibitors target the catalytic active site, leading to non-specific

inhibition of all PTPs (153). Despite efforts to develop more

specific inhibitors, the high conservation of the catalytic site

among PTPs, particularly TCPTP, remains a major obstacle. To

overcome these challenges, researchers are exploring innovative

strategies including high-throughput screening (154), virtual

screening (155), DNA-encoded libraries (156), and PROTAC

approaches (157) to develop drugs with greater efficacy and

increased specificity. Additionally, designing inhibitors with

improved membrane permeability and bioavailability is crucial. In

this regard, nanoparticle-based delivery systems and graphene

quantum dots show promise in enhancing oral bioavailability and

specificity (158, 159). Addressing these challenges will be necessary

for developing effective and safe PTP1B inhibitors for clinical

treatment of various diseases in the near future.
Summary

PTP1B signaling is a critical regulator of glucose homeostasis and

energy balance, conducive to mediating the onset of obesity, insulin

resistance, T2D, and CVD (49, 160). Consequently, inhibition of

PTP1B is an attractive novel strategy for treating these diseases.

Though significant progress has been made in understanding the

molecular mechanisms of PTP1B regulation in metabolic processes

that affect diabetes, obesity and the heart, tissue-specific targeting

and selective potency with existing PTP1B inhibitors remains

challenging. Future research is promising in this regard, and

advancements in this field, through novel and targeted modulation

of PTP1B, are likely to yield effective results and therapies for

treatment of individuals with these devastating ailments.
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